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Abstract
This paper looks at  differences between 

Lamport's  scalar  clocks  [2],  and  Singhal  & 
Kshemkalyani's  vector  clocks  [1].  However,  
because the two algorithms solve different types  
of problems the paper will focus on vector clocks  
and the cost of using them (when compared with 
using scalar clocks). We will be measuring the  
message  length  while  varying  the  number  of  
nodes in  the network,  and the total  number of  
messages being sent in the network.

1. Introduction

Both  algorithms  are  logical  clock 
algorithms – time is measured in terms of logical 
events (such as local events – events within the 
process,  message  send events,  message  receive 
events, etc). The clock value for a process P is 
represented as C(P). Next is a brief explanation 
of the algorithms.

1.1 Lamport's Scalar Clocks

Lamport's scalar clocks (herein known as 
scalar  clocks)  works  by  tagging  each  message 
with an integer, which is the clock value of the 
original process. Upon receipt of a message from 
B,  the  process  compares  the  clock  on  the 
message (C(B)) to it's own clock (C(A)). If C(B) 
is  greater  than  C(A)  then  C(B)  is  copied  into 
C(A).

1.2 Vector Clocks

Vector clocks work on the same principle 
as vector clocks. However, instead of sending a 
single  integer,  the  message  is  tagged  with  a 
vector. This vector is a collection of {id,C(id)} 
pairs.
Upon receipt of a message:

my_clock=C(self)

For each pair as {id,incoming_value}:
C(id)=MAX(incoming_value,C(id)
my_clock=MAX(my_clock,C(id))

C(self)=my_clock
In this way, the local values are updated to the 
maximum  of  the  local  value  and  the  carried 
value, and the processes own clock is always the 
maximum of everything it has seen.

1.3 Singhal & Kshemkalyani's Vector Clocks

Ordinary  vector  clocks  require  a  vector 
containing  a  clock  value  for  each  process,  to 
accompany  every  single  message  sent  in  the 
system.  This  happens  even  when  it  is  not 
necessary (clock values are sent, which will not 
help the destination maintain its vector).

Singhal & Kshemkalyani's vector clocks 
(herein known as vector clocks) is a modification 
of ordinary vector clocks designed to reduce the 
overhead  of  traditional  vector  clocks.  Their 
algorithm  requires  storing  3  vectors  on  each 
process,  one  is  the  original  vector  of  vector 
clocks  (the  process's  store  values  for  other 
clocks). The other two vectors help the process 
decide  which  clock  values  to  send  to  a  given 
process.  For example,  when process A sends a 
process  to  B,  it  may  only  need  to  send 
{C(A),C(E),C(F)} (instead of all clocks from A-
G). This set is specific to the destination. So if 
process  A  was  to  send  that  same  message  to 
process C, the vector tagged on the message may 
be different.

1.4 Motivation

These two algorithms accomplish similar 
tasks,  but  are  not  equal  in  their  power.  Vector 
clocks  has  functionality  that  supersedes  that  of 
scalar clocks. In fact, vector clocks can be used 
to emulate scalar clocks, by just tagging outgoing 
messages  with  a  one  clock  long  vector  (the 



process's own clock). A functionality difference 
like  this  usually  implies  some  sort  of  a  cost, 
otherwise what is the point of having the scalar 
clocks. The following experiments are aimed at 
finding that cost.

2. Experiment – Base Algorithm

Clock algorithms such as these are made 
to tag messages. These original messages are part 
of a Base algorithm.
Base algorithm and network setup:

i. There are N nodes in the network.
ii. There  is  one  initiator  which  sends  T 

tokens to random nodes.
iii. Upon  receipt  of  a  token,  the  node 

randomly chooses a node from the N and 
sends to that node.

This  base  algorithm  continually  generates 
messages.  I  have  decided  on  this  algorithm 
because  the  rate  at  which  these  messages  are 
generated can be varied by changing T.

2.1 Experiment – Setup

All experiments are carried out within a 
simulated environment. There is no message loss 
of any kind.

There will be two experiments. The first 
experiment  is  to  measure  the  effect  of  the 
number of messages being sent, on the message 
length1. In this experiment, the number of nodes 
will be fixed at 112.

The second experiment is to measure the 
effect of varying nodes on the message length. 
For this experiment the number of tokens in the 
base algorithm is fixed at 3, simply to make sure 
that in even small networks (2 nodes) there will 
likely be a point in the computation where a node 
has no tokens.

Both  experiments  will  terminate  when 
any process  reaches  the  logical  clock  value  of 
5000.  5000  logical  clock  ticks  allows  enough 
messages  to  be  generated  to  measure  the 
properties under investigation.

