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Abstract

Geometric routing provides a scalable and efficient way to route messages in ad hoc networks if extensive
routing information is unavailable. Such algorithms require a planar graph to guarantee message delivery.
The routing techniques for such guarantee usually center around the traversal of planar faces of the graph.
However, in realistic wireless networks existing planarization methods, if at all applicable, tend to require
extensive local storage or result in suboptimal route selection. In this paper we study an alternative approach
of translating the algorithms themselves to be able to route messages over voids in non-planar graphs. We
prove sufficient memory requirements for such translations. We then translate several well-known planar
geometric routing algorithms and evaluate their performance in both static and mobile networks.

1 Introduction

Motivation. Geometric routing is a promising approach for message transmission in ad hoc wireless networks.

Unlike traditional ad hoc routing, geometric routing algorithms have no control messages and only minimal

routing tables. In geometric routing, a node does not have to store any residual information after message

transmission. Hence, such routing scales well. Geometric routing can be used either as a primary routing method

or as a fallback message delivery strategy if the primary routing infrastructure is unavailable. Geometric routing

is particularly appropriate for wireless sensor networks [14]. Networked sensors usually have limited resources

for routing information, yet many applications for sensor networks involve large scale ad hoc deployments [2].

Realistic radio networks may lead to frequent changes in topology [11, 35]. Such changes make routing

table construction, if feasible at all, very expensive. The stateless properties of geometric routing may be quite
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appropriate for this setting. Furthermore, the nodes in a wireless network may be not be static. For example,

the wireless radios may be mounted on vehicles or carried by people [28]. In this case, geometric routing may

be attractive since each individual node holds minimal routing information. Therefore, the routing information

does not get obsolete as the nodes move [16].

State of the art. In geometric routing, each node knows it own geographic coordinates as well as the coor-

dinates of its immediate neighbors. These coordinates are either obtained from GPS receivers or a localization

algorithm [5, 13]. The message sender knows the coordinates of the destination. This information can be ob-

tained from a location service [1, 26, 30]. Landmark positions instead of precise node locations may also be

used for geometric routing [29].

The simplest version of a geometric routing algorithm is greedy routing [8]. In such routing, the source,

as well as each intermediate node, examines its neighboring nodes and forwards the message to the one that

is the closest to the destination. Unfortunately, the greedy routing algorithm fails if one of the intermediate

nodes is local minimum: all its neighbors are further away from the destination than the node itself. In compass

routing [20], the next hop is selected such that the angle between the direction to the next hop node and to the

destination is minimal. However, even on planar graphs compass routing may fail due to livelock [20].

Face routing complements greedy routing by guaranteeing message delivery in case a local minimum is

encountered. It requires that the communication graph is planar. A source-destination line intersects a finite

number of faces in this graph. A message reaches the destination by sequentially traversing these faces. One

such routing scheme that is frequently used is Compass Routing II [20], also known as FACE. GFG/GPSR [4, 16]

combines greedy and face routing. The algorithm uses greedy routing unless it encounters local minimum. The

algorithm then uses face routing to get closer to the destination and switches to greedy routing again. GFG

assumes that the original communication graph is a unit-disk graph: two nodes share an edge if and only if they

are within a certain unit-distance from each other. For this graph, the authors construct its Gabriel [10] or

relative neighborhood [33] subgraphs. These subgraphs are planar, they preserve the connectivity of the original

graph and they can be constructed locally by each node. Datta et al [7] propose to use the edges that do not

belong to the planar subgraph if it shortens the route. Recently, more efficient approaches of face traversal on

the basis of α-shapes have been proposed [27, 31].

Kuhn et al [21, 22, 24] present a face routing algorithm OAFR that, in combination with greedy routing,
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produces the worst case asymptotically optimal geometric routing algorithm GOAFR+. They compare the

performance of multiple geometric routing algorithms and demonstrate that in the average case GOAFR+

also has the best performance. Kim et al [18] discuss challenges of geometric routing. Frey and Stojmenovic

[9] address some of these challenges and discuss different approaches to geometric routing. Clouser et al [6]

describe an algorithm that achieves fast message delivery in geometric routing through concurrent face traversal.

Stojmenovic [12] provides a comprehensive taxonomy of geometric routing algorithms.

Kuhn et al [21, 24] develop an extensive evaluation model for geometric routing algorithms. They compare

the performance of the algorithms with respect to the graph density. Their findings indicate that for planar

graphs, the critical density range of the graph is between 3 and 7 nodes per unit-disk. Outside this range,

the geometric routing algorithm optimization is immaterial: below 3 nodes per unit-disk the graphs are too

sparse to have a large number of alternative routes, while above 7 the graphs seldom have local minima and the

greedy routing almost always succeeds. However, within this range, the paths selected by the geometric routing

algorithm may substantially differ from optimal and this is where performance optimization has the greatest

impact.

