Visualizing Wireless Sensor Networks:

An Experience Report

Mark Miyashita, Mikhail Nesterenko} Romil D. Shah and Adnan Vora
Computer Science Department
Kent State University
Kent, OH, 44242
{mmiyashi, mikhail, rshah, avora}@cs.kent.edu

Keywords: visualization of wireless sensor
network applications, graphical user inter-
faces, wireless sensor networks.

Abstract

Wireless sensor networks is a novel computing ar-
chitecture with a variety of potential applications.
Due to close interaction with the environment,
large scale, limited resources of individual sensor
nodes and other specifics, visualizing the opera-
tion of such a network with a graphical user inter-
face (GUI) is important. In this paper we describe
our experiences in designing a GUI in a succes-
sion of three projects for sensor networks: Pursuer-
Evader, Line in the Sand and Extreme Scaling.
Even though these projects were rather different in
purpose and scale, we approached each new project
as an opportunity to develop the more sophisti-
cated visualization software. We reused old code as
much as possible while adding and enhancing soft-
ware features as necessary. This approach proved
to be successful as all our GUIs were deployed as re-
quired. We discuss each project requirements and
GUI architecture. Then we report on the design
process and feedback we received when each GUI
was tested and used.

1 Introduction

Wireless sensor networks is an emergent comput-
ing platform. A large number of sensors spread
throughout an area of interest enables such a net-
work to collect detailed information about the envi-
ronment. A wireless sensor network can be quickly
deployed and then operated without human inter-
vention for an extended period of time. These fea-
tures make sensor networks suitable for a number

*This research was supported in part by DARPA con-
tract OSU-RF#F33615-01-C-1901 and by NSF CAREER
Award 0347485

of tasks which traditional computing architectures
could not adequately address: habitat monitor-
ing, indoor climate control, enemy troop movement
surveillance, medical diagnostics, logistical support
in natural disaster areas, etc.

Some potential applications of sensor networks
require massive (up to 100,000) deployment of sen-
sor nodes. To make such deployments economi-
cally viable, each individual sensor node must be
rather inexpensive. Hence, a sensor node has nu-
merous resource constraints: it is limited in mem-
ory, computing power, bandwidth and energy re-
sources. Moreover, a sensor node does not have
extensive visual aids such as external displays or
monitors to determine its internal state; at most,
it has a few LEDs. Due to the large scale of de-
ployments and the limited resources of individual
sensor nodes, obtaining an adequate picture of the
state of the network is difficult. Thus, a graphical
user interface (GUI) that presents the network’s
state and allows the user to interact effectively with
the sensor network becomes an indispensable com-
ponent of a sensor network application.

A GUI for a sensor network has two main cate-
gories of users: programmers and operators. The
GUI requirements for each category are somewhat
different. The programmers require the GUI for
testing, debugging and maintenance of the appli-
cation. They need to be able to reconstruct the
state of the network and the contents of the inter-
nal data structures of sensor nodes (e.g. routing
topology, message propagation patterns, readings
of individual sensors) in real time. Operators, on
the other hand, require a convenient and effective
way to control the sensor network, extract informa-
tion from it and relate it to the events taking place
in the real world (e.g. target movements or fire inci-
dents). Hence, the operators need close correspon-
dence between the events of interest happening in
the real world and their visual representation as

well as convenient access to the state information
of various parts of the network.

Unlike a conventional program for computer net-
works which may be generic in nature, wireless sen-
sor network applications are designed for a particu-
lar task. Thus, given the importance of the GUI for
the success of the application, the GUI has to be
tailored to the demands of the application. How-
ever, a GUI for sensor networks is a complex piece
of software. Thus, designing it from scratch for
each application is expensive. In this paper, we
describe an alternative approach to GUI develop-
ment. We used a succession of wireless applications
for which we had to build a GUI, to develop the
features of the GUI incrementally. For each suc-
cessive project, rather than starting from scratch,
we refocused the GUI from previous projects to the
new project and added features and functionality
as needed.

