
A Comparison Between Lamport's Scalar Clocks and Singhal &
Kshemkalyani's Vector Clocks

Marling Engle
Department of computer science

Kent State University
Kent Ohio 44242

mengle [at kent.edu]

Abstract
This paper looks at differences between

Lamport's scalar clocks [2], and Singhal &
Kshemkalyani's vector clocks [1]. However,
because the two algorithms solve different types
of problems the paper will focus on vector clocks
and the cost of using them (when compared with
using scalar clocks). We will be measuring the
message length while varying the number of
nodes in the network, and the total number of
messages being sent in the network.

1. Introduction

Both algorithms are logical clock
algorithms – time is measured in terms of logical
events (such as local events – events within the
process, message send events, message receive
events, etc). The clock value for a process P is
represented as C(P). Next is a brief explanation
of the algorithms.

1.1 Lamport's Scalar Clocks

Lamport's scalar clocks (herein known as
scalar clocks) works by tagging each message
with an integer, which is the clock value of the
original process. Upon receipt of a message from
B, the process compares the clock on the
message (C(B)) to it's own clock (C(A)). If C(B)
is greater than C(A) then C(B) is copied into
C(A).

1.2 Vector Clocks

Vector clocks work on the same principle
as vector clocks. However, instead of sending a
single integer, the message is tagged with a
vector. This vector is a collection of {id,C(id)}
pairs.
Upon receipt of a message:

my_clock=C(self)

For each pair as {id,incoming_value}:
C(id)=MAX(incoming_value,C(id)
my_clock=MAX(my_clock,C(id))

C(self)=my_clock
In this way, the local values are updated to the
maximum of the local value and the carried
value, and the processes own clock is always the
maximum of everything it has seen.

1.3 Singhal & Kshemkalyani's Vector Clocks

Ordinary vector clocks require a vector
containing a clock value for each process, to
accompany every single message sent in the
system. This happens even when it is not
necessary (clock values are sent, which will not
help the destination maintain its vector).

Singhal & Kshemkalyani's vector clocks
(herein known as vector clocks) is a modification
of ordinary vector clocks designed to reduce the
overhead of traditional vector clocks. Their
algorithm requires storing 3 vectors on each
process, one is the original vector of vector
clocks (the process's store values for other
clocks). The other two vectors help the process
decide which clock values to send to a given
process. For example, when process A sends a
process to B, it may only need to send
{C(A),C(E),C(F)} (instead of all clocks from A-
G). This set is specific to the destination. So if
process A was to send that same message to
process C, the vector tagged on the message may
be different.

1.4 Motivation

These two algorithms accomplish similar
tasks, but are not equal in their power. Vector
clocks has functionality that supersedes that of
scalar clocks. In fact, vector clocks can be used
to emulate scalar clocks, by just tagging outgoing
messages with a one clock long vector (the

process's own clock). A functionality difference
like this usually implies some sort of a cost,
otherwise what is the point of having the scalar
clocks. The following experiments are aimed at
finding that cost.

2. Experiment – Base Algorithm

Clock algorithms such as these are made
to tag messages. These original messages are part
of a Base algorithm.
Base algorithm and network setup:

i. There are N nodes in the network.
ii. There is one initiator which sends T

tokens to random nodes.
iii. Upon receipt of a token, the node

randomly chooses a node from the N and
sends to that node.

This base algorithm continually generates
messages. I have decided on this algorithm
because the rate at which these messages are
generated can be varied by changing T.

2.1 Experiment – Setup

All experiments are carried out within a
simulated environment. There is no message loss
of any kind.

There will be two experiments. The first
experiment is to measure the effect of the
number of messages being sent, on the message
length1. In this experiment, the number of nodes
will be fixed at 112.

The second experiment is to measure the
effect of varying nodes on the message length.
For this experiment the number of tokens in the
base algorithm is fixed at 3, simply to make sure
that in even small networks (2 nodes) there will
likely be a point in the computation where a node
has no tokens.

Both experiments will terminate when
any process reaches the logical clock value of
5000. 5000 logical clock ticks allows enough
messages to be generated to measure the
properties under investigation.