Non-planar routing. One of the major shortcomings of traditional geometric routing is the need to planarize

the communication graph to be able to recover from local minima. This results in eliminating the intersecting

edges. Yet, since the eliminated edges are not used for routing decisions, the resultant routes may be suboptimal.

Furthermore, such planarization can be cone efficiently only for unit-disk graphs: two nodes are connected if and

only if they are within a certain unit distance. To eliminate extraneous edges in such graphs, it is sufficient for

each node to independently examine the location of its neighbors. However, the connectivity of practical radio

networks hardly allows this kind of regularity [11, 35]. Barrière et al [3] and Kuhn et al [23] consider a more

realistic quasi-unit-disk graph model. In this graph, for each node, outside the disk of definitive connectivity,

there is a band where the connectivity is probabilistic.

Kuhn et al [23] reconstruct a unit-disk graph out of a quasi-unit-disk graph. For each edge that should be

in a unit-disk graph but is missing from the quasi-unit-disk graph, they add a virtual link that is simulated

by a path between the adjacent nodes. This reconstructed graph can then be planarized and used for face

routing. However, the start up costs of construction and planarization may be significant. Another planarization

approach was suggested by Kim et al [17]. They propose a Cross-Link Detection Protocol (CLDP). The idea is
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to probe the neighboring nodes and eliminate crossing edges. This approach is coupled with creating Gabriel

subgraph to make the communication graph sparser and more efficient for routing. To ensure that the graph is

not disconnected, each node may have to be probed multiple times. This protocol is shown [25] to have poor

message cost. To overcome this, Kim et al [19] introduce a version of their protocol that only removes cross-links

that induce a loop. That is, it is a reactive protocol that is run upon the introduction of the cross link upon

the impacted area. However, this introduces routing infrastructure and the complexity of the protocol may still

be prohibitively high for some applications. Leong et al [25] propose to divide the network into multiple convex

hulls, maintain a hull tree inside each hull and route the message over such trees. However, depending on the

communication graph, the discovery and maintenance of these trees requires some nodes to communicate to

geometrically distant nodes. That is, this approach may result routes that are far from optimal.

In general, the direct application of classic planarization techniques may result in significant startup costs

as the planar subgraph has to be computed without regard to the particular route to be used.

Our contribution. In this paper study an alternative method of navigating a non-planar graph. The idea is

to identify and traverse edge segments that border voids of a non-planar graph as if they were faces of a planar

graph: the edge intersections of the non-planar graph are treated as virtual nodes while the routing decisions

for these virtual nodes are done at real nodes. This way, any planar geometric routing algorithm can be run on

a non-planar graph. Kuhn et al mention this idea in their paper [23].

There may be multiple ways to implement this idea and translate a planar routing algorithm to a non-planar.

For example, a message may be sent around the area to gather the necessary routing information. In this paper

we focus on direct translation: each virtual node has a single designated real node that makes the routing

decision for the virtual node and forwards the message to the next designated real node. To accommodate this

translation, real nodes need sufficient information about their graph neighborhoods. This information is stored

in a neighborhood relation.

In this paper we prove that two-hop completeness is sufficient condition for the neighborhood relation to direct

translate an arbitrary planar geometric routing algorithm. We prove that more limited one-hop completeness

is sufficient to direct translate FACE, GFG, OAFR and GOAFR+.

We then evaluate the performance of the translated algorithms. For that, we recreate the performance

evaluation model of Kuhn et al [21, 24] and modify it for non-planar graphs. Specifically, we use a quasi-unit
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disk rather than simple unit-disk radio communication model. Using our technique, we port the two major

planar face traversal algorithms: FACE and OAFR to operate on non-planar graphs. This results in two

new non-planar face routing algorithms: VOID and VOAFR respectively. Adding greedy routing, we create

complete non-planar geometric routing algorithms: GVG and VGOAFR+. We evaluate the performance of

these algorithms in “raw” quasi-unit-disk graphs and in Gabriel subgraphs of these graphs. We then consider

the case of mobile networks. We implement random waypoint mobility model [15] and evaluate the performance

of VOID and GVG while varying node speed.

Paper organization. This paper is organized as follows. We describe our notation in Section 2. We introduce

one- and two-hop closure of neighborhood relations and prove that these relations are sufficient for algorithm

translation as well as give an example of such translation in Section 3. In Section 4, we present the performance

evaluation of the non-planar geometric routing algorithms. We conclude the paper in Section 5.