1 Message length is the number of clocks carried on the 
vector. All experiments are using average message 
length as the measure.

2 11 was the maximum number of clocks successfully 
carried because of TOSSIM's message length 
limitation.

2.2 Validation of token influence

This figure is to validate that changing the 
number of tokens in the base algorithm directly 
influences  the  number  of  messages  being  sent. 
There is obviously a direct correlation. However 
it is interesting to note, that increasing the tokens 
yields  less  and  less  of  an  increase  in  message 
count. This is because the node count is fixed at 
11,  and  after  a  certain  number  of  tokens,  it  is 
most likely that all nodes always have tokens to 
send. Increasing the number of tokens past this 
point  only  marginally  helps  –  it  reduces  the 
probability of a node ending up with no tokens at 
a given state in the computation.

2.3 Varying Message Count

Here  we  can  see  that  increasing  the 
message count decreases the message length. As 
in figure 2.2, there is less and less return for our 
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input (increasing the message count in this case). 
We can also see that the most we ever save by 
using SK vectors (over traditional vectors) is 1.6 
clocks per message. This is near the worse case 
scenario for SK vector clocks. The reason behind 
this,  is  that  in  a  traditional  base  algorithm  a 
message enters a subgroup of nodes, and causes 
the subgroup to perform some operations. In this 
type of algorithm, the locality of the nodes would 
give  a  much  larger  savings  –  each  of  the 
messages  they  send  to  each  other,  involves  at 
most sending the clocks of their fellow subgroup 
members.  However, in the base algorithm used 
for  these  experiments,  there  is  no  sense  of 
locality,  and  so  the  message  savings  is  not  as 
great.

2.4 Varying the number of nodes

This  experiment  demonstrates  that 
increasing the number of nodes is increasing the 
message length. The simple reason behind this is 
that there is more information to keep track of at 
each process, so there must be more information 
sent to them. It is also worth noting, that the rate 
at  which  this  curve increases  is  determined by 
the message count (and the number of tokens, in 
the  case  of  this  experiment).  An  increased 
number of messages would decrease this curve's 
slope, because there would be a larger number of 
small  messages  instead  of  only  a  few  longer 
messages.

2.5 Conclusions

The  experiments  above  have 
demonstrated two main points:

I. Increasing  message  count  will  decrease 
the message length.

II. Increasing  the  number  of  nodes  will 
increase the message length.

The  cost  of  using  vector  clocks  over  scalar 
clocks is flatly defined by message length. Scalar 
clocks will always be a constant, but if the base 
algorithm  requires  strong  consistency  in  it's 
logical clocks, than there may be no choice other 
than  to  implement  vector  clocks.  This  cost, 
however,  can  be  minimized  by  reducing  the 
number  of  nodes,  increasing  the  number  of 
messages  between the  nodes,  or  increasing  the 
'locality' effect discussed in section 2.3.

3. Future Work

While conducting these experiments, the 
influence  of  the  base  algorithm  became 
increasingly  apparent.  The  next  step  in  this 
research,  is  to  conduct  similar  experiments  on 
base  algorithms with  different  properties.  Such 
algorithms  could  be  wave  algorithms,  or  tree 
build algorithms. Algorithms such as these would 
increase  the  'locality'  effect,  and  presumably 
enjoy a much greater savings in message length 
when using SK vector clocks.

Another  issue  left  undiscovered  is  the 
reference  to  real  time  (as  opposed  to  logical 
clock time). The experiments in this paper were 
terminated when a process reached logical clock 
value 5000. This happened much more rapidly in 
a case where more messages were sent (because 
each send/receive is a logical clock tick). Ending 
the experiment in terms of real time would allow 
for a greater variance in the number of messages 
being sent. This may change the perspective on 
the  results  because  the  cost  of  using  vector 
clocks would also begin to factor in the speed at 
which processes are able to forward the tokens 
(of  greater  and  greater  size)  along  with  the 
overhead of sending many small messages versus 
a single large message.

2 3 4 5 6 7 8 9 10 11

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0
Message Length vs Nodes



4. References

[1] M.  Singhal,  A.  Kshemkalyani,  “An 
efficient implementation of vector clocks,” 
Information Processing Letters, vol. 43, no. 
1, pp. 47-52, August 1992.

[2] L.  Lamport,  “Time,  Clocks,  and  the 
Ordering  of  Events  in  a  Distributed 
System,”.  Communications  of  the  ACM, 
vol. 21, no. 7, July  1978.


