Distributed and hierarchical
deadlock detection, deadlock
resolution

detection
distributed algorithms
Obermarck’s path-pushing
Chandy, Misra, and Haas's edge-chasing
hierarchical algorithms
Menasce and Muntz’s algorithm
Ho and Ramamoorthy’s algorithm
resolution

Obermarck’s Path-Pushing

Individual sites maintain local WFGs
Nodes for local processes
Node “Pex” represents external processes
Pex1 ->P1 -> P2 ->P3 -> Pex2
Deadlock detection:
site Si finds a cycle that does not involve Pex — deadlock
site Si finds a cycle that does involve Pex — possibility of a deadlock
sends a message containing its detected path to all other sites
« to decrease network traffic the message is sent only when
Pex1 > Pex2
« assumption: the identifier of a process spanning the sites is
the same!
If site Sj receives such a message, it updates its local WFG
graph, and reevaluates the graph (possibly pushing a path
again)
Can report a false deadlock

Performance evaluation of
Obermarck’s and Chandy-Misra-Haas
algorithms

Obermarck’s
on average(?) only half the sites involved in deadlock send
messages
every such site sends messages to all other sites, thus
n(n—1)/2 messages to detect deadlock
for n sites
size of a message is O(n)
Chandy, Misra, and Haas's (Singhal’s estimate is incorrect)

given n processes, a process may be blocked by up to (n-1)
processes, the next process may be blocked by another (n-
2) processes and so on. If there is more sites than
processes, the worst case the number of messages is n(n-
1)/2. If there are fewer sites m than processes then the worst
case estimate is N3(N-M)/2M

size of a message is 3 integers

Distributed deadlock detection

Path-pushing
WFG is disseminated as paths — sequences of edges
Deadlock if process detects local cycle

Edge-chasing
Probe messages circulate

Blocked processes forward probe to processes holding
requested resources
Deadlock if initiator receives own probe

Chandy, Misra, and Haas’'s Edge-Chasing

When a process has to wait for a resource (blocks), it sends a
probe message to process holding the resource
Process can request (and can wait for) multiple resources at once
Probe message contains 3 values:

ID of process that blocked

ID of process sending message

ID of process message was sent to

(unclear why the latter two identifiers are necessary)

When a blocked process receives a probe, it propagates the probe
to the process(es) holding resources that it has requested
ID of blocked process stays the same, other two values updated
as appropriate

If the blocked process receives its own probe, there is a
deadlock

size of a message is O(1)

Menasce and Muntz’ ]
hierarchical deadlock detection

Sites (called controllers) are organized in a tree
Leaf controllers manage resources

Each maintains a local WFG concerned only about its own
resources

Interior controllers are responsible for deadlock detection

Each maintains a global WFG that is the union of the WFGs
of its children

Detects deadlock among its children
changes are propagated upward either continuously or
periodically



Ho and Ramamoorthy’s ]
hierarchical deadlock detection

Sites are grouped into disjoint clusters
Periodically, a site is chosen as a central control site
Central control site chooses a control site for each cluster

Control site collects status tables from its cluster, and uses the
Ho and Ramamoorthy one-phase centralized deadlock detection
algorithm to detect deadlock in that cluster

All control sites then forward their status information and WFGs
to the central control site, which combines that information into a
global WFG and searches it for cycles

Control sites detect deadlock in clusters

Central control site detects deadlock between clusters

Deadlock resolution

resolution — aborting at least one process (victim) in the cycle and
granting its resources to others

efficiency issues of deadlock resolution

fast — after deadlock is detected the victim should be quickly
selected

minimal — abort minimum number of processes, ideally abort less
“expensive” processes (with respect to completed computation,
consumed resources, etc.)

complete — after victim is aborted, info about it quickly removed

from the system (no phantom deadlocks)

no starvation — avoid repeated aborting of the same process
problems

detecting process may not know enough info about the victim
(propagating enough info makes detection expensive)

multiple sites may simultaneously detect deadlock

since WFG is distributed removing info about the victim takes
time

Estimating performance of deadlock
detection algorithms

Usually measured as the number of messages exchanged to
detect deadlock

Deceptive since message are also exchanged when there is
no deadlock

Doesn't account for size of the message
Should also measure:

Deadlock persistence time (measure of how long resources
are wasted)

Tradeoff with communication overhead
Storage overhead (graphs, tables, etc.)
Processing overhead to search for cycles
Time to optimally recover from deadlock