1 Message length is the number of clocks carried on the
vector. All experiments are using average message
length as the measure.

2 11 was the maximum number of clocks successfully
carried because of TOSSIM's message length
limitation.

2.2 Validation of token influence

This figure is to validate that changing the
number of tokens in the base algorithm directly
influences the number of messages being sent.
There is obviously a direct correlation. However
it is interesting to note, that increasing the tokens
yields less and less of an increase in message
count. This is because the node count is fixed at
11, and after a certain number of tokens, it is
most likely that all nodes always have tokens to
send. Increasing the number of tokens past this
point only marginally helps – it reduces the
probability of a node ending up with no tokens at
a given state in the computation.

2.3 Varying Message Count

Here we can see that increasing the
message count decreases the message length. As
in figure 2.2, there is less and less return for our

0 10 20 30 40 50 60 70 80 90 100

2500

5000

7500

10000

12500

15000

17500

20000

22500

25000

27500

30000

32500

35000

Message Count vs Tokens

0 10000 20000 30000 40000

8.40
8.50
8.60
8.70
8.80
8.90
9.00
9.10
9.20
9.30
9.40
9.50
9.60
9.70
9.80
9.90

10.00

Message Length vs Message Count

input (increasing the message count in this case).
We can also see that the most we ever save by
using SK vectors (over traditional vectors) is 1.6
clocks per message. This is near the worse case
scenario for SK vector clocks. The reason behind
this, is that in a traditional base algorithm a
message enters a subgroup of nodes, and causes
the subgroup to perform some operations. In this
type of algorithm, the locality of the nodes would
give a much larger savings – each of the
messages they send to each other, involves at
most sending the clocks of their fellow subgroup
members. However, in the base algorithm used
for these experiments, there is no sense of
locality, and so the message savings is not as
great.

2.4 Varying the number of nodes

This experiment demonstrates that
increasing the number of nodes is increasing the
message length. The simple reason behind this is
that there is more information to keep track of at
each process, so there must be more information
sent to them. It is also worth noting, that the rate
at which this curve increases is determined by
the message count (and the number of tokens, in
the case of this experiment). An increased
number of messages would decrease this curve's
slope, because there would be a larger number of
small messages instead of only a few longer
messages.

2.5 Conclusions

The experiments above have
demonstrated two main points:

I. Increasing message count will decrease
the message length.

II. Increasing the number of nodes will
increase the message length.

The cost of using vector clocks over scalar
clocks is flatly defined by message length. Scalar
clocks will always be a constant, but if the base
algorithm requires strong consistency in it's
logical clocks, than there may be no choice other
than to implement vector clocks. This cost,
however, can be minimized by reducing the
number of nodes, increasing the number of
messages between the nodes, or increasing the
'locality' effect discussed in section 2.3.

3. Future Work

While conducting these experiments, the
influence of the base algorithm became
increasingly apparent. The next step in this
research, is to conduct similar experiments on
base algorithms with different properties. Such
algorithms could be wave algorithms, or tree
build algorithms. Algorithms such as these would
increase the 'locality' effect, and presumably
enjoy a much greater savings in message length
when using SK vector clocks.

Another issue left undiscovered is the
reference to real time (as opposed to logical
clock time). The experiments in this paper were
terminated when a process reached logical clock
value 5000. This happened much more rapidly in
a case where more messages were sent (because
each send/receive is a logical clock tick). Ending
the experiment in terms of real time would allow
for a greater variance in the number of messages
being sent. This may change the perspective on
the results because the cost of using vector
clocks would also begin to factor in the speed at
which processes are able to forward the tokens
(of greater and greater size) along with the
overhead of sending many small messages versus
a single large message.

2 3 4 5 6 7 8 9 10 11

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0
Message Length vs Nodes

4. References

[1] M. Singhal, A. Kshemkalyani, “An
efficient implementation of vector clocks,”
Information Processing Letters, vol. 43, no.
1, pp. 47-52, August 1992.

[2] L. Lamport, “Time, Clocks, and the
Ordering of Events in a Distributed
System,”. Communications of the ACM,
vol. 21, no. 7, July 1978.

