
Distributed file systems, Case studies

n Sun’s NFS
u history
u virtual file system and mounting
u NFS protocol
u caching in NFS
u V3

n Andrew File System
u history
u organization
u caching
u DFS

n AFS vs. NFS

Sun’s network file systems (NFS)

n Designed by Sun Microsystems
u First distributed file service designed as a project, introduced in

1985
u To encourage its adoption as a standard

F Definitions of the key interfaces were placed in the public
domain in 1989

F Source code for a reference implementation was made
available to other computer vendors under license

F Currently the de facto standard for LANs
n Provides transparent access to remote files on a LAN, for clients

running on UNIX and other operating systems
u A UNIX computer typically has a NFS client and server module

in its OS kernel
F Available for almost any UNIX
F Client modules are available for Macintosh and PCs

NFS - mounting remote file
system (cont.)

n Remote file systems may be
u Hard mounted — when a user-level process accesses a file, it

is suspended until the request can be completed
F If a server crashes, the user-level process will be

suspended until recovers
u Soft mounted — after a small number of retries, the NFS client

returns a failure code to the user process
F Most UNIX utilities don’t check this code…

n Automounting
u The automounter dynamically mounts a file system whenever

an “empty” mount point is referenced by a client
F Further accesses do not result in further requests to the

automounter…
F Unless there are no references to the remote file system for

several minutes, in which case the automounter unmounts it

NFS - mounting remote file system (cont.)

n Virtual file system:
u Separates generic file-system operations from their implementation

(can have different types of local file systems)
u Based on a file descriptor called a vnode that is unique networkwide

(UNIX inodes are only unique on a single file system)

local
disk

UNIX
file

system
NFS

client

local remote

UNIX kernel

user-level
client process

system calls

client computer

UNIX
file

system
NFS

server

UNIX kernel

server computer

network

NFS
protocol

virtual file system virtual file system

local
disk

NFS protocol
n NFS protocol provides a set of RPCs for remote file operations

u Looking up a file within a directory
u Manipulating links and directories
u Creating, renaming, and removing files
u Getting and setting file attributes
u Reading and writing files

n NFS is stateless
u Servers do not maintain information about their clients from one

access to the next
F There are no open-file tables on the server

u There are no open and close operations
F Each request must provide a unique file identifier, and an

offset within the file
u Easy to recover from a crash, but file operations must be

idempotent

NFS protocol (cont.)

n Because NFS is stateless, all modified data must be written to the
server’s disk before results are returned to the client
u Server crash and recovery should be invisible to client —data

should be intact
u Lose benefits of caching

F Solution — RAM disks with battery backup (un-interruptable
power supply), written to disk periodically

n A single NFS write is guaranteed to be atomic, and not intermixed
with other writes to the same file
u However, NFS does not provide concurrency control

F A write system call may be decomposed into several NFS
writes, which may be interleaved

F Since NFS is stateless, this is not considered to be an NFS
problem

Caching in NFS

n Traditional UNIX
u Caches file blocks, directories, and file attributes
u Uses read-ahead (prefetching), and delayed-write (flushes

every 30 seconds)
n NFS servers

u Same as in UNIX, except server’s write operations perform
write-through
F Otherwise, failure of server might result in undetected loss

of data by clients
n NFS clients

u Caches results of read, write, getattr, lookup, and readdir
operations

u Possible inconsistency problems
F Writes by one client do not cause an immediate update of

other clients’ caches

Caching in NFS (cont.)
n NFS clients (cont.)

u File reads
F When a client caches one or more blocks from a file, it also

caches a timestamp indicating the time when the file was last
modified on the server

F Whenever a file is opened, and the server is contacted to fetch a
new block from the file, a validation check is performed

• Client requests last modification time from server, and
compares that time to its cached timestamp

• If modification time is more recent, all cached blocks from that
file are invalidated

