
Performance Comparison of Tarry and Awerbuch Algorithms

Najla Alam

Abstract— Tarry and Awerbuch are examples of widely
used wave algorithms. These message passing schemes can be
embedded in particular algorithms, where they appear as sub
tasks viz. broadcasting, synchronization, and computing global
functions. The definition of a wave algorithm is as follows;
it exchanges a finite number of messages and then makes a
decision, which depends causally on some event in each process.
It is assumed that there is a special type of event called a decide
event. Tarry is a traversal algorithm, a special class of wave
algorithms in which all events of a wave are totally ordered by
causality relation. I am presenting a performance comparison
of Tarry and Awerbuch with respect to two characteristics,
message complexity and time complexity. Message complexity
is defined as the number of messages it takes the algorithm to
carry out specified task Time complexity is measured by the
number of messages in the longest chain of causally dependent
event.

I. INTRODUCTION

This paper presents performance analyses and compar-
isons of Wave algorithms, Tarry’s algorithm and Awerbuch’s
algorithm. Details of how the experiment was carried out
and what results were obtained, the conclusions drawn are
discussed following a brief description of the algorithms.
Two specific parameters are used to make performance
comparisons; Message complexity and Time complexity. My
results supported the expected values for Message and Time
complexities obtained using a fixed set of parameter while
varying two. First set of readings is taken for sparser graphs
and the second for denser graphs. To study the difference in
performances of the algorithms the network size is increased
and readings tabulated at each point. The results obtained are
plotted as, Message Complexity/Number of nodes and Time
Complexity/Number of nodes.

The remainder of the paper is organized as follows. The
next section gives brief descriptions of the subject algorithms.
In Section 3 I provide an elaborate description of the exper-
imental set up. In Section 4 I present the results obtained
with references to graphs and tabular data. The succeeding
Section discusses the overall inferences/conclusions drawn
from the experiment conducted and the results obtained. The
final Section contains possible areas of future work.

II. ALGORITHMS

In Tarry’s algorithm each process maintains an array of
boolean values for its neighbors which is used to keep track
of the neighbors to which it has sent token and a variable
to store its father. A process never forwards the token twice
through the same channel. The initiator starts the algorithm
by arbitrarily choosing a neighbor and sending it the token.
For each process p, upon receipt of a token from a process,
q, if father is undefined then q is set as the father. Token is
forwarded to a neighbor if there is any such to which it has

not sent before, if no such neighbor exists then token is sent
to the father. The algorithm terminates when the token has
visited all the processes and at the end the initiator receives it
and decides. Each computation of Tarry’s algorithm defines
a spanning tree of the network. The root of this tree is the
initiator, and each non-initiator p has stored its father in the
tree in the variable father.

Awerbuch’s algorithm computes spanning trees with the
additional property of being depth-first search trees. An
important mechanism in Awerbuch’s solution is that token
is prevented from being transmitted though a frond edge.
In the algorithm it is ensured that each process knows,
at the moment when it must forward the token, which of
its neighbors have been visited already. The process then
chooses an unvisited neighbor, or sends the token to its father
if no such neighbor exists. When process p is first visited by
the token, p informs each neighbor r, except its father, of
the visit by sending a vis message to r. The forwarding of
the token is suspended until p has received an ack message
from each neighbor. This ensures that each neighbor r of p
knows, at the moment p forwards the token, that p has been
visited. When, later, the token arrives at r, r will not forward
the token to p, unless p is r’s father.

III. EXPERIMENTAL SETUP

The algorithms under discussion work on arbitrary topolo-
gies. For taking measurements of the performance parameters
(message complexity and time complexity) arbitrarily con-
nected graphs with random number of nodes were generated
and the algorithms were executed on them. Each vertex
represents a pair of x,y coordinates on a 10x10 geometric
graph of real values. An edge/link exists between two vertices
if the distance between them is less than one. This method
results in multiple disconnected graphs components on the
x,y plane. The largest graph component is selected to serve
as an input to run the subject algorithms.

