
Discovering Network Topology in

the Presence of Byzantine Faults

Mikhail Nesterenko1? and Sébastien Tixeuil2??

1 Computer Science Department, Kent State University Kent, OH, 44242, USA,
mikhail@cs.kent.edu

2 LRI-CNRS UMR 8623 & INRIA Grand Large
Université Paris Sud, France, tixeuil@lri.fr

Abstract. We study the problem of Byzantine-robust topology discov-
ery in an arbitrary asynchronous network. We formally state the weak
and strong versions of the problem. The weak version requires that ei-
ther each node discovers the topology of the network or at least one node
detects the presence of a faulty node. The strong version requires that
each node discovers the topology regardless of faults.

We focus on non-cryptographic solutions to these problems. We explore
their bounds. We prove that the weak topology discovery problem is
solvable only if the connectivity of the network exceeds the number of
faults in the system. Similarly, we show that the strong version of the
problem is solvable only if the network connectivity is more than twice
the number of faults.

We present solutions to both versions of the problem. Our solutions
match the established graph connectivity bounds. The programs are ter-
minating, they do not require the individual nodes to know either the
diameter or the size of the network. The message complexity of both
programs is low polynomial with respect to the network size.

1 Introduction

In this paper, we investigate the problem of Byzantine-tolerant distributed topol-
ogy discovery in an arbitrary network. Each node is only aware of its neighboring
peers and it needs to learn the topology of the entire network.

Topology discovery is an essential problem in distributed computing (e.g.
see [1]). It has direct applicability in practical systems. For example, link-state
based routing protocols such as OSPF use topology discovery mechanisms to
compute the routing tables. Recently, the problem has come to the fore with
the introduction of ad hoc wireless sensor networks, such as Berkeley motes [2],
where topology discovery is essential for routing decisions.

? This author was supported in part by DARPA contract OSU-RF#F33615-01-C-1901
and by NSF CAREER Award 0347485.

?? This author was supported in part by the FNS grants FRAGILE and SR2I from
ACI “Sécurité et Informatique”.

As reliability demands on distributed systems increase, the interest in de-
veloping robust topology discovery programs grows. One of the strongest fault
models is Byzantine [3]: the faulty node behaves arbitrarily. This model encom-
passes rich set of fault scenarios. Moreover, Byzantine fault tolerance has security
implications, as the behavior of an intruder can be modeled as Byzantine. One
approach to deal with Byzantine faults is by enabling the nodes to use crypto-
graphic operations such as digital signatures or certificates. This limits the power
of a Byzantine node as a non-faulty node can verify the validity of received topol-
ogy information and authenticate the sender across multiple hops. However, this
option may not be available. For example, wireless sensors may not have the
capacity to manipulate digital signatures. Another way to limit the power of
a Byzantine process is to assume synchrony: all processes proceed in lock-step.
Indeed, if a process is required to send a message with each pulse, a Byzantine
process cannot refuse to send a message without being detected. However, the
synchrony assumption may be too restrictive for practical systems.

Our contribution. In this study we explore the fundamental properties of
topology discovery. We select the weakest practical programming model, estab-
lish the limits on the solutions and present the programs matching those limits.

Specifically, we consider arbitrary networks of arbitrary topology where up to
fixed number of nodes k is faulty. The execution model is asynchronous. We are
interested in solutions that do not use cryptographic primitives. The solutions
should be terminating and the individual processes should not be aware of the
network parameters such as network diameter or its total number of nodes.

We state two variants of the topology discovery problem: weak and strong.
In the former — either each non-faulty node learns the topology of the network
or one of them detects a fault; in the latter — each non-faulty node has to learn
the topology of the network regardless of the presence of faults.

As negative results we show that any solution to the weak topology discovery
problem can not ascertain the presence of an edge between two faulty nodes.
Similarly, any solution to the strong variant can not determine the presence
of a edge between a pair of nodes at least one of which is faulty. Moreover, the
solution to the weak variant requires the network to be at least (k+1)-connected.
In case of the strong variant the network must be at least (2k + 1)-connected.