A number of circumstances contributed to the
success of our efforts. Sensor network applications,
although disparate, tend to have some common
GUI requirements: presentation of area of interest
and locations of sensor nodes on it, detailed infor-
mation about each node, magnification on demand,
network topology and controlled playback capabil-
ities. This allowed us to keep a large portion of
GUI code as we moved from project to project.
The projects with which we were involved grew in
scale and complexity. Thus, our GUI development
was largely incremental. Close cooperation with
the project leaders allowed us to discuss specifi-
cations, receive feedback and try out preliminary
versions of the GUT as we developed it. As we par-
ticipated in the successive projects, we were able
to observe the use of our GUI as well as conceive
additional features and improvements to it.

Sensor node architecture, development his-
tory and paper organization. We developed
the GUI for a number of applications. For all
these applications we used Berkeley’s prototype
networked sensors [16] called motes. These sensors
are quite popular in research and industry com-
munities due to their simplicity, ease of use and
application readiness. The motes run TinyOS [17].
TinyOS is a lightweight event-based operating sys-
tem that implements the networking stack, han-
dles communication with the sensors and provides
a programming environment for this platform.

As we started experimenting with wireless sen-
sor networks, the need for a GUI for demonstration
and debugging purposes quickly became apparent.
The first version of the GUI was built to address
our internal needs. On the basis of this version, we
designed a GUI for the “Pursuer-Evader” project

conducted by a research team at Ohio State Uni-
versity (OSU). We describe this GUI in Section 2.
We then refocused the GUI for the “Line in the
Sand” project described in Section 3. We have
recently completed a GUI for “Extreme Scaling”
project. This effort is described in Section 4. All
these sections are structured similarly. We start by
describing the project itself and the requirements
it placed on the GUI. We then describe what GUI
features were implemented for this project. We
proceed to describe the internal architecture of the
GUIL We conclude by discussing the implementa-
tion process, the usage history and the feedback
that we received from the users.

Related Literature. There is a number of generic
visualization tools for distributed systems. Carr
et al designed ConcurrentMentor [10] to exter-
nally monitor the execution of a distributed sys-
tem. Tropol et al [21] built a visualization tool for
logging the activities in a distributed system. Nei-
ther of these tools are designed specifically for sen-
sor networks. ATEMU [20] is a interesting simula-
tor for an individual sensor network node. ATEMU
emulates the motes’ architecture. It allows to de-
bug and visualize the processes of a single mote.
However, it is not designed to visualize a sensor
network as a whole. Basic visualization primitives
for sensor networks are available in TinyViz [19]
and EmView [15].

2 Pursuer-Evader Tracking

Problem requirements. We implemented the
GUI to support the OSU implementation of a
pursuer-evader tracking application [12]. The ap-
plication was to be demonstrated at DARPA Net-
work Embedded Systems Technology program re-
treat in Bar Harbor, Maine in June 2002. This
project used Mica release of the motes [11]. Each
mote has an embedded 4MHz microprocessor, 4KB
of RAM, 4MB of FLASH memory, Monolithics
asynchronous short-range radio transmitter, and
an array of sensors.

The experiment consisted of two Lego Mind-
storm robots serving as an evader and a purser on
top of a foam panel where a 4-by-4 grid of motes
were embedded. The evader was human-controlled.
The pursuer was autonomous. It gathered the in-
formation from the embedded motes and decided
on the direction of pursuit. Both the pursuer and
the evader were only allowed to move along the
grid lines of the panel. The pursuer moved faster
than the evader. The objective of the pursuer was
to catch the evader. Using its light sensor, an em-
bedded mote detected the evader passing over it.

When the evader was sighted, the mote notified the
neighbors over the radio. The motes indicated the
direction of pursuit by blinking an infrared LED.
As the pursuer passed over a mote it read the di-
rection to go. In essence, the motes maintained the
pursuit direction tree with the evader at the sink.
The application was designed to withstand a mote
failure and tree corruption.

An extra base-station mote was attached to a
PC. This mote eavesdropped on the messages ex-
changed by the embedded motes and relayed this
information to the GUI application running on the
PC.