Two sets of readings were taken. Keeping a fixed value for
vertex to edge ratio, the number of nodes were increased.
To study the behavior of the performance parameters with
varying density and size of the graph, five values were
obtained by executing algorithms on five randomly generated
graphs for particular size and density ranges. Each data point
on the resultant plot represents an average of five values,
delivering an increased accuracy of results. The size of the
graph/number of nodes is determined by the formula,

noofnodes = density.
100
π

To vary the size of the graph, the parameter density is
varied from 1 to 10. To carry out performance analyses



average of five values of message complexity/ time com-
plexity for each density value are taken and plotted against
the corresponding density values.

The second set of readings is taken using a similar set up
and method with the following variation. In the generated
graphs, edge is defined between two vertices if the distance
between them is less than or equal to 1.5 resulting in denser
graphs with higher vertex: edge ratio.

IV. RESULTS

Figure 1 shows the simulation results and effect on
Message complexity is observed as number of nodes are
increased on sparsely connected graphs. The results show
a comparison of Tarry and Awerbuch algorithms in term
of Message complexity. For both algorithms an increase in
the size of the graph results in higher values of message
complexity, however, Awerbuch’s performance is worse than
Tarry’s. There is a linear increase in values of Message com-
plexity, therefore Awerbuch’s worse performance remains a
constant multiple of Tarry’s function for Message complexity.

Fig. 1.

Figure 2 is obtained by computational values of Time
complexity at each data point for both Tarry and Awerbuch
algorithms. The effect on time complexity is seen as num-
ber of nodes are increased on sparsely connected graphs.
The performance comparison results are as previously seen,
Tarry’s algorithm shows a better performance than Awer-
buch’s, with increasing values for Time complexities for both
algorithms with an increasing in the graph sizes.

Fig. 2.

The following figure, Figure 3, shows results for similar
nature of experimentation as the last two with the exception
of using graphs of higer densities. The purpose is to observe
whether or not this change effects the performance of Awer-
buch. The Message complexities obtained with increasing
number of nodes shows once again better performances for
Tarry’s than Awerbuch’s with linear increments for both
algorithms.

Fig. 3.

In the last set of results, Figure 4, we observe that
Awerbuch’s algorithm out performs Tarry’s. The varying
parameter is increasing number of nodes, as defined using
the afore-mentioned formula, and values for Time complexity
are recorded at each data point. Each data point represents
an average of set of five reading taken at each graph size.
Another difference made to measure Time complexity, which
produced differing results from Figure 2 was the use of
denser graphs (higher vertex to edge ratio).

Fig. 4.

V. ASSUMPTIONS

Due to time constraints the values for message and time
complexities in this experiment were calculated using the
theoretical formulas.

In Tarry’s algorithm because the token is sent at most once
in each direction through each channel, it is passed at most
2E times before the algorithm terminates. Time complexity
is equal to message complexity as Tarry’s algorithm is a
traversal algorithm.



TABLE I
THEORETICAL VALUES FOR PERFORMANCE COMPARISON

Algorithm Message complexity Time complexity
Tarry 2E 2E

Awerbuch 4N - 2 4E

In Awerbuch’s algorithm each frond carries two vis mes-
sages and two ack messages. Each tree carries two token
messages, one vis (sent from father to son), and one ack
(from son to father). Consequently, 4E messages are ex-
changed. The token traverses serially each of the N-1 edges
twice, which costs 2N-2 time units. At each node the token
waits at most once, before it can be forwarded, for the
exchange for vis / ack messages, which gives rise to a delay
of at most two time units at each node.

VI. CONCLUSIONS AND FUTURE WORK

For experiment done with less dense graphs, Tarry per-
forms better than Awerbuch both in terms of Message
complexity and Time complexity. As the number of nodes
increase Awerbuch shows far greater increase in Time and
Message complexities than Tarry. When the same experiment
was run on denser graphs with increasing number of nodes,
as seen before, Tarry showed better performance in terms
of Message complexity whereas Awerbuch performed better
with respect to Time complexity (Table I).

This experiment can be extended to include other algo-
rithms such as the Distributed Depth-first search, Cidon’s
solution.

REFERENCES

[1] Introduction to Distributed Algorithms,” by Gerard Tel
[2] http://deneb.cs.kent.edu/ mikhail/classes/aos.f07/