The main contribution of this study are the algorithms that solve the two
problems: Detector and Explorer. The algorithms match the respective lower
bounds. To the best of our knowledge, these are the first asynchronous Byzantine-
robust solutions to the topology discovery problem that do not use cryptographic
operations. Explorer solves the stronger problem. However, Detector has bet-
ter message complexity. Detector either determines topology or signals fault in
O(δn3) messages where δ and n are the maximum neighborhood size and the
number of nodes in the system respectively. Explorer finishes in O(n4) messages.
We extend our algorithms to (a) discover a fixed number of routes instead of
complete topology and (b) reliably propagate arbitrary information instead of
topological data.

Related work. A number of researchers employ cryptographic operations to
counter Byzantine faults. Avromopolus et al [4] consider the problem of secure
routing. Therein see the references to other secure routing solutions that rely
on cryptography. Perrig et al [5] survey robust routing methods in ad hoc sen-
sor networks. The techniques covered there also assume that the processes are
capable of cryptographic operations.

A naive approach of solving the topology discovery problem without cryptog-
raphy would be to use a Byzantine-resilient broadcast [6–9]: each node advertises
its neighborhood. However all existing solutions for arbitrary topology known to
us require that the graph topology is a priori known to the nodes.

Let us survey the non-cryptography based approaches to Byzantine fault-
tolerance. Most programs described in the literature [10–13] assume completely
connected networks and can not be easily extended to deal with arbitrary topol-
ogy. Dolev [7] considers Byzantine agreement on arbitrary graphs. He states that
for agreement in the presence of up to k Byzantine nodes, it is necessary and
sufficient that the network is (2k + 1)-connected and the number of nodes in
the system is at least 3k + 1. However, his solution requires that the nodes are
aware of the topology in advance. Also, this solution assumes the synchronous
execution model. Recently, the problem of Byzantine-robust reliable broadcast
has attracted attention [6, 8, 9]. However, in all cases the topology is assumed to
be known. Bhandari and Vaidya [6] and Koo [8] assume two-dimensional grid.
Pelc and Peleg [9] consider arbitrary topology but assume that each node knows
the exact topology a priori. A notable class of algorithms tolerates Byzantine
faults locally [14–16]. Yet, the emphasis of these algorithms is on containing the
fault as close to its source as possible. This is only applicable to the problems
where the information from remote nodes is unimportant such as vertex color-
ing, link coloring or dining philosophers. Thus, local containment approach is
not applicable to topology discovery.

Masuzawa [17] considers the problem of topology discovery and update. How-
ever, Masuzawa is interested in designing a self-stabilizing solution to the prob-
lem and thus his fault model is not as general as Byzantine: he considers only
transient and crash faults.

The rest of the paper is organized as follows. After stating our programming
model and notation in Section 2, we formulate the topology discovery problems,
as well as state the impossibility results in Section 3. We present Detector and
Explorer in Sections 4 and 5 respectively. We discuss the composition of our
programs and their extensions in Section 6 and conclude the paper in Section 7.

2 Notation, Definitions and Assumptions

Graphs. A distributed system (or program) consists of a set of processes and
a neighbor relation between them. This relation is the system topology. The

topology forms a graph G. Denote n and e to be the number of nodes3 and edges
in G respectively. Two processes are neighbors if there is an edge in G connecting
them. A set P of neighbors of process p is neighborhood of p. In the sequel we use
small letters to denote singleton variables and capital letters to denote sets. In
particular, we use a small letter for a process and a matching capital one for this
process’ neighborhood. Since the topology is symmetric, if q ∈ P then p ∈ Q.
Denote δ to be the maximum number of nodes in a neighborhood.

A node-cut of a graph is the set of nodes U such that G \ U is disconnected
or trivial. A node-connectivity (or just connectivity) of a graph is the minimum
cardinality of a node-cut of this graph. In this paper we make use of the following
fact about graph connectivity that follows from Menger’s theorem (see [18]): if
a graph is k-connected (where k is some constant) then for every two vertices u

and v there exists at least k internally node-disjoint paths connecting u and v

in this graph.

Program model. A process contains a set of variables. When it is clear from
the context, we refer to a variable var of process p as var.p. Every variable ranges
over a fixed domain of values. For each variable, certain values are initial. Each
pair of neighbor processes share a pair of special variables called channels. We
denote Ch.b.c the channel from process b to process c. Process b is the sender

and c is the receiver. The value for a channel variable is chosen from the domain
of (potentially infinite) sequences of messages.

A state of the program is the assignment of a value to every variable of each
process from its corresponding domain. A state is initial if every variable has
initial value. Each process contains a set of actions. An action has the form
〈name〉 : 〈guard〉 −→ 〈command〉. A guard is a boolean predicate over the vari-
ables of the process. A command is sequence of assignment and branching state-
ments. A guard may be a receive-statement that accesses the incoming channel.
A command may contain a send-statement that modifies the outgoing channel.
A parameter is used to define a set of actions as one parameterized action. For
example, let j be a parameter ranging over values 2, 5 and 9; then a parameter-
ized action ac.j defines the set of actions ac.(j = 2)][ac.(j = 5)][ac.(j = 9).
Either guard or command can contain quantified constructs [19] of the form:
(〈quantifier〉〈bound variables〉 : 〈range〉 : 〈term〉), where range and term are
boolean constructs.

Semantics. An action of a process of the program is enabled in a certain state
if its guard evaluates to true. An action containing receive-statement is enabled
when appropriate message is at the head of the incoming channel. The execution
of the command of an action updates variables of the process. The execution of
an action containing receive-statement removes the received message from the
head of the incoming channel and inserts the value the message contains into
the specified variables. The execution of send-statement appends the specified
message to the tail of the outgoing message.

3 We use terms process and node interchangeably.

A computation of the program is a maximal fair sequence of states of the
program such that the first state s0 is initial and for each state si the state si+1

is obtained by executing the command of an action whose state is enabled in
si. That is, we assume that the action execution is atomic. The maximality of
a computation means that the computation is either infinite or it terminates
in a state where none of the actions are enabled. The fairness means that if
an action is enabled in all but finitely many states of an infinite computation
then this action is executed infinitely often. That is, we assume weak fairness

of action execution. Notice that we define the receive statement to appear as a
standalone guard of an action. This means, that if a message of the appropriate
type is at the head of the incoming channel, the receive action is enabled. Due
to weak fairness assumption, this leads to fair message receipt assumption: each
message in the channel is eventually received. Observe that our definition of a
computation considers asynchronous computations.

To reason about program behavior we define boolean predicates on program
states. A program invariant is a predicate that is true in every initial state of the
program and if the predicate holds before the execution of the program action,
it also holds afterwards. Notice that by this definition a program invariant holds
in each state of every program computation.

Faults. Throughout a computation, a process may be either Byzantine (faulty)
or non-faulty. A Byzantine process contains an action that assigns to each lo-
cal variable an arbitrary value from its domain. This action is always enabled.
Observe that this allows a faulty node to send arbitrary messages. We assume,
however, that messages sent by such node conform to the format specified by the
algorithm: each message carries the specified number of values, and the values
are drawn from appropriate domains. This assumption is not difficult to imple-
ment as message syntax checking logic can be incorporated in receive-action of
each process. We assume oral record [3] of message transmission: the receiver
can always correctly identify the message sender. The channels are reliable: the
messages are delivered in FIFO order and without loss or corruption. Through-
out the paper we assume that the maximum number of faults in the system is
bounded by some constant k.

Graph exploration. The processes discover the topology of the system by
exchanging messages. Each message contains the identifier of the process and
its neighborhood. Process p explored process q if p received a message with
(q, Q). When it is clear from the context, we omit the mention of p. An explored

subgraph of a graph contains only explored processes. A Byzantine process may
potentially circulate information about the processes that do not exist in the
system altogether. A process is fake if it does not exist in the system, a process
is real otherwise.

3 Topology Discovery Problem: Statement and Solution

Bounds

Problem statement.

Definition 1 (Weak Topology Discovery Problem). A program is a so-
lution to the weak topology discovery problem if each of the program’s com-
putation satisfies the following properties: termination — either all non-faulty
processes determine the system topology or at least one process detects a fault;
safety — for each non-faulty process, the determined topology is a subset of the
actual system topology; validity — the fault is detected only if there are faulty
processes in the system.

Definition 2 (Strong Topology Discovery Problem). A program is a so-
lution to the strong topology discovery problem if each of the program’s compu-
tations satisfies the following properties: termination — all non-faulty processes
determine the system topology; safety — the determined topology is a subset of
the actual system topology.

According to the safety property of both problem definitions each non-faulty
process is only required to discover a subset of the actual system topology. How-
ever, the desired objective is for each node to discover as much of it as possible.
The following definitions capture this idea. A solution to a topology discovery
problem is complete if every non-faulty process always discovers the complete
topology of the system. A solution to the problem is node-complete if every
non-faulty process discovers all nodes of the system. A solution is adjacent-edge

complete if every non-faulty node discovers each edge adjacent to at least one
non-faulty node. A solution is two-adjacent-edge complete if every non-faulty
node discovers each edge adjacent to two non-faulty nodes.

Solution bounds. The proofs for the theorems stated in this section are to be
found elsewhere [20].

Theorem 1. There does not exist a complete solution to the weak topology
discovery problem.

Theorem 2. There exists no node- and adjacent-edge complete solution to the
weak topology problem if the connectivity of the graph is lower or equal to the
total number of faults k.

Observe that for (k+1)-connected graphs an adjacent-edge complete solution
is also node complete.

Theorem 3. There does not exist an adjacent-edge complete solution to the
strong topology discovery problem.

Theorem 4. There exists no node- and two-adjacent-edge complete solution to
the strong topology problem if the connectivity of the graph is less than or equal
to twice the total number of faults k.

4 Detector

Outline. Detector solves the weak topology discovery problem for system graphs
whose connectivity exceeds the number of faulty nodes k. The algorithm lever-
ages the connectivity of the graph. For each pair of nodes, the graph guarantees
the presence of at least one path that does not include a faulty node. The topol-
ogy data travels along every path of the graph. Hence, the process that collects
information about another process can find the potential inconsistency between
the information that proceeds along the path containing faulty nodes and the
path containing only non-faulty ones.

Care is taken to detect the fake nodes whose information is introduced by
faulty processes. Since the processes do not know the size of the system, a faulty
process may potentially introduce an infinite number of fake nodes. However, the
graph connectivity assumption is used to detect fake nodes. As faulty processes
are the only source of information about fake nodes, all the paths from the real
nodes to the fake ones have to contain a faulty node. Yet, the graph connectivity
is assumed to be greater than k. If a fake node is ever introduced, one of the
non-faulty processes eventually detects a graph with too few paths leading to
the fake node.

Detailed Description. The program is shown in Figure 1. Each process p stores
the identifiers of its immediate neighbors. They are kept in set P . Each process
keeps the upper bound k on the number of faulty processes. Process p maintains
the following variables. Boolean variable detect indicates if p discovers a fault
in the system. Boolean variable start guards the execution of the action that
sends p’s neighborhood information to its neighbors. Set TOP (for topology)
stores the subgraph explored by p; TOP contains tuples of the form: (process
identifier, its neighborhood). In the initial state, TOP contains (p, P).

Function path number evaluates the topology of the subgraph stored in
TOP . Recall that a node u is unexplored by p if for every tuple (s, S) ∈ TOP ,
s is not the same as u. That is u may appear in S only. We construct graph G′

by adding an edge to every pair of unexplored processes present in TOP . We
calculate the value of path number as follows. If the information of TOP is
inconsistent, that is:

(∃u, v, U, V : ((u, U) ∈ TOP) ∧ ((v, V) ∈ TOP) :

(u ∈ V) ∧ (v 6∈ U))

then path number returns 0. If there is exactly one explored node in TOP ,
path number returns k+1. Otherwise the function returns the minimum num-
ber of internally node disjoint paths between two explored nodes in G′. In the
correctness proof for this program we show that unless there is a fake node, the
path number of G′ is no smaller than the connectivity of G.

Processes exchange messages of the form (process identifier, its neighborhood

id set). A process contains two actions: init and accept. Action init starts the
propagation of p’s neighborhood throughout the system. Action accept receives

process p

const

P : set of neighbor identifiers of p

k: integer, upper bound on the number of faulty processes
parameter

q : P

var

detect : boolean, initially false, signals fault
start : boolean, initially true, controls sending of p’s neighborhood info
TOP : set of tuples, initially {(p, P)}, (process ids, neighbor id set)

received by p

∗[
init : start −→

start := false,
(∀j : j ∈ P : send (p, P) to j)

][
accept : receive (r, R) from q −→

if (∃s, S : (s, S) ∈ TOP : s = r ∧ S 6= R) ∨
(path number(TOP ∪ {(r, R)}) < k + 1)

then

detect := true

else

if (
�
s, S : (s, S) ∈ TOP : s = r) then

TOP := TOP ∪ {(r, R)},
(∀j : j ∈ P : send (r, R) to j)

]

Fig. 1. Process of Detector

the neighborhood data of some process, records it, checks against other data
already available for p and possibly further disseminates the data. If the data
received from neighbor q about a process r contradicts what p already holds
about r in TOP or if the newly arrived information implies that G is less than
(k + 1)-connected p indicates that it detected a fault by setting detect to true.
Alternatively, if p did not previously have the information about r, p updates
TOP and sends the received information to all its neighbors.

Theorem 5. Detector is an adjacent-edge complete solution to the weak topol-
ogy discovery problem in case the connectivity of system topology graph exceeds
the number of faults.

A correctness proof of the theorem can be found elsewhere [21].

Efficiency evaluation. Since we consider an asynchronous model, the number
of messages a Byzantine process can send in a computation is infinite. To evaluate
the efficiency of Detector we assume that each process is familiar with the upper

bound on the number of processes in the system and this upper bound is in O(n).
A non-faulty process then detects a fault if the number of processes it explores
exceeds this bound or if it receives more than one identical message from the
same neighbor. We assume that the process stops and does not send or receive
any more messages if it detects a fault.

In this case we can estimate the number of messages that are received by non-
faulty processes before one of them detects a fault or before the computation
terminates. To make the estimation fair, the assume that the unit is log(n) bits.
Since it takes that many bits to assign unique process identifiers to n processes,
we assume that one identifier is exactly one unit of information. A message in
Detector carries up to δ+1 identifiers, where δ is the maximum number of nodes
in the neighborhood of a process. Observe that a process can receive at most n

messages from each incoming channel. Thus, the total number of messages that
can be sent by Detector is 2en, where e is the number of edges in the graph.
The message complexity of the program is in O(2enδ). If e is proportional to n2,
then the complexity of the program is in O(δn3).

5 Explorer

Outline. The main idea of Explorer is for each process to collect information
about some node’s neighborhood such that the information goes along more than
twice as many paths as the maximum number of Byzantine nodes. While the
paths are node-disjoint, the information is correct if it comes across the majority
of the paths. In this case the recipient is in possession of confirmed information.
It turns out that the topology information does not have to come directly from
the source. Instead it can come from processes with confirmed information. The
detailed description of Explorer follows.

To simplify the presentation, we describe and prove correct the version of
Explorer that tolerates only one Byzantine fault. We describe how this version
can be extended to tolerate multiple faults in the end of the section.

Description. Since we first describe the 1-fault tolerant version of Explorer we
assume that the graph is 3-connected. The program is shown in Figure 2. Similar
to Detector, each process p in Explorer, stores the ids of its immediate neighbors.
Process p maintains the variable start, whose function is to guard the execution
of the action that initiates the propagation of p’s own neighborhood. Unlike
Detector, however, p maintains two sets that store the topology information
of the network: uTOP and cTOP . Set uTOP stores the topology data that
is unconfirmed; cTOP stores confirmed topology data. Set uTOP contains the
tuples of neighborhood information that p received from other nodes. Besides
the process id and the set of its neighbor ids, each such tuple contains a set of
process identifiers, that relayed the information. We call it visited set. The tuples
in cTOP do not require visited set.

Processes exchange messages where, along with the neighbor identifiers for
a certain process, a visited set is propagated. A process contains two actions:

init and accept. The purpose of init is similar to that in the process of Detec-

tor. Action accept receives the neighborhood information of some process r, its
neighborhood R which was relayed by nodes in set S. The information is received
from p’s neighbor — q.

First, accept checks if the information about r is already confirmed. If so,
the only manipulation is to record the received information in uTOP . Actually,
this update of uTOP is not necessary for the correct operation of the program,
but it makes the its proof of correctness easier to follow.

If the received information does not concern already confirmed process, accept
checks if this information differs from what is already recorded in uTOP either
in r or in R. In either case the information is broadcast to all neighbors of p.
Before broadcasting p appends the sender — q to the visited set S.

If the information about r and R has already been received and recorded
in uTOP , accept checks if the previously recorded information came along an
internally node disjoint path. If so, the information about r is added to cTOP . In
this case, this information is also broadcast to all p’s neighbors. Note, however,
that p is now sure of the information it received. Hence, the visited set of nodes
in the broadcast message is empty.

Theorem 6. Explorer is a two-adjacent-edge complete solution to the strong
topology discovery problem in case of one fault and the system topology graph
is at least 3-connected.

A correctness proof of the theorem be found elsewhere [21].

Modification to Handle k > 1 faults. Observe that Explorer confirms the
topology information about a node’s neighborhood, when it receives two mes-
sages carrying it over internally node disjoint paths. Thus, the program can
handle a single Byzantine fault. The explorer can handle k > 1 faults, if it waits
until it receives k +1 messages before it confirms the topology info. All the mes-
sages have to travel along internally node disjoint paths. For the correctness of
the algorithm, the topology graph has to be (2k + 1)-connected.

Proposition 1. Explorer is a two-adjacent-edge complete solution to the strong
topology discovery problem in case of k faults and the system topology graph is
at least (2k + 1)-connected.

Efficiency evaluation. Unlike Detector, Explorer does not quit when a fault is
discovered. Thus, the number of messages a faulty node may send is arbitrary
large. However, we can estimate the message complexity of Explorer in the ab-
sence of faults. Each message carries a process identifier, a neighborhood of this
process and a visited set. The number of the identifiers in a neighborhood is no
more than δ, and the number of identifiers in the visited set can be as large as
n. Hence the message size is bounded by δ + n + 1 which is in O(n).

Notice, that for the neighborhood A of each process a, every process broad-
casts a message twice: when it first receives the information, and when it con-
firms it. Thus, the total number of sent messages is 4e ·n and the overall message
complexity of Explorer if no faults are detected is in O(n4).

process p

const

P , set of neighbor identifiers of p

parameter

q : P

var

start : boolean, initially true, controls sending of p’s neighbor ids
cTOP : set of tuples, initially {(p, P)},

(process id, neighbor id set) confirmed topology info
uTOP : set of tuples, initially � ,

(process id, neighbor id set, visited id set)
unconfirmed topology info

∗[
init : start −→

start := false,
(∀j : j ∈ P : send (p, P, �) to j)

][
accept : receive (r, R, S) from q −→

if (∀t, T : (t, T) ∈ cTOP : t 6= r) then

if (∀t, T, U : (t, T, U) ∈ uTOP : t 6= r ∨ T 6= R) then

(∀j : j ∈ P : send (r,R, S ∪ {q}) to j)
elsif (∃t, T, U : (t, T, U) ∈ uTOP :

t = r ∧ R = T ∧ ((U ∩ (S ∪ {q}))) ⊂ {r}))
then

cTOP := cTOP ∪ {(r, R)},
(∀j : j ∈ P : send (r,R, �) to j)

uTOP := uTOP ∪ {(r, R, S ∪ {q})}
]