2 Preliminaries

Graphs, faces, voids. We model a wireless network as a geometric graph. A geometric graph G = (V,E) is a

set of nodes (vertices) V on a Euclidean plane connected by edges E. The number of nodes is n = |V |. Denote

(u, v) ∈ E an edge between nodes u and v. If there is an edge (u, v) then nodes u and v are adjacent.

Denote path(u, v) a path from u to v in G. We only consider connected graphs, meaning that for any pair of

nodes u and v, the graph G contains path(u, v). Graph G is planar if its edges intersect only at nodes. Void is

a region on a plane such that any two points of this region can be connected by a curve that does not intersect

any of the edges of the graph. A void in a planar graph is face. A boundary of a void contains the segments of

the edges bordering the void. In every finite graph there is one unbounded external void. The border of a face

forms a simple cycle.

Each edge of a planar graph borders at most two faces. An edge of a non-planar graph may contain the

segments of the borders of arbitrarily many faces.

Planar geometric routing. Source s and destination d are an arbitrary pair of nodes in a graph. The

source has a message to transmit to the destination. The source knows the coordinates of the destination.
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The payload of the message is immaterial. A routing algorithm specifies a procedure for intermediate node

selection. A geometric routing algorithm with guaranteed delivery ensures that the message eventually reaches

the destination with the following constraints: each node u receiving the message, selects the next node only on

the basis of the information N(u) about the graph that is stored at the node and the contents of the received

message; the message size is independent of the network size; once the message is forwarded, the node does not

store any information about it; at any given time there can only be a single packet for each message en route

between the source and destination.

A geometric routing algorithm usually consists of two modes: (i) greedy routing, where each node forwards

the message to its neighbor that is closest to the destination; (ii) local minimum recovery mode, applied when

a node discovers that it is closer to the destination than all its neighbors. Geometric routing algorithms tend

to differ by their local minimum recovery modes.

One of the most widely known algorithms is called GFG/GPSR [4, 16]. In the sequel we refer to this

algorithm as just GFG. For a detailed algorithm description refer to Datta et al [7]. Refer to Figure 1 for

illustration of the operation of the algorithm. The local minimum recovery mode of GFG is a face routing

algorithm we call FACE. The idea is for the message to sequentially traverse the planar faces of G that intersect

the sd-line.

The face traversal follows either left- or right-hand rule. In the left-hand rule, when the message arrives at

some node v from node u, v searches for the adjacent node w such that (v, w) is the first after (u, v) counter-

clockwise. That is, for any edge (v, x), the angle 6 uvx is no larger than 6 uvw. Node v forwards the message

to w. An internal face is thus traversed clockwise, the external one — counter-clockwise. In right-hand-rule,

the neighbor selection proceeds in the opposite direction. FACE may use left- as well as right-hand rule face

traversal direction. The initial face traversal direction is determined by the source. The source selects the

adjacent node whose incident edge forms the smallest angle with the sd-line and forwards the message there.

As the message traverses the face, it may encounter the sd-line. At this point, the message changes faces. The

node that effects the face change is the first node past the sd-line in the old face. After the face change, the

traversal direction changes. Thus, a message in FACE traverses faces that intersect the sd-line in the order of

the intersection. Since there is a finite number of such faces, FACE guarantees eventual delivery of the message

to the destination node.

In Figure 1, the message starts from node s, traverses face V1 clockwise and visits nodes b, c, h, e and m.
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Figure 1: FACE example routing. The dotted line is the route taken by the message

At node m, the message changes faces and switches its traversal direction to counter-clockwise. In the next hop

the message reaches the destination node d.

To accelerate message delivery, GFG starts in a greedy mode and switches to FACE only when it encounters

a local minimum. To ensure lack of livelocks and guarantee message delivery, GFG proceeds in the FACE mode

until the message is closer to the destination than this local minimum. Then, the message switches back to the

greedy routing mode.

Face routing algorithms such as FACE may potentially select a rather circuitous route even though a shorter

one is available. Suppose a message may reach the sd-line significantly faster in one traversal direction than in

the other. This is often the case if the sd-line intersects the external face. Then, an inopportune selection of the

traversal direction results in a suboptimal route. A face routing algorithm OAFR [24] mitigates the long route

selection by defining an ellipse around the source-destination pair that the message should not cross. If the

message traverses a face and reaches the boundary of the ellipse, the message changes the traversal direction.

Algorithm GOAFR+ [21] combines OAFR with greedy routing. The resultant algorithm is the most efficient

known geometric routing algorithm to date. It outperforms GFG on average and its worst-case performance is

asymptotically optimal.

Non-planar concepts. A graph is quasi-unit-disk with probability p and inner radius r if every two nodes u

and v are (i) definitely adjacent if |u, v| ≤ r; (ii) adjacent with probability p if r < |u, v| ≤ 1; (iii) definitely not

adjacent if |u, v| > 1.

A node w is a mutual witness [32] for a pair of nodes u and v if the circle whose diameter is (u, v) contains

w and w is adjacent to both u and v. A subgraph is Gabriel if any two nodes u and v are adjacent only if
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they do not have a witness. A Gabriel subgraph of any connected graph is connected. The attractive feature of

a Gabriel subgraph is that it can be efficiently computed locally by each node just by examining its adjacent

nodes. A Gabriel subgraph of a unit-disk graph is planar. A Gabriel subgraph of a quasi-unit-disk graph may

not necessarily be planar [3]. However, it can still be effectively computed and it preserves the connectivity

of the original graph. Since Gabriel subgraph has fewer edges than the original “raw” graph, the storage and

processing demands at each node for routing on such subgraph may be lower.

A segment that borders a void has two incident virtual nodes. A segment belongs to a edge that has two

incident real nodes. Real and virtual nodes may coinside. In case the void is traversed, a head virtual node is

the first incident node of the segment encountered during the traversal. Correspondingly, a tail virtual node is

the second virtual node. A head real node is the node incident to the edge containing the segment such that

head real and virtual nodes are on the same side of the traversed segment. Tail real node is similarly defined.

See Figure 3 for an illustration of these concepts. In this figure, virtual nodes b2 and b3 incident to the segment

that borders the traversed void while b1 and b4 are real nodes incident to the edge that contains this segment.

Due to the traversal direction, b1 and b2 are respectively real and virtual head nodes while b4 and b3 are real

and virtual tail nodes.

Note that the tail virtual node of a segment is the head virtual node of the next segment. Also note that

a segment borders two voids. Depending on the traversal direction of these two voids, the virtual head nodes

either coinside or are on the opposite ends of the segment. The same applies to virtual tail nodes, as well as

real head and tail nodes.

Neighborhood N(v) of a node v is the subset of G that includes v. We assume that N(v) is stored at v to

let v make routing decisions. In other words, N(v) is the routing table of v. The neighborhood of v may be as

small as the set of nodes adjacent to v or as large as the entire graph G. A neighborhood relation N (G) over

graph G is an assignment a neighborhood N(v) to each node v of G.

3 Constructing Non-Planar Algorithms

Intersection closure. To enable non-planar geometric routing, neighborhood relations need to have specialized

properties.
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Figure 2: If the neighborhood relation is two-hop closed, the neighborhood N(u) of each node u should contain
edges incident to u such as (u, v); edges that intersect (u, v) such as (w, x); edges that intersect (w, x) including
(y, z) as well as paths to edges (w, x) and (y, z).

Definition 1 A neighborhood relation N (G) over a geometric graph G is incident edge intersection one-hop

closed (or just intersection one-hop closed), if edge (u, v) intersects (w, x) then (u, v), (w, x) and path(u,w)

belong to N(u).

Definition 2 A neighborhood relation N (G) over a geometric graph G is incident edge intersection two-hop

closed (or just intersection two-hop closed), if (u, v) intersects (w, x) and (y, z) intersects (w, x), then (u, v),

(w, x), (y, z), path(u,w), path(u, y) belong to N(u).

See Figure 2 for the illustration of Definition 2.

When it is clear from the context we say that the relation is intersection closed to mean either or both of

the closures of Definitions 1 and 2.

The attractive feature of intersection one-hop closed neighborhood relation is that for every node u and

for each incident edge (u, v), the information about every intersecting edge (w, x) , as well as how to reach

the nodes incident to this edge is contained in the neighborhood N(u). In case of two-hop closed relation, the

neighborhood N(u) contains the information as to how to reach the nodes incident to the edges that intersect

the edges incident to u.

The two-hop intersection closed neighborhood relation contains more routing information than one-hop

relation. However, the one-hop relation may use less memory resources. If some relation N (G) is two-hop

intersection closed, it is also one-hop closed.

If graph G is planar, its edges intersect only at nodes. Hence, if for each node v, N(v) contains all edges

incident to v, then N (G) is intersection closed according to both definitions. This is not generally the case for
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non-planar graphs. However, for every connected graph G, there exists an intersection closed relation. Indeed,

the neighborhood relation is trivially intersection closed if for each v, N(v) = G. That is, each node stores the

entire graph G.