• Blocks are assumed to valid for next 3 seconds (30 seconds
for directories)

u File writes
F When a cached page is modified, it is marked as dirty, and is

flushed when the file is closed, or at the next periodic flush
u Now two sources of inconsistency: delay after validation, delay until

flush

NFS v2 performance
improvements, v3

n Client-side caching:
u every NFS operation requires network access - slow. client can

cache the data it currently works on to speed up access to it.
u problem - multiple clients access the data - multiple copies of cached

data may become inconsistent.
u Solutions - cache only read-only files; cache files where

inconsistency is not vital (inodes) and check consistently frequently
n deferral of writes

u client side - the clients bunch writes together (if possible) before
sending them to server (if the client crushes - it knows where to
restart)

u a sever must commit the writes to stable storage before reporting
them to a client. Battery backed non-volatile memory (NVRAM) is
used (rather than the disk). NVRAM -> disk transfers are optimized
for disk head movements and written to disk later.

n v3 allows delayed writes by introducing commit operation - all writes are
“volatile” until the server processes commit operation.

n Requires changes in semantics - applications programmer cannot
assume that all the writes are done and should explicitly issue commit .

Andrew file system (AFS)
n Designed by Carnegie Mellon University

u Developed during mid-1980s as part of the Andrew distributed
computing environment

u Designed to support a WAN of more than 5000 workstations
u Much of the core technology is now part of the Open Software

Foundation (OSF) Distributed Computing Environment (DCE),
available for most UNIX and some other operating systems

n AFS was made to span large campuses and scale well therefore
the emphasis was placed on offloading the work to the clients

n as much as possible data is cached on clients, uses session
semantics - cache consistency operations are done when file is
opened or closed

n Provides transparent access to remote files on a WAN, for clients
running on UNIX and other operating systems
u Access to all files is via the usual UNIX file primitives
u Compatible with NFS — servers can mount NFS file systems

AFS (cont.)

n AFS is stateful, when a client reads a file from a server it holds a
callback, the server keeps track of callbacks and when one of the
clients closes the file (and synchronizes it’s cached copy) and
updates it, the server notifies all the callback holders of the change
breaking the callback, callbacks can be also broken to conserve
storage at server

n problems with AFS:
u even if the data is in local cache - if the client performs a write a

complex protocol of local callback verification with the server
must be used; cache consistency preservation leads to
deadlocks

u in a stateful model, it is hard to deal with crushes.

Caching in Andrew

n When a remote file is accessed, the server sends the entire file to
the client
u The entire file is then stored in a disk cache on the client

computer
F Cache is big enough to store several hundred files

n Implements session semantics
u Files are cached when opened
u Modified files are flushed to the server when they are closed
u Writes may not be immediately visible to other processes

n When client caches a file, server records that fact — it has a
callback on the file
u When a client modifies and closes a file, other clients lose their

callback, and are notified by server that their copy is invalid

How can Andrew perform well?

n Most file accesses are to files that are infrequently updated, or are
accessed by only a single user, so the cached copy will remain
valid for a long time

n Local cache can be big — maybe 100 MB — which is probably
sufficient for one user’s working set of files

n Typical UNIX workloads:
u Files are small, most are less than 10kB
u Read operations are 6 times more common than write

operations
u Sequential access is common, while random access is rare
u Most files are read and written by only one user; if a file shared,

usually only one user modifies it
u Files are referenced in bursts

DCE Distributed File System
(DCE DFS)

n Modification of AFS by Open Software Foundation for its
Distributed Computing Environment (DCE)

n switch to Unix file sharing semantics, implement using tokens
u tokens provide finer degree of control than callbacks of AFS
u tokens

F fine grained: tokens (read/write) on portions of a file
F type specific: open, read, write, lock, status, update

u a client can “check out” a token from a server for a particular
file. Only if a client holds a lock token the client is allowed to
modify the file; if a client holds status token it is allowed to
modify status of the file

u token expires in 2 minutes (for fault-tolerance)
n replication – easy replication of filesystems on several machines,

transparent to the user,
u one server – primary does all updates
u others – read-only

AFS vs. NFS

n NFS is simpler to implement, AFS is cumbersome due to cache
consistency synchronization mechanisms, etc

n NFS does not scale well - it is usually limited to a LAN, AFS scales
well - it may span the Internet

n NFS performs better than AFS under light to medium load. AFS
does better under heavy load

n NFS does writes faster(?)