Fig. 2. Process of Explorer

6 Composition and Extensions

Composing Detector and Explorer . Observe that Detector has better mes-
sage complexity than Explorer if the neighborhood size is bounded. Hence, if the
incidence of faults is low, it is advantageous to run Detector and invoke Explorer

only if a fault is detected. We assume that the processes can distinguish between
message types of Explorer and Detector. In the combined program, a process
running Detector switches to Explorer if it discovers a fault. Other processes
follow suit, when they receive their first Explorer messages. They ignore Detec-

tor messages henceforth. A Byzantine process may potentially send an Explorer

message as well, which leads to the whole system switching to Explorer. Observe
that if there are no faults, the system will not invoke Explorer. Thus, the com-
plexity of the combined program in the absence of faults is the same as that of
Detector. Notice that even though Detector alone only needs (k+1)-connectivity
of the system topology, the combined program requires (2k + 1)-connectivity.

Message Termination. We have shown that Detector and Explorer comply
with the functional termination properties of the topology discovery problem.
That is, all processes eventually discover topology. However, the performance
aspect of termination, viz. message termination, is also of interest. Usually an
algorithm is said to be message terminating if all its computations contain a
finite number of sent messages [22].

However, a Byzantine process may send messages indefinitely. To capture
this, we weaken the definition of message termination. We consider a Byzantine-
tolerant program message terminating if the system eventually arrives at a state
where: (a) all channels are empty except for the outgoing channels of a faulty
process; (b) all actions in non-faulty processes are disabled except for possibly the
receive-actions of the incoming channels from Byzantine processes, these receive-
actions do not update the variables of the process. That is, in a terminating
program, each non-faulty process starts to eventually discard messages it receives
from its Byzantine neighbors.

Making Detector terminating is fairly straightforward. As one process detects
a fault, the process floods the announcement throughout the system. Since the
topology graph for Detector is assumed (k+1)-connected, every process receives
such announcement. As the process learns of the detection, it stops processing or
forwarding of the messages. Notice that the initiation of the flood by a Byzantine
node itself, only accelerates the termination of Detector as the other processes
quickly learn of the faulty node’s existence.

The addition of termination to Explorer is more involved. To ensure ter-
mination, restrictions have to be placed on message processing and forwarding.
However, the restrictions should be delicate as they may compromise the liveness
properties of the program.

By the design of Explorer, each process may send at most one message about
its own neighborhood to its neighbors. Hence, the subsequent messages can be
ignored. However, a faulty process may send messages about neighborhoods of
other processes. These processes may be real or fake. We discuss these cases
separately.

Note that each process in Explorer can eventually obtain an estimate of the
identities of the processes in the system and disregard fake process information.
Indeed, a path to a fake node can only lead through faulty processes. Thus, if
a process discovers that there may be at most k internally node disjoint paths
between itself and a certain node, this node is fake. Therefore, the process may
cease to process messages about the fake node’s neighborhood. Notice, that
since the system is (2k +1)-connected, messages about real nodes will always be
processed. Therefore, the liveness properties of Explorer are not affected.

As to the real processes, they can be either Byzantine or non-faulty. Recall
that each non-faulty process of Explorer eventually confirms neighborhoods of
all other non-faulty processes. After the neighborhood of a process is confirmed,
further messages about it are ignored.

The last case is a Byzantine process u sending a message to its correct neigh-
bor v about the neighborhood of another Byzantine process w. By the design of
Explorer, v relays the message about w provided that the neighborhood infor-
mation about w differs from what previously received about w. As we discussed
above, eventually v estimates the identities of all real processes in the system.
Therefore, there is a finite number of possible different neighborhoods of w that
u can create. Hence, eventually they will be exhausted, and v starts ignoring
further messages form u about w.

Thus, Explorer can be made terminating as well.

Other extensions. Observe that Explorer is designed to disseminate the infor-
mation about the complete topology to all processes in the system. However, it
may be desirable to just establish the routes from all processes in the system to
one or a fixed number of distinguished ones. To accomplish this Explorer needs
to be modified as follows. No, neighborhood information is propagated. Instead
of the visited set, each message carries the propagation path of the message.
That is the order of the relays is significant.

Only the distinguished processes initiate the message propagation. The other
processes only relay the messages. Just as in the original Explorer, a process
confirms a path to another process only if it receives 2k + 1 internally node
disjoint paths from the source or from other confirming nodes. Again, like in
Explorer, such process rebroadcasts the message, but empties the propagation
path. In the outcome of this program, for every distinguished process, each non-
faulty process will contain paths to at least 2k + 1 processes that lead to this
distinguished node. Out of these paths, at least k + 1 ultimately lead to the
distinguished node.

In Explorer, for each process the propagation of its neighborhood information
is independent of the other neighborhoods. Thus, instead of topology, Explorer

can be used for efficient fault-tolerant propagation of arbitrary information from
the processes to the rest of the network.

7 Conclusion

In conclusion, we would like to outline a couple of interesting avenues of further
research.

The existence of Byzantine-robust topology discovery solutions opens the
question of theoretical limits of efficiency of such programs. The obvious lower
bound on message complexity can be derived as follows. Every process must
transmit its neighborhood to the rest of the nodes in the system. Transmitting
information to every node requires at least n messages, so the overall message
complexity is at least δn2. If k processes are Byzantine, they may not relay the
messages of other nodes. Thus, to ensure that other nodes learn about its neigh-
borhood, each process has to send at least k +1 messages. Thus, the complexity
of any Byzantine-robust solution to the topology discovery problem is at least
in Ω(δn2k).

Observe that Explorer and Detector may not explicitly identify faulty nodes
or the inconsistent view of the their immediate neighborhoods. We believe that

this can be accomplished using the technique used by Dolev [7]. In case there
are 3k + 1 non-faulty processes, they may exchange the topologies they col-
lected to discover the inconsistencies. This approach, may potentially expedite
termination of Explorer at the expense of greater message complexity: if a cer-
tain Byzantine node is discovered, the other processes may ignore its further
messages.

References

1. Spinelli, J.M., Gallager, R.G.: Event-driven topology broadcast without sequence
numbers. IEEE trans. on commun. COM-37, 5 (1989) 468–474

2. Hill, J., Culler, D.: Mica: A wireless platform for deeply embedded networks. IEEE
Micro 22(6) (2002) 12–24

3. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM
Transactions on Programming Languages and Systems 4(3) (1982) 382–401

4. Avramopoulos, I.C., Kobayashi, H., Wang, R., Krishnamurthy, A.: Highly secure
and efficient routing. In: Proceedings of INFOCOM: The Conference on Computer
Communications, joint conference of the IEEE Computer and Communications
Societies, Hong Kong (2004)

5. Perrig, A., Stankovic, J., Wagner, D.: Security in wireless sensor networks. Com-
munications of the ACM 47(6) (2004) 53–57

6. Bhandari, V., Vaidya, N.H.: On reliable broadcast in a radio network. In: Pro-
ceedings of the Twenty-Fourth Annual ACM SIGACT-SIGOPS Symposium on
Principles of Distributed Computing (PODC 2005), Las Vegas, Nevada (2005) to
appear

7. Dolev, D.: The Byzantine generals strike again. Journal of Algorithms 3(1) (1982)
14–30

8. Koo, C.Y.: Broadcast in radio networks tolerating byzantine adversarial behavior.
In: PODC ’04: Proceedings of the twenty-third annual ACM symposium on Prin-
ciples of distributed computing, New York, NY, USA, ACM Press (2004) 275–282

9. Pelc, A., Peleg, D.: Broadcasting with locally bounded byzantine faults. Informa-
tion Processing Letters 93 (2005) 109–115

10. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations, and
Advanced Topics. McