
Void Traversal for Guaranteed Delivery in
Geometric Routing

Mikhail Nesterenko and Adnan Vora
Computer Science Department

Kent State University
Kent, OH, 44242

mikhail@cs.kent.edu, avora@cs.kent.edu

Abstract— Geometric routing algorithms like GFG (GPSR) are
lightweight, scalable algorithms that can be used to route in
resource-constrained ad hoc wireless networks. However, such
algorithms run on planar graphs only. To efficiently construct
a planar graph, they require a unit-disk graph. To make the
topology unit-disk, the maximum link length in the network has
to be selected conservatively. In practical setting this leads to
the designs where the node density is rather high. Moreover,
the network diameter of a planar subgraph is greater than
the original graph, which leads to longer routes. To remedy
this problem, we propose a void traversal algorithm that works
on arbitrary geometric graphs. We describe how to use this
algorithm for geometric routing with guaranteed delivery and
compare its performance with GFG.

I. INTRODUCTION

Geometric routing is a promising approach for message
transmission in ad hoc wireless networks. Unlike traditional
ad hoc routing, geometric routing algorithms have no control
messages or routing tables, the nodes maintain no information
about data messages between transmissions and each data
message is of constant size. Hence, geometric routing is
quite scalable. Geometric routing is particularly appropriate
for wireless sensor networks. Networked sensors usually have
limited resources for routing information, yet many applica-
tions for sensor networks require ad hoc configurations of large
scale.

In geometric routing, each node knows it own geographic
coordinates. Each node is also aware of the coordinates of
other nodes and links in a part of the network around it.
The coordinates are either obtained from GPS receivers or a
localization algorithm [1]. The source node of a data message
has the coordinates of the target but the source does not know
the complete route to it. The source selects one of its neighbors
and sends the message to it. After getting the message the
receiver forwards the message further. The objective of the
algorithm is to deliver the message to the target.

The simplest version of a geometric routing algorithm is
greedy routing. In greedy routing the source, as well as
each intermediate node, examines its neighboring nodes and
forwards the message to the one that is the closest to the
target. Unfortunately, the greedy routing algorithm fails if
the message recipient is local minimum: all its neighbors
are further away from the target than the node itself. In

compass routing [2], the next hop is selected such that the
angle between the direction to the next hop node and to the
destination is minimal. However, compass routing livelocks
even on planar graphs.

GFG [3] (also known as GPSR [4]) is the first algorithm that
guarantees delivery of the message. The algorithm is designed
for planar graphs. It uses greedy routing. To get out of a
local minimum GFG sequentially traverses the faces of the
planar graph that intersect the line between the source and
target. GFG assumes that the original communications graph
is a unit-disk graph. For this graph, the authors construct its
Gabriel subgraph. This subgraph preserves the connectivity of
the original graph and it can be constructed locally by each
node. Datta et al [5] propose further improvements to GFG.
Kuhn et al [6] present a similar algorithm with asymptotically
optimal worst-case performance.

Our contribution. The guaranteed delivery geometric rout-
ing algorithms, of which we are aware, have the following
shortcoming. Their local minimum avoidance part runs over
a planar graph. The efficient construction of a planar graph
requires that the original graph is unit-disk. As recent work
[7] demonstrates this assumption is not realistic for connection
topologies formed by common networked sensors such as
Berkeley motes [8]. Motes’ radio propagation patters prove
to be quite intricate.

In this paper we demonstrate how to carry out geomet-
ric routing with guaranteed delivery on arbitrary non-planar
graphs. The foundation of our approach is a void traversal
algorithm. We describe algorithms VOID-1 and VOID-2 that
incorporate void traversal for routing across the whole net-
work. We also present GVG — an algorithm that uses greedy
routing and void traversal to get out of local minima. The void
traversal is based on each node storing the network topology
of its neighborhood. The neighborhood size needs to meet
a condition we call intersection semi-closure. Most practical
geometric graphs meet this condition such that the storage
requirements for each node are independent of the size of the
network and rather small.

We compared the performance of VOID-2 with FACE-2
which is the foundation of GFG. We used randomly generated
graphs as a base for comparison. A large number of graphs did

not have unit-disk subgraphs. Hence FACE-2 cannot be run.
On graphs where FACE-2 and VOID-2 are run, depending on
the graph generation parameters, the paths selected by VOID-
2 were 35-75% shorter. The memory storage requirements
for VOID-2 were independent of the network size and only
modestly increased compared to those of FACE-2.

Paper organization. This paper is organized as follows.
We give definitions and describe our notation in Section II.
We present our void traversal algorithm in Section III. In
Section IV we describe how this algorithm can be used for
geometric routing. In Section V we describe the results of
the performance comparison of the void traversal versus face
traversal algorithms. Section VI concludes the paper.

II. PRELIMINARIES

Notation. We model a sensor network as a geometric graph.
A geometric graph

���������
	��
is a set of nodes (vertices)

�
on a Euclidean plane connected by edges

	
. The number of

nodes is ��� ���
. Such graph is planar if its edges intersect

only at vertices. Void is a region on a plane such that any two
points of this region can be connected by a curve that does
not intersect any of the edges of the graph. A boundary of a
void contains the segments of the edges adjacent to the void.
In every finite graph there is one unbounded external void. A
void in a planar graph is face. Observe that the boundary of
a face forms a simple cycle. Moreover, each edge of a planar
graph borders at most two faces. An edge of a non-planar
graph may contain the segments of the borders of arbitrarily
many faces.

Neighborhood � ����� of a node
�

is a subgraph of
�

. A
neighborhood relation � ����� over graph

�
associates each

vertex of
�

with a subgraph of
�

. Denote
������������	

an edge
between nodes

�
and

�
. Denote �! #"%$ ��������� a path from

�
to�

. Denote also
� �&�%�'�

the Euclidean distance between
�

and
�
.

Intersection semi-closure.
Definition 1: A neighborhood relation � ����� over a geo-

metric graph
�

is (-incident edge intersection semi-closed (or
just (-intersection semi-closed) if, for every two intersecting
edges

�)�&�%�*�
and

�)+���,-�
, either:. there exist �! #"%$ �)�&�%+/� , �- #"%$ ������,-� , either one no more

than (hops and
�)+���,-�

, �! #"%$ �)�&�%+/� and �! #"%$ �)�&�%,-� be-
long to � �)�'� ; or. there exist �! #"%$ ���!��+/� , �- #"%$ ���!��,-� , either one no more
than (hops and

��+��%,��
, �- 0"%$ �)�-�%+1� , and �! #"%$ �)�-�%,-�

belong to � ����� .
The attractive feature of the intersection semi-closed neigh-

borhood relation is that for any edge
���������

, the information
about every edge that intersects

���������
as well as how to

reach such edge is contained in the union of � ����� and � �)�*� .
Observe that for a particular graph, depending on the value of
(, such a relation may not exist. However, for any graph there
always exists a -incident edge semi-closed relation.

To illustrate Definition 1, we apply it to unit-disk graphs.
Unit-disk graph is a geometric graph where two nodes

�
and

Fig. 1. Edge 24365�798 belongs to :;2=<08 in a unit-disk graph

�
are connected by an edge if an only if

� �&�%�'��>@?
.

Lemma 1: A neighborhood relation over a unit-disk graph
is 2-intersection semi-closed if for every node

�
and every

edge
��+��%,��

such that
� �&�%+A��>@?

and
� �&�%,B��>DC0E0F G

it follows
that

������+/�H� � ����� .
Proof: By definition � ����� is 2-intersection semi-closed if
for every edge

���������
and every edge

�)+���,-�
intersecting

�)�&�%�*�
,

and the route to
+

and
,

are either in � �)�'� or � ����� . These
routes are no longer than 2 hops.

Let � ����� and � ����� be according to the conditions of the
lemma. Since

�
is unit-disk, if

� ����+I��>J?
and

� ����,&��>@?
then�)�&�%+1�H�K	

and
������,-���L	

. According to the conditions of the
theorem, both of these edges as well as

��+��%,��
itself belong to

� ����� . If this is the case, then both the route to the endpoints
and the edge itself belong to � �)�'� . Moreover, these routes
are at most 1-hop long. Hence, the definition of intersection
semi-closure is satisfied. Similar argument applies to

�
.

Suppose that
� �&�%,B�NMO?

and
� �-�%,B�1MO?

. Refer to Figure
1 for illustration. Since

�)+���,-�
intersects

�)�&�%�*�
,
,

could not
be further away from

�)�&�%�*�
than

?
. Hence,

� ����+I�QP ?
and

� �-�%+I��PR?
. Since

�
is a unit-disk,

������+/�S�T�
and�)�-�%+1���U�

. By the conditions of the lemma
�)�&�%+1��� � �����

and
���!��+/��� � �)�*� . Suppose that

,
is closer to

�
than to

�
.

Then, the the distance between
,

and
�

is at most
C#E#F G

. By
the conditions of the lemma

�)+���,-�V� � �)�'� . Which means
that � �)�'� contains the edge

�)+��%,-�
and, since � �)�'� also

contains
�)�&�%+1�

, � ����� contains the routes to both
+

and
,

.
Moreover, the �- #"%$ ������,-� is just 2-hops long:

�)�&�%+1�W�X��+��%,��
.

The argument for
�

is similar. The lemma follows. Y

Geometric routing. Consider a connected geometric graph�Z�[���\��	��
, a neighborhood relation � ����� over it and a

pair of nodes
��]0� " �N�V� . Source

]
has a message to transmit

to target " . The source knows the coordinates of the target.
The message may be transmitted via intermediate nodes. Each
node may potentially add data to the transmitted message. In
the sequel we ignore the payload of the message and assume
that it contains only the routing information.

A routing algorithm specifies a procedure for intermediate
node selection. A geometric routing algorithm with guaranteed
delivery ensures the eventual message delivery under the

Fig. 2. Traversal of void ������� .

following two constraints: each node
�

receiving the message,
selects the next node only on the basis of � �)�'� and the
contents of the message

�
received; the message size is

independent of network size. Observe that the nodes are not
allowed to keep any information about the transmitted message
after it has been forwarded.

III. VOID TRAVERSAL ALGORITHM

Overview. The algorithm traverses an internal void clockwise
following the segments of the edges that comprise the border
of the void. The external void is traversed counter-clockwise.
Refer to Figure 2 for the illustration. Given an edge, for
example

� (� $ � , that contains the segment of the void’s border,
the algorithm has to select the next edge. For this the algorithm
needs to determine the ends of the segment of

� (� $ � that
borders the void. One of the ends — � is the intersection
of the previous edge

� �	��� and
� (� $ � . The other end —
 is

the point of the intersection of
� (� $ � and another edge

��� �� �
such that
 is closest to � in the direction of the traversal of
the void.

Recall that in the intersection semi-closed neighborhood
relation, the union of the neighborhoods of (and $ contains
every edge intersecting

� (� $ � as well as a route to this
edge. Hence, to accomplish its objective the algorithm has
to examine the neighborhoods of (and $.

Details. The algorithm uses two types of messages:
edge change, and edge selection. edge change
contains: previous edge, current edge and the direction of
the traversal of the current edge. edge selection message
contains: previous edge, and suggested next edge.

When a node (receives edge change message from
node , it determines the intersection point � between the
previous edge

� ���#� and the current edge
� (� $ � . Notice that

the intersection point may be (itself. Then (examines � � (�
to find the edge whose intersection point is the closest to �
in the direction of traversal. This edge is the suggested next
edge. Note that the graph is intersection semi-closed and � � (�
may not contain some of some edges that intersect

� (� $ � . For
example:

��� �� ���� � � (� .

Hence, (selects
��� ��� �

as the suggested next edge. Edge��� ��� �
intersects

� (� $ � at point � . If (does not find any edge
that intersects

� (� $ � , it keeps the suggested next edge field
empty. Node (sends edge selection to the other node $
incident to the current edge.

When node $ receives edge selection from (, $ com-
pares the suggested next edge

��� ��� �
that $ receives from (

with the edges in � � $ � . If $ finds an edge
��� �� �K� � � $ �

intersecting
� (� $ � whose intersection point
 is closer to � than

� , then $ makes
��� �� �

the suggested next edge. Otherwise, the
suggested next edge remains the same. If neither (nor $ find
the suggested next edge in this manner, $ considers the edges
incident to itself. Node $ selects the edge nearest to

� (� $ �
counter-clockwise.

Node $ forms an edge change message. This message
contains

� (� $ � as the previous edge and
��� �� �

as the current
edge. From the information contained in edge selection
that $ receives from (, $ is able to determine the direction of
the traversal of

� (� $ � . The traversal direction is included in
edge change.

After composing edge change, $ sends this message to
either

�
or

. Since the graph is intersection semi-closed, � � $ �

may not contain the route to either nodes. In this case $ returns
the message to (and (forwards it to the appropriate node.

The above discussion is summarized in the following theo-
rem.

Theorem 1: The Void Traversal Algorithm correctly tra-
verses an arbitrary void in a geometric graph with intersection
semi-closed neighborhood relation.

IV. USING VOID TRAVERSAL

TO GUARANTEE DELIVERY

VOID-1 and VOID-2. The geometric routing algorithms
we discuss are VOID-1 and VOID-2. They are rather straight-
forward extensions of algorithms FACE-1 and FACE-2 re-
spectively. The latter two are planar graph geometric routing
algorithms presented by Bose et al [3]. FACE-1 has a better
worst-case performance. However FACE-2 is more efficient
in practice. Hence, we describe VOID-2 in detail and mention
briefly how VOID-1 is designed. Our algorithms are based on
the following observation.

Proposition 1: Let ��� and ��� �� ��� be two arbitrary points
on the edges or vertices of a geometric graph. Let

�
be the

void such that ��� lies on its border and the line segment� ��� � ��� � intersects
�

. If there is a point ��� where
� ��� � ��� �

intersects the border of
�

then
� ��� � ��� ��P � ��� � ��� � .

Both VOID-1 and VOID-2 sequentially traverse the voids
that intersect the line

��]9� " � . Refer to Figure 3 for illustration.
While traversing a void, VOID-1 and VOID-2 look for an
intersection point with line

��]0� " � . Observe that there may be
multiple such points. For example, void

� � in Figure 3 has
four such points. VOID-1 and VOID-2 differ in their actions
when an intersection point is encountered. VOID-1 traverses
the whole void, selects the intersection point that is closest
to " , moves the message to this point and switches to the
traversal of the next void. For example, VOID-1 would traverse

Fig. 3. Example route of VOID-2.

Algorithm: VOID-2
�����]
� � � "
repeat

/* let
�

be the void with � � on
its boundary that intersects

� � � � � � � */
traverse

�
until reaching

an edge containing point ���
intersecting

� ��� � ��� �
����� ���

until ��� � ��� /* target reached */

Fig. 4. Pseudocode for VOID-2. VOID-2 uses void traversal to guarantee
delivery.

� � completely and switch to
���

. VOID-2, on the other hand,
switches to the next void as soon as the first intersection point
is found. The pseudocode for VOID-2 is given in Figure 4 and
an example route that VOID-2 selects is shown in Figure 3.

On the basis of Theorem 1 and the discussion above we
state the following.

Theorem 2: Given an arbitrary geometric graph, an inter-
section semi-closed neighborhood relation and an arbitrary
pair of nodes in this graph, both VOID-1 and VOID-2 even-
tually deliver a message from the first node to the second.

GVG. As in GFG, void traversal is only needed for a message
to leave a local minimum. Otherwise greedy routing can be
used. Care must be taken to avoid a livelock when message
returns to the same local minimum. The complete algorithm –
greedy-void-greedy (GVG) works as follows. The message is
at first forwarded according to greedy routing. When a node
discovers that it is a local minimum, it notes the distance to
target and the routing switches to VOID-1 or VOID-2. The
routing switches back to greedy if the distance to target is
less than that of the local minimum. The process repeats if
necessary. Observe that, according to Theorem 2, the delivery
of a message by either VOID-1 or VOID-2 is guaranteed.
Hence, either GVG eventually switches to greedy routing
or delivers the message to the target. Hence the following
theorem.

Theorem 3: Given an arbitrary geometric graph, an inter-
section semi-closed neighborhood relation and an arbitrary

Fig. 5. Edge existence probability with respect to the distance between nodes.

pair of nodes in this graph, GVG eventually delivers a message
from the first node to the second one in that pair.

V. PERFORMANCE EVALUATION

Note that the greedy phase of GFG and GVG is the same.
Hence we only compare the performance of local minimum
avoidance parts: void and face traversal. We use FACE-2 and
VOID-2 for comparison as they are more efficient in practice
then FACE-1 and VOID-1.

As a primary metric we compare the length, in the number
of hops, of the routes selected by face and void traversal
algorithms. Note that a void traversal algorithm makes routing
decisions on the basis of larger neighborhood information.
Therefore, we compared the individual node memory require-
ments for face and void traversal algorithms as well.

Graph Generation. We used randomly generated sets of
graphs with 50, 100 and 200 nodes in a fixed area of 2 by 2
units. The nodes were uniformly distributed over the area. We
used a rather simple model for fading effect of radio reception.
For each set of graphs we selected the connectivity unit

�
to

be ��� G , ��� C�� and ��� C respectively. We also selected a fading
factor
 to be either

?
,
C

and
G
. The connectivity between

nodes was determined as follows. We deterministically added
an edge for every pair of nodes that were no more than

�
away from each other. See Figure 5. If the distance between
two nodes was between

�
and

	 � , the edge between them

is added probabilistically. The probability linearly decreased
from

?
to � . Notice that when the fading factor
 is equal to

one, the random graphs that we generated were unit-disk.
In order to compare FACE-2 and VOID-2 we needed to

compute unit-disk subgraphs of the the generated graphs.
However, frequently the subgraphs were disconnected: out
of 350 of randomly generated 50-node graphs with
 eitherC

or
G
, only a single graph had a connected unit-disk sub-

graph. These subgraphs had to be discarded as unsuitable for
FACE-2. To make the performance comparison, we adopted
a different graph selection strategy. We generated random,
connected unit-disk graphs and added extra links according to
the connectivity rules above. Notice that this strategy favors
FACE-2 as it discounts the graphs that are not usable by FACE-
2.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1
2

3

4

5

6

7
8

9

10

11

12

13

14

15

16

17

18

19

20 21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44
45

46

47
48

49

50

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1
2

3

4

5

6

7
8

9

10

11

12

13

14

15

16

17

18

19

20 21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44
45

46

47
48

49

50

Fig. 6. Example routes selected by VOID-2 and FACE-2 between nodes 27 and 11 in a 50-node graph and its unit-disk based subgraph respectively. The
fading factor � is 2.

We generated 5 graphs for each number of nodes and fading
factor. This yielded the total of 45 graphs and their planar
subgraphs.

Route Length Comparison. We implemented the FACE-2
and VOID-2 algorithms in Java and Matlab. We generated 10
random pairs of nodes for each set of graphs and used VOID-2
and FACE-2 to compute the routes between the nodes in each
pair. VOID-2 used the original graph and FACE-2 — its unit-
disk based planar subgraph. The example routes are shown in
Figure 6.

We used paired comparison to estimate the improve-
ment from FACE-2 to VOID-2 in the length of the se-
lected routes as follows. For each pair of source and des-
tination nodes we calculated the difference in the hop-
count between routes and normalized it to the hop count
of the route selected by FACE-2. That is the com-
parison is based on the formula:

����� ��� � � '"��	��
	����� ��� � � '"�������� ��E���� ��� � � '"�����
	� . Figure 7 summarizes
the results. Observe that even on unit-disk graphs (
 �
?
), VOID-2 generates routes that are 35-45% shorter than

the routes selected by FACE-2. The relative performance of
VOID-2 further improves as the fading factor and density of
the graphs increases.

Memory Usage Comparison. In both VOID-2 and FACE-
2, each node

�
stores the information about its neighborhood

nodes � ����� . The size of the neighborhood differs in the two
algorithms. In evaluating the memory usage, we estimated
the average size of the neighborhood. For the FACE-2, the
average size of the neighborhood is the average degree (of
the planar subgraph. In our experiments, the average size of
neighborhood in VOID-2, was found to be
 	 (where
 is
the fading factor.

VI. CONCLUSION

The elegance and efficiency of geometric routing algorithms
is remarkable. Recent advent of large-scale wireless sensor
networks increased the relevance of such algorithms. However,
the algorithms’ demand for unit-disk based graph planarity
hampered the attractiveness of geometric routing. With this
paper, we lift this restriction and help the adoption of geo-
metric routing algorithms as the routing solution of choice in
sensor networks.

ACKNOWLEDGMENTS

We would like to thank Ivan Stojmenovic of the University
of Ottawa and M. Kazim Khan of Kent State University for
their helpful comments.

REFERENCES

[1] N. Bulusu, J. Heidemann, D. Estrin, and T. Tran, “Self-configuring local-
ization systems: Design and experimental evaluation,” ACM Transactions
on Embedded Computing Systems, vol. 3, no. 1, pp. 24–60, Feb. 2004.

[2] E. Kranakis, H. Singh, and J. Urrutia, “Compass routing on geometric
networks,” in Proceedings of the 11th Canadian Conference on Compu-
tational Geometry (CCCG-99), Vancouver, BC, Canada, Aug. 1999, pp.
51–54.

[3] Bose, Morin, Stojmenovic, and Urrutia, “Routing with guaranteed de-
livery in ad hoc wireless networks,” in Wireless Networks: The Journal
of Mobile Communication, Computation and Information, Kluwer, 2001,
vol. 7.

[4] B. Karp and H. T. Kung, “GPSR: Greedy perimeter stateless routing
for wireless networks,” in Proceedings of the 6th Annual International
Conference on Mobile Computing and Networking (MOBICOM-00). N.
Y.: ACM Press, Aug. 6–11 2000, pp. 243–254.

[5] S. Datta, I. Stojmenovic, and J. Wu, “Internal node and shortcut based
routing with guaranteed delivery in wireless networks,” Cluster Comput-
ing, vol. 5, no. 2, pp. 169–178, Apr. 2002.

[6] F. Kuhn, R. Wattenhofer, and A. Zollinger, “Asymptotically optimal
geometric mobile ad-hoc routing,” in Proceedings of the 6th International
Workshop on Discrete Algorithms and Methods for Mobile Computing &
Communications (DialM-02). New York: ACM Press, Sept. 28 2002,
pp. 24–33.

0

20

40

60

80

50 100 200

Number of nodes in graph

H
op

 c
ou

nt
 im

pr
ov

em
en

t,
%

Factor of 1

Factor of 2

Factor of 3

Fig. 7. Route length improvement from FACE-2 to VOID-2.

[7] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin, and
S. Wicker, “Complex behavior at scale: An experimental study of low-
power wireless sensor networks,” UCLA, Technical Report CSD-TR 02-
0013, 2002.

[8] J. Hill and D. Culler, “Mica: A wireless plat-
form for deeply embedded networks,” IEEE Micro,
vol. 22, no. 6, pp. 12–24, Nov./Dec. 2002. [Online].
Available: http://dlib.computer.org/mi/books/mi2002/pdf/m6012.pdf;
http://www.computer.org/micro/mi2002/m6012abs.htm