A generic intersection closed relation may not be suitable for geometric routing. For example, the size of the

path between two nodes incident to intersecting edges may potentially be proportional to the size of the graph.

To route a message between these two nodes, the message may have to carry such path. Therefore, the message

size may not be constant which violates geometric routing conditions. This motivates the following definitions.

Definition 3 A neighborhood relation N (G) is constant intersection closed if N (G) is intersection closed and

there is a constant c such that for any graph G, for every node u and every node v ∈ N(u), there is a path(v, u) ∈

N(v) whose length is no greater than c.

Definition 4 A neighborhood relation N (G) is greedy-navigable intersection closed if N (G) is intersection

closed and for every node u and every node v ∈ N(u), the greedy routing path path(v, u) belongs to N(v).

If the neighborhood relation is constant then any node in N(u) can be reached from u in a fixed number of

hops. If the neighborhood relation is greedily-navigable, then a message being sent from node u to any node

u ∈ N(v), does not have to carry the entire route. Instead, the message can arrive to u using greedy routing.

Hence the following proposition.

Proposition 1 If an intersection closed neighborhood relation N (G) is constant or greedy navigable, then there

is a constant c such that for any graph G, every node u, and every node v ∈ N(u), a message can be routed

from u to v with its size never exceeding c.

A constant neighborhood relation may not be navigable and vice versa. In general, it may not be possible

to construct either greedy-navigable or constant neighborhood relations. However, for some graph classes, these

relations are relatively easy to compute. For example, for a planar graph, the intersection one-hop closed

neighborhood relation the neighborhood for each node v only need to contain its adjacent nodes. This relation

is also constant and navigable. In quasi-unit-disk graphs where the inner radius r is greater than 1/
√

2, Barrière

et al [3] proved the following: for every edge (u, v) and any edge (w, x) intersecting (u, v) either w or x are

adjacent to either u or v. That is, a two-hop neighborhood for each node forms a constant two-hop intersection

closed neighborhood relation.
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Translation from planar to non-planar routing algorithm. We focus on constructing a non-planar

routing algorithm NA on the basis of an existing planar routing algorithm PA. The construction is as follows.

A planar graph PG is created by adding a virtual node at every edge intersection of the non-planar graph NG.

The algorithm NA simulates the execution of the planar routing algorithm PA on this planar graph PG.

In the non-planar algorithm NA, the steps of the translated PA are executed in real nodes: the original nodes

of the non-planar graph NG. Specifically, the NA continuously repeats these two stages: determine which node

of PG to send the message next according to PA; and, (II) route the message to the node in NA that will

evaluate the next step of PA.

The algorithm translation may potentially be rather inefficient. For example, the message may have to visit

several nodes in NG to collect sufficient information for the Stage I of the translation: the decision as to which

node in PG, the message needs to be sent. Similarly, the message may potentially visit multiple nodes of NG

to gather routing information for the navigation of Stage II.

We are interested in constructing efficient algorithm translations which we call direct. A translation is direct

if Stage I of PA is evaluated at a single node of NG; and in Stage II, on its way from one node of PG to the next,

the message visits each node of NG at most once. In effect, a direct-translation algorithm provides a mapping

from nodes of PG onto nodes of NG for planar algorithm routing decisions and then routes the message from

one such mapped non-planar node to the next.

Theorem 1 If an arbitrary planar geometric routing algorithm PA guarantees delivery in any planar graph,

then there exists its direct translation to a non-planar geometric routing algorithm NA that also guarantees

delivery for any non-planar graph NG, provided that the neighborhood relation N (NG) is two-hop closed and

either constant or greedy navigable.

Proof: We prove the theorem by constructing the non-planar routing algorithm NA using direct translation.

Recall that the nodes of PG are formed by edge intersections of NG. In the constructed algorithm, a node

u of NG executes Stage I for every node p of PG that is formed by intersecting an edge incident to u (see

Figure 2).

By definition, if the neighborhood relation N (NG) is two-hop closed, the neighborhood N(u) of node u

contains every edge (u, v), incident to u, every edge (w, x) that intersects (u, v) as well as every edge (y, z) that
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Figure 3: Void traversal example. Real head node b1 receives the message traversing the void from previous
head node a1; determines the virtual node b3 that ends its segment bordering the void and begins the next
segment; and forwards the message to the next real head node e1.

intersects (w, x). That is, the neighborhood of u contains all edges incident to node p in the planar graph PG.

This means that node u has sufficient information to execute Stage I of the translation, i.e. to execute PA

for node p and decide which node q of PG to route the message next. In other words, which node r of NG shall

evaluate Stage I for q.

Let us consider the routing of the message from node u to r, i.e. the Stage II of the translation algorithm.

By the definition of two-hop closure of N (NG), neighborhood N(u) contains the route to r. According to the

conditions of the theorem, N (NG) is either constant or navigable. Due to Proposition 1, in either case, it is

possible to route the message from u to r without the message exceeding a limit that is independent of the graph

G size. That is, the Stage II of the constructed NG satisfies message size requirements of geometric routing.

To summarize, if the original planar geometric routing algorithm PA guarantees delivery, so does the con-

structed non-planar geometric routing algorithm NG. 2

Theorem 1 guarantees the existence of a direct translation regardless of the planar routing algorithm. This

translation requires that the neighborhood relation be two-hop closed. The computing infrastructure may not

be able to accommodate memory requirements of such neighborhood relation.

For specific algorithms, these memory requirements may be reduced. For this reduction, we have to place

limits on the direct translation. The translation of a geometric routing is greedy direct if: switching between

greedy and face routing mode occurs only on real nodes and greedy navigation proceeds only through real nodes.

Proposition 2 Greedy-direct translation does not violate correctness of FACE, GFG, OAFR or GOAFR+.
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Theorem 2 There exists a greedy-direct translation of FACE, GFG, OAFR and GOAFR+ to non-planar

routing algorithms, provided that the neighborhood relation is one-hop closed and either constant or greedy

navigable.

Proof: We prove the theorem for GFG as the most illustrative case. The proof for the other algorithms is

similar. As in the proof of Theorem 1, we need to provide a mapping from every virtual node to a real node

such that the real node has sufficient information for Stage I of the translation (making the decision as to what

the next node should be in the planar routing algorithm) and then execute Stage II (forwarding the message to

the mapping of this next node).

This translation depends on the particular decisions that GFG makes during the execution. For GFG,

the decisions are: switching from greedy to face mode and back, greedy routing, face traversal and switching

between faces.

Since the theorem considers greedy-direct translation, switching between modes and greedy routing is done

at real nodes only. Hence, the translation from planar to non-planar algorithm is trivial as the node of the

planar graph that the planar geometric routing algorithm navigates are immediately mapped to the real nodes

of the non-planar graph.

We, therefore, need to provide the translation for face traversal and face switching. The process of face

traversal in the translated algorithm is, in effect, the void traversal over virtual nodes. Each virtual node is a

virtual head node of a segment bordering this void. We map this node to the real head node of this segment.

Let us first consider how this translation operates for face traversal. Since the conditions of this theorem

specify that the neighboring relation N (NG) is one-hop closed, the real head node of the segment contains the

information about all the edges intersecting the edges incident to the real head node. That is, this real head

node is capable of determining the virtual tail node of this segment, which is the virtual head node of the next

segment. Hence, the real head node is able to detect the real head node of the next segment which is also present

in its neighborhood. In other words, this real head node is capable of executing Stage I of the translation.

Since the neighborhood relation is either constant or greedy navigable, due to Proposition 1, it is impossible

to route the message from from the real head node to the next without the message exceeding a limit that is

independent of the graph G size. That is, the Stage II of the translation satisfies message size requirements of

geometric routing.
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Let us now consider switching faces. Algorithm GFG uses after-crossing face switching. That is, when the

edge in the planar graph crosses the sd-line, to start the traversal of the next face, the previous and next nodes

incident to this edge exchange places, while traversal direction (left or right-hand) remains the same.

To execute Stage I of the translation, the real head node needs to determine if the segment crosses the

sd-line. For that, just like in case of face routing, it is necessary for this real head node to determine the end

of the segment; and, just like in case of face routing, one-hop closed neighborhood relation N (NG) provides

sufficient information for that.

Once Stage I is executed and the face switching is decided, Stage II – the actual face switching needs to

take place. However, this amounts to the real head node just forwarding the message to the other node incident

to the edge containing the traversed segment. That is, Stage II of the transformation in this case also satisfies

message requirements of the geometric routing.

So summarize, for every mode of GFG, provided it is a greedy-direct translation, we supplied a mapping

from virtual to real nodes that, in case the neighborhood relation is one-hop closed and either constant or greedy

navigable, enables the execution of Stage I and Stage II of the translated algorithm. Hence the theorem. 2

Void traversal illustration. Let us illustrate void traversal used in the proof of Theorem 2 (refer to Figure 3)

The head real node b1 receives a message that traverses the void using left-hand-rule from the previous head

node a1. This indicates b2 the intersection of the edges (b1, b4) and (a1, a2) is the virtual head node b2 of the

segment bordering to the traversed void. Node b1 needs to determine the end of this segment. For that, b1

searches for the edge that intersects (b1, b4) closest to to b2 in the direction of traversal. If several edges intersect

(b1, b4) in the same place, b1 selects the edge that makes the smallest angle with (b1, b4) in the counter-clockwise

direction. This edge happens to be (e1, e2) that intersects (b1, b4) at point b3 forming a virtual tail node that

completes segment (b3, b4). Node b3 is also a virtual head node for the next segment. The real head node for

the next segment is e1. Hence, b1 forwards the message to e1 for further pressing.

Figure 4, illustrates the operation of the complete translation of FACE algorithm. We call this translation

VOID. The communication graph in this figure is a non-planar version of the graph shown in Figure 1. Since

the graph is not planar, some of the edge intersection points such as f , g, and k are virtual nodes. The source

starts a clockwise traversal of void V1 by navigating segment (s, f). Node s is both a virtual and a real head
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Figure 4: VOID example routing. The dotted line is the path taken by the message. Bold line highlight the
traversed edge segments adjacent to the voids.

node of this segment. Node s determines the tail of this segment and the head of the next segment to be virtual

node f . Node s then forwards the message to the real head node of the next segment to node b. Node b forwards

the message to c which is a head node of the next segment. Node c determines that the next segment intersects

sd-line, switches voids and forwards the message to j which is the real head node of the next segment. Note

that c is not adjacent to j, so c has to forward the message through an intermediate node l. In this manner,

the message is routed to m, e and then d.

4 Performance Evaluation

Simulation environment. To validate the effectiveness of the concept of void routing, we recreated the

abstract simulation environment of Kuhn et al [21, 24] and instrumented it to utilize non-unit disk graphs.

Specifically, we used quasi-unit-disk adjacency model with probability p = 0.5 and inner radius r = 0.75. For

our experiments we used 20×20 units simulated square field randomly filled by the nodes with randomly selected

source and destination pairs. We used 21 different density levels from from 0.3 to 20 nodes per unit disk. The

number of nodes in each generated graph depended on the selected density level. For each graph, a single source

and destination pair was randomly selected.

To validate our environment we measured the same graph parameters as Kuhn et al [21, Figure 3], [24,

Figure 3]: shortest path span (ratio between Euclidean and path distance), the ratio of connected graphs, and

the rate of success of greedy routing. For each density level we carried out 2, 000 measurements. The obtained

results are plotted in Figure 5. The shape of the graphs is similar to those obtained by Kuhn et al. Recall that
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Figure 5: Graph parameters depending on its density. Shortest path span, ratio of connected graphs, and rate
of success of pure greedy routing. Last two plotted against the right y axis.

Kuhn et al defined critical density range as the range where the length of the shortest path between the source

and destination significantly deviates from the Euclidean distance between them. The critical density range is

the main area of routing optimization. Note that since some of the nodes within the quasi-unit-disk are only

probabilistically connected, the quasi-unit-disk based graphs are sparser than plain unit-disk based ones. Thus,

the critical density of our graphs is somewhat shifted to the right.

We evaluated the performance of geometric routing algorithms on “raw” non-planar graphs that we generated

and on Gabriel subgraphs of these graphs.

Evaluation description. We translated the planar routing algorithms FACE, OAFR, GFG and GOAFR+ to

the non-planar versions which we call VOID, VOAFR, GVG and VGOAFR+ respectively.

For each algorithm and for each graph density level, we performed 2, 000 measurements on raw graphs. The

performance achieved by these algorithms is plotted in Figure 6. For performance evaluation, we use the same

metric as Kuhn et al [21, 22, 24]: the ratio of the path between the source and destination selected by the

algorithm and the shortest path. That is, mean performance in the plotted graphs is the average such ratio.

To study the effect of graph scale on the performance of geometric routing algorithms, we constructed the

simulation scenario similar to that of Kuhn et al [24, Figure 10]. We fixed the density of the graph near the

critical value — at 6 and varied the field size. Specifically, we selected 10 different lengths of the side of the

square field from 4 to 40 units. The number of nodes in the field was selected to match the required density of
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Figure 6: Mean performance of geometric routing algorithms on raw quasi-unit-disk graphs graphs depending
on communication graph density.

6. We took 3, 000 measurements for each side length. The simulation results are shown in Figure 7.

Recall that on planar graphs OAFR/GOAFR+ is known to significantly outperform other geometric routing

algorithms such as FACE/GFG. Interestingly, on non-planar graphs, its advantage is far less significant. The

reason is that OAFR/GOAFR+ uses a number of parameters, such as the size of the ellipse around the source-

destination pair, that optimize its performance for planar graphs. We, however, used the parameters stated in

the original papers that presented the algorithms. Potentially, these parameters could be tuned to optimize the

performance of OAFR/GOAFR+ for non-planar graphs. Note also that as the density of the graph increases,

the performance of standalone face traversal algorithms VOID and VOAFR deteriorates. This, however, is not

a concern as the algorithms will be used in combination with greedy routing in practice. With the density

increase, the performance of combined algorithms GVG and VGOAFR approaches optimal.

We repeated the experiments on Gabriel subgraphs of the simulated graphs. Recall that to ensure connec-

tivity, the mutual witness has to be used in creating these subgraphs. The results of the density and scale

experiments are shown in Figures 8 and 9 respectively. Gabriel subgraphs tend to be significantly sparser than

the raw graphs. This lack of edges adversely affects the performance of void routing algorithms. However, this

performance penalty may be justified since, due to fewer edges, each node may have lower computation and

storage load to make routing decisions.

Our experiments indicate that the translation that we describe in this paper is readily applicable to geometric

routing algorithms. The resultant algorithms performed successfully over a variety of simulated communication
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Figure 7: Mean performance of geometric routing algorithms on raw quasi-unit-disk graphs depending on graph
scale.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0  5  10  15  20

m
ea

n 
pe

rf
or

m
an

ce

network density

VOID

VOAFR

GVG

VGOAFR+

Figure 8: Mean performance of geometric routing algorithms on Gabriel subgraphs depending on communication
graph density.
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Figure 9: Mean performance of geometric routing algorithms on Gabriel subgraphs depending on graph scale.
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graphs. Our results display the performance dynamics of geometric routing algorithms which can allow the

engineers to select proper network parameters for the behavior of the algorithms on their systems.

Mobility. To evaluate the performance of our algorithm in non-stationary network, we added mobility to the

simulation environment of Kuhn et al. Specifically, we implemented random waypoint mobility model [15].

Each node selects a waypoint in the simulated square field uniformly at random. The node then uniformly at

random selects its speed from zero to a specified maximum velocity and proceeds to the selected waypoint where

it pauses for random amount of time before selecting the next waypoint. We kept the rest of the parameters of

simulation model of Kuhn et al. as described earlier. In particular, we used the quasi-unit-disk radio model.

The speed of the node is expressed in units of distance per unit of time. The message transmission was

computed as follows. A single message transmission is assumed to take one unit of time. After message receipt,

the node positions are computed according to the distance the nodes traveled during the unit of time it took

to transmit the message; the routing decision is made according to the routing algorithm, the message is then

transmitted to the next node and the process repeats. We measured the success rate of a routing algorithm. We

assumed that the algorithm succeeds in delivering the message to the destination node if the message arrives at

the initial destination location before this node moves more than one unit distance away from this location.

For our evaluation, we selected the network at critical density of 4.71 (approximately 1.5π). We selected

26 maximum velocities of the random waypoint mobility model and carried out 1, 000 measurement for each

velocity. As with the static case, the source and destination pairs were randomly selected.

We conducted the evaluation for VOID and GVG. The results of our evaluation are shown in Figure 10.

The results indicate that GVG has greater success rate than VOID due to the shorter routes selected by GVG

during its greedy routing phase. As the speed of the nodes increases, the probability of successful message

delivery diminishes.

5 Conclusion

Scalability makes geometric routing an attractive choice for navigation in ad hoc wireless networks. Traditional

geometric routing requires a planar subgraph for local minima recovery. Planarizing a communication graph

induced by a realistic wireless network communication may be so expensive as to nullify the advantages of
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Figure 10: Success rate of geometric routing algorithms under random waypoint mobility model depending on
maximum node speed.

geometric routing itself.

We stated sufficient conditions for translating planar routing algorithms to non-planar routing algorithms.

We then translated several popular planar routing algorithm to non-planar versions and evaluated their perfor-

mance.

In closing we would like to point out a few possible research directions resulting from our work. Theorems 1

and 2 state sufficient memory conditions for the existence of planar to non-planar algorithm translation. It,

therefore, is interesting study the minimum storage bounds that still allow geometric routing on non-planar

graphs. Another interesting research direction is to compare the performance of VOID-based geometric routing

algorithms to the algorithms based on direct extensions of planarization techniques proposed elsewhere [17, 19,

23]. To further increase the practicality of geometric routing, it is worth investigating the stability of VOID-

based routing algorithms to radio propagation irregularities such as asymmetric links or errors in topology

information [11, 35].
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