GUI descriptions and features. For the pur-
pose of the demonstration, the operator needed to
see pursuit direction tree matching the ongoing ex-
periment. The programmer also needed visualiza-
tion of the tree as the amount of information gener-
ated by the motes was overwhelming — each mote
generated four messages per second.

The Pursuer-Evader GUI contained a debugging
panel that showed the messages received by the
base-station and a network topology panel where
the pursuit direction tree was displayed. A screen-
shot of Pursuer-Evader GUI is shown in Figure 1.
For debugging purposes, the pursuer-evader appli-
cation code was sometimes run under a PC-based
simulator. In this case, the simulator relayed the
messages over a TCP /IP socket. The GUI was de-
signed to accomodate both a physical experiment
and a simulation.

Architecture. The architecture diagram for the
Pursuer-Evader GUI is shown in Figure 2. The
GUI consists of four components. To ensure
adequate responsiveness of the GUI, each com-
ponent was implemented as a separate thread.
The Message-Processing Component receives a raw
message from either the COM-port of the socket
and converts it to byte format. The component
also checks the integrity of the message by com-
puting its CRC and discards corrupted messages.
The Message Display Panel receives byte-format
messages from the Message Processing Component
and displays them as text. Similarly, the Network
Topology Panel receives messages, interprets them
and updates the pursuit direction tree. The Con-
trol Panel starts and stops the application, config-
ures the message input channel and other parame-
ters of the experiment.

The GUI was written in Java. Swing class API
was used to organize various panel displays as well
as the pursuit direction tree display. Mote message
processing was done with the help of Java commu-
nication API.

Experience. The GUI was quite helpful during
the development of the pursuer-evader application.
The GUI was successfully used during the intended
demonstration and further experiments.

3 Line In The Sand

Problem requirements. “Line is the Sand”
(LITeS) [9] was a DARPA-sponsored experiment
led by the Ohio State University. The objective
of LITeS was to demonstrate the capabilities of
sensor networks in target detection and tracking.
The demonstration took place at McDill Air Force
Base, Florida in August, 2003. The experiment
required the protection of 60 by 25 ft area by 78
sensor nodes arranged in a grid formation. The
sensor nodes were to be able to self-organize into
a network, track and classify intruders as well as
withstand failures. The entire project was to take
about 8 months.

The sensor nodes were Mica2 motes [6] with
a 4KB static RAM and 128KB of programmable
flash memory. The motes had a Chipcon 916.5
MHz radio transceiver. The motes were also
equipped with magnetometers and Micro Impulse
Radars (MIR). The motes were placed in pre-
determined locations on the field. They then con-
figured themselves into a connected network. Mes-
sages from the motes were relayed through the net-
work to the exfiltration point (base-station). Vari-
ous classes of intruders passed through this sensor
grid. The network detected, classified and tracked
them. The motes used their magnetometers to
sense the metal content of the intruder and clas-
sified it as a human, a soldier, or a car based on
increasing metal content. The MIRs were used to
judge the speed and trajectory of the intruder. The
sensor network was supposed to differentiate mul-
tiple intruders simultaneously passing through dif-
ferent portions of the protected area. The network
was also to detect and track a succession of intrud-
ers passing through the same area.

GUI description and features. We provided
the GUI with features to suit both groups of users:
operators and programmers. For operators of the
system, the GUI was required to represent accu-
rately the tracks of one or multiple intruders in a
way that related to the actual topography of the
monitored area. In particular, the operators were
interested in the entry and exit points of each in-
truder. The operator also needed to be able to
record and playback a certain sequence of events
as necessary. During the course of the experiment,
the operator needed to have the ability to zoom in

Pursuer-Evader GUI
Message _Il_\i)et;vlgrk Control
Panel (PR Panel
Panel
A
Message Message Exg::tr:;n(
Base-Station Mote
Message
Processing
Message Stream

il =[8]x]
Simulation
Message display | pNetafork Topology
CRC Check failed Grc CRC -20873 Cals CRC -21363 E‘
RFM Packet Received: Te, 0,4,11,15,0,3,1,2,4,0,0,0, 0,0, 0,0, (2
Draw edge hetween 1 and 2 "
Draw edge betieen 2 and 3 [} {1l
Draw edge between 3 and 4
Draw edge hetween & and 1
Draw edge between 13 and 14
Draw edge hetween 14 and 15
Draw edge hetween 15 and 11 1 1
Draw edge between 16 and 12 E W'U . N PP
MateC onnection: CreatsTopology called [ak¢ i =
Read data from Mote 1 with length 36 byles at 13:24:59:689
CRC Check passed Sro CRC -17557 Cal CRC 17557
Settimeout for edge between 1 and 2
Mote 1 Route Already Seto 2
RFM Packet Received: 7e,0,4,11,15,0,7,1d,e,4,0,0,0,0,0,0,0 U 4
MoteConnection: CreateTopalagy called | E
Read data fram Mots 28 with length 36 bytes at 13:24:58.759 . E) g
CRE Check failed Sre CRC 24555 Cale GRC 13241
RFM Packet Received: 7e,0,4,11,16,0,5,9,5,4,0,0,0,0,0,0,0,
MoteConnection: CreateTopology called
Read data from Mate 8 with length 36 bytes at 13:24:59:763
CRC Check passed Sro CRC -16783 Cals CRC 16783 -k
Settimenut for edge between 8 and 5
Mote 9 Route Setto § |
Kl i L Db
Clear stop out | #oftaote 15 || Protocol |0SU | Socket: [10577 | Serial Part: [comt
[v] Serial Port [Socket

Figure 1: A screenshot of the Pursuer-Evader GUI

on a particular target location, or zoom out to gain
a wider perspective.

In order to fulfill these requirements, we decided
to depict the motes over a bitmapped picture of
the protection area. Operators could choose to dis-
play evenly spaced grid lines on the GUI to get a
sense of the distance between the motes and the
relative locations of the detected intruders. We
provided on-demand zooming capability which was
controlled by the mouse and allowed arbitrary mag-
nification factors. The operator was given the abil-
ity to freeze the GUI and stop it from displaying
real-time events, as well as to playback up to five
minutes of past events. The playback did not in-
terfere with the recording of real-time events which
became available to the operator once he exited the
playback mode.

To the programmers, debugging and monitoring
were important. In particular, they wanted to be
able to view each raw message received from the
base-station, and constantly monitor the health of
every mote in the network. Detailed information
about every mote and intruder needed to be avail-
able. In order to monitor the state of the network
as a whole, we needed to represent the network
topology graphically.

We provided a Summary Display panel on the
GUI, which reported average network statistics
such as average mote power levels, the number of
intruders detected and the number of functioning
motes. A separate Debug Panel displayed raw mes-
sages received from the base-station. The on-screen
representation of the motes depicted the network
topology using arrows. Whenever an intruder was
detected, the GUI clearly indicated which of the
motes actually participated in the detection of the
target. At a large zoom level, every mote and in-
truder displayed a digital readout of its key prop-

Figure 2: The architecture of the Pursuer-Evader
GUI

erties. In order to make these programmer require-
ments unobtrusive for the operator and to reduce
on-screen clutter, most of these features could be
turned on or off on demand. A screenshot of the
LITeS GUI is shown in Figure 3.

Architecture. The architecture diagram for the
LITeS GUI is shown in Figure 4. The initial pro-
cessing of the messages received by the base-station
mote is handled by the component developed by
the OSU team. The message is then transferred
to the LITeS GUI. The incoming messages pertain
to two main objects to be displayed by the GUI:
motes and targets. A Mote message describes the
state of a particular mote and includes its ID, par-
ent ID, coordinates, power level and readings of its
on-board sensors. A Target message describes a de-
tected intruder and includes the ID of the target,
its classification (civilian, solider, car or unknown),
coordinates, and a list of IDs of all the motes that
participated in target detection. To facilitate the
message transfer we used the Java Management
Extensions (JMX) [4] toolkit developed by Sun Mi-
crosystems. The incoming messages are stored in
internal object repository of the GUI.

The operation of the GUI components is event-
driven. The events are generated by either the user
or the incoming messages. The events are han-
dled by separate threads. As soon as the new ob-
ject information arrives, the event listener of the
Display Panel component forces it to repaint the
screen based on the newly available information.
The Display Panel also notifies the Debug Panel
and the Summary Panel components about newly
arrived information. The Debug Panel presents
information message-by-message, while the Sum-
mary Panel shows the aggregate network statistics.
Due to the amount of processing and screen display

\\\\\\\\\\

0] untresze | payosc|

Figure 3: A screenshot of Line in the Sand GUI

activities, the Debug Panel has a separate thread
that runs asynchronously with the Display Panel
thread.

The Display Panel receives image magnification
requests from the user. These requests are handled
with the help of a Zooming Toolkit. The Zoom-
ing Toolkit is based on Jazz [8] — an application
framework for building a zoomable user interface
developed by the University of Maryland.

On the basis of user input, the Control Panel
determines the visibility of on-demand features of
the Display Panel such as the coordinates grid
and the network topology. The Control Panel also
drives the Playback Module. The Playback Module
freezes the real-time presentation in the Display
Panel and replays the past events. The user inputs
the number of seconds of past events that should
be played back. The Playback Module contains a
separate thread that controls playback. This en-
ables the Display Panel to continue to accumulate
real-time information during playback.

Experience. The GUI was successfully used for
the demonstration of the experiment. It was devel-
oped, tested and debugged on schedule.

The GUI design process was iterative. We cre-
ated a formal specification based on the verbal
GUI requirements communicated to us by the OSU
team. Feedback and extra feature requests were
then incorporated into the design. After the de-
sign was relatively stable, we negotiated the exter-
nal interfaces. These interfaces were made easily
extensible as we envisioned further changes as the
application evolved.

The GUI was initially debugged and tested by
our team using simulated trace data and once it
was stable, it was sent to OSU for field testing.
After reports of excessive memory usage, we em-
ployed JProbe [1] to detect and eliminate memory
leaks in the GUL

Base-Staton Mote | | |[TeS GUI Display Commands
Aggregate
Summary Readings Control
Mseissage Panel Panel
ream
Display
Mote Panel R;ad:“gs Playback
epla
Message Sty play (Commands
Processing Panel Object
and Readings
Classif Playback
Component g:;r:::\‘gs Module
Object Zooming Wagnification
Messages . Requests
l o Toolkit ol
Event Objects Readngs
ey Repository
Module ject Messages

Figure 4: The architecture of Line in the Sand
GUI

As we observed the usage of our GUI, we noted
that some features were heavily used. The ability
to playback events was quite popular. The OSU
programmers liked the debugging capabilities into
the GUI. They found it quite useful to be able to vi-
sualize the current state of the application and de-
termine exactly which motes participated in the de-
tection of a particular target. The bitmapped back-
ground representing the topology was not found to
be as useful, mainly because of the lack of resolu-
tion of available aerial views.

Some features required further refinement. The
users found it more convenient to select an appro-
priate level of magnification at the beginning of
the experiment. The mouse-based magnification
control proved to be less useful. Hence, we imple-
mented a menu-based selection of discrete magni-
fication levels.

Our LITeS GUI proved rather popular. Tt was
used multiple times by OSU in demonstrations af-
ter the LITeS project was completed. In particular
the OSU team used the GUI in the initial stages
of the extreme scaling project to be described in
the next section. Furthermore, a team from Michi-
gan State University used LITeS GUI to debug
and demonstrate a wireless sensor network repro-
gramming application [22]. In this experiment, the
team successfully adapted this GUI to display re-
programming of 40 motes. The motes were pre-
programmed with the standard TinyOS BLINK
application. After successful reprogramming with
LITeS code, the motes started sending messages to
the base-station and the GUI displayed the track-
ing data sent by the motes, thereby demonstrating
that the reprogramming was successful.

4 Extreme Scaling

Problem requirements. After the success of
LITeS [9], Extreme Scaling (ExScal) [2] was the

ExScal GUI

.
e 8
o0

3
8
8
L3
®
o
—

ws® o 800 %

Additional
Information
Panel

Base-station
Stargate

Custom
Information

Control
Panel

Detail View

Display
Section
Request

Full View

Aggregate

Playback
Readings

Commands

Display
‘Commands

Readings
Replay

Summary
Panel

Object
Readings

Message
Stream

Current Readings

Y114
sevessse 88
21
soneed’
589997
0008

Playback
Module

Mote 3D Rendering, |, Magnification &
Message Zooming and Panning

Requests

9 Panning Toolkit

and Objects

Repository

eadings Replay
@

Component

Object Readings

Figure 6: The architecture of the ExScal GUI

Figure 5: A screenshot of the ExScal GUI

next project for which we have to develop a GUIL
The objective of ExScal was to use a wireless sensor
network to protect a linear asset, such as a pipeline,
against sabotage. The final demonstration took
place at Avon Park Air Force Base, Florida in De-
cember 2004. In ExScal, 10,000 sensor nodes were
required to protect an area of 10km by 500m. The
sensor network was expected to detect, classify and
track the intruders as they approach the protected
asset. To satisfy the problem requirements, the fol-
lowing architectural decisions were made. The sen-
sor network was to be multi-tiered. The first tier
was composed of the XSM [13, 14] motes. XSM
is a modification of Mica2, custom built for ExS-
cal. The XSMs have low power sensing, improved
radio performance, passive infrared sensor (PIR),
acoustic sensor and a grenade timer. By analyzing
the readings of these sensors, targets are classified.
The second tier was composed of Stargates [7]. A
Stargate is a PDA class device capable of commu-
nicating through PCMCIA, COM-port, Ethernet,
USB. A Stargate runs Linux. In ExScal, Stargates
were configured to communicate via IEEE 802.11.
The XSMs and Stargates were grouped into sec-
tions. Each Section has 198 XSMs and 5 Stargates.
The XSMs and Stargates were to be placed in pre-
determined locations in the field. They were to
self-configure themselves into sections and form a
connected network. The Stargates first initialized

themselves and reported their location to the base-

station. The messages from the XSMs in a section

were relayed to the Stargates which sent them over

the tier-two network to the base-station. Due to

the limited memory resources of the motes, they

had to be reprogrammed after they were deployed.

All in all, 9184 XSMs and 274 Stargates were
to be used in the experiment [18]. The final ex-
periment was to be monitored from a 300ft-high

observation tower.

GUI description and features. The GUI design
was driven by the scale of the experiment, both in
the number of computing devices and the geome-
try of the protected area. This required enhanced
navigational capabilities. The user needed to have
a global picture of the experiment as well as a de-
tailed view. The user also needed to access the
experiment from various vantage points, such as
the observation tower or the ground level.

To accommodate the requirements, we split the
application window into two parts: a Detail View
and a Full View. The Detail View presents a spe-
cific section of interest in three dimensions. The
user can zoom and pan the area as well as view the
area at different angles and magnifications. The
Full View displays a two dimensional map of the
entire protected area with the two main objects:
Stargates and target tracks. This gives the user a
complete view of the area at a glance. The user
can quickly obtain a detailed view of a particular
section of interest by clicking on it.

As the application increased in complexity, the
amount of information to be graphically displayed
also increased. An Additional Information Panel
was added to accomodate extra data to be provided
to the user. It displayed the current program ver-
sion running on the network, number of active tar-
gets, number of XSMs alive in the currently viewed
section. This panel was made configurable so that
the developer could quickly add other parameters
to display. The Display Panel was designated to
display generic network statistics. Additional color
coding was added to distinguish various program
states of stargates. Due to their large number, the
motes were to be displayed only when they partic-
ipated in target detection. The target icons were

brought in compliance with military map conven-
tions. The other features of the previous version
of the GUI were updated to accomodate the cur-
rent changes. The screenshot of the ExScal GUI
is shown in Figure 5. In this picture, the small
spheres designate the motes, the dashed line is the
track of the target, and the cube is the actual de-
tected target classified as a soldier.

Architecture updates. The architecture dia-
gram for the ExScal GUI is shown in Figure 6. This
version of GUI underwent a number of modifica-
tions. We replaced Jazz used in LITeS with Java3D
[5]. Java3D provides a set of object-oriented APIs
that can be used to build, render and control the
behavior of 3D objects and visual environments.
Java3D also provides a set of zooming and pan-
ning functions that are more powerful than those
of Jazz. To provide a useful reference to the out-
side world, we had to use a high-resolution image
of the protected area. Quick redrawing and mag-
nification of this image required advanced image
manipulation functions. We used Java Advanced
Imaging (JAI) [3] APIs by SUN Microsystems for
image manipulation. We streamlined the message
transfer by replacing JMX [4] with our own rou-
tines for event notification. To accomodate the
scale of the experiment, the drawing of dynamic
objects had to be thoroughly reprogrammed.

The messages processed by the GUI reflected the
multi-tiered architecture of the application. There
are three types of messages. A Mote Message de-
scribes the state of a particular mote and includes
its ID, parent ID, co-ordinates, power level and
readings of its on-board sensors. A Stargate Mes-
sage describes the state of a particular stargate and
includes its ID, parent ID, real space co-ordinates,
program version it is running. A Target Message a
detected intruder and includes the ID of the target,
its classification, coordinates, and a list of IDs of
all motes participating in its detection.

Experience. The GUI was successfully used dur-
ing the testing, on-site as well as recorded demon-
strations of the Extreme Scaling experiment. Due
to the complexity of ExScal, the application de-
velopment process was more structured. Several
times we participated in milestone demonstrations.
There we had to show the evolving GUI prototype,
discuss interfaces and receive feedback from the
other teams. About a month before the demon-
stration date, the project was refocused and scaled
back. The final demonstration showed only 1000
motes and 200 Stargates. This required the OSU
team and us to scramble to meet the new require-
ments. This culminated in a week-long on-site

setup and testing that preceded the final demo. To
address the new experiment requirements, we had
to modify our GUL. We added visual indicators for
acoustic and PIR sensors for each mote. We had to
modify the GUI to record and playback successful
experiments at a later time.

The GUI proved indispensable during the testing
phase. The acoustic and PIR sensors were quite
sensitive to the weather conditions, especially to
wind. The sensor software had to be repeatedly
adjusted to filter out noise yet be sensitive enough
to detect intruders. The OSU programmers used
it extensively to assess the state of the network.
The visual sensor aids as well as ability to navigate
and zoom in on a particular area of the network
was quite useful. The 3D representation and area
image required extra work to show correct sensor
placement. However, it was quite useful for the
demonstration of the experiment. In particular,
for the off-site recorded demonstration we had to
do after the experiment. The realistic graphics of
the GUI gave the audience a quick introduction to
the specifics of the experiment.

A few GUI features were not very successful.
The 3D navigation proved to be rather tricky to
use for a novice. The Detail View can be easily
put into an awkward angle that is hard to easily
recover from. The last-minute changes in the GUI
requirements left it with a few bugs we had to work
around during the presentation.

5 Conclusion

The need for a graphical user interface that visu-
alizes the operation of the application is inherent
in the field of wireless sensor networks. However,
due to the wide range of potential applications for
sensor networks, a tool that accommodates the re-
quirements of them all is hardly a possibility. A
more viable option is to develop a programmer’s
toolkit implementing the features most frequently
used to visualize sensor network applications. This
toolkit needs to be easily extensible and customiz-
able to the needs of a particular application.

We propose to develop such a toolkit on the basis
of the GUI we described in this paper. We plan to
capitalize on the experience we gained developing
the GUI for the various programming projects to
design the toolkit so that it will suit many a sensor
application.

References

[1] Comprehensive java performance tuning.
http://www.quest.com/jprobe/.

[2] Exscal’s home page. http://cast.cse.ohio- [15] J. Elson, S. Bien, N. Busek, V. Bychkovskiy,

state.edu/exscal/. A. Cerpa, D. Ganesan, L. Girod, B. Green-
stein, T. Schoellhammer, T. Stathopoulos,
and D. Estrin. EmStar: An Environment for
A Developing Wireless Embedded Systems Soft-
media/jai/- ware. Technical Report CENS Technical Re-
port 0009, Center for Embedded Networked
Sensing, University of California, Los Angeles,

[3] Java advanced imaging (JAI).
http://java.sun.com/products/java-

[4] Java management extensions (JMX).
http://java.sun.com/products/JavaManagement /.

March 2003.
[5] Java 3D. http://java.sun.com/products/java-)
media/3D. [16] J. Hill, R. Szewczyk, A. Woo, D. Culler,
S. Hollar, and K. Pister. System architec-
[6] Mica 2: Wireless measurement system. ture directions for networked sensors. ACM
http:/ /www.xbow.com/Products/Product_pdf_files/ SIGPLAN Notices, 35(11):93-104, November
Wireless_pdf/6020-0042-06_A_MICA2.pdf. 2000.
[7] Stargate: A platform X project. [17] JL. Hill and D.E. Culler. = Mica: A
http:/ /platformx.sourceforge.net/. wireless platform for deeply embedded net-

works. IEEE Micro, 22(6):12-24, November/

[8] A structured graphics 2D framework. December 2002.

http://www.cs.umd.edu/hcil /jazz/.

[18] S. Kumar and A. Arora. Exscal topology for
node deployment. ExScal Note Series: ExScal-
OSU-EN00-2004-01-30, 2004.

[9] A. Arora, P. Dutta, S. Bapat, V. Ku-
lathumani, H. Zhang, V. Naik, V. Mittal,
H. Cao, M. Demirbas, M. Gouda, Y-R. Choi,
T. Herman, S. S. Kulkarni, U. Arumugam, [19] P. Levis, N. Lee, M. Welsh, and D. Culler.

M. Nesterenko, A. Vora, and M. Miyashita. Tossim: Accurate and scalable simulation
A line in the sand: A wireless sensor network of entire tinyos applications. Proceedings of
for target detection,classification, and track- the First ACM Conference on Embedded Net-
ing. Computer Networks, 46(5):605-634, De- worked Sensor Systems (SenSys), 2003.

cember 2004.
[20] J. Polley, D. Blazakis, J. McGee, D. Rusk, and

[10] S. Carr, C. Fang, T. Jozwowski, J. Mayo, and J.S. Baras. Atemu: A fine-grained sensor net-
C.-K. Shene. Concurrentmentor: A visualiza- work simulator. IEEE Communications Soci-
tion system for distributed programming edu- ety Conference on Sensor and Ad Hoc Com-
cation. Proceedings of the International Con- munications and Networks, 2004.

ference on Parallel and Distributed Process-
ing Techniques and Applications, 4:1676-1682, [21] B. Tropol, J.T. Stasko, and V. Sunderam.

2003. Integrating visualization support into dis-

tributed computing. Proceedings of the 15th

[11] D. Culler. Networks of tiny devices embedded International Conference on Distributed Com-
in the physical world. Workshop III: Massively puting Systems, 1995.

Distributed Self-Organizing Networks, 2003.
[22] L. Wang. MNP: multihop network repro-

[12] M. Demirbas, A. Arora, and M. Gouda. A gramming service for sensor networks. In Pro-
pursuer-evader game for sensor networks. Sen- ceedings of the 2nd international conference
sor Network Operations, IEEE Press, 2004. on Embedded networked sensor systems, pages

[13] P. Dutta, M. Grimmer, A. Arora, S. Bibyk, 285-286. ACM Press, 2004.

and D. Culler. Design of a wireless sensor net-
work platform for detecting rare, random, and
ephemeral events. Submitted to International
Workshop on Information Processing in Sen-
sor Networks (IPSN’05) Special track on Plat-
form Tools and Design Methods for Network
Embedded Sensors (SPOTS), 2005.

[14] P.K. Dutta. On random event detection in
wireless sensor networks. Master’s thesis, The
Ohio State University, 2004.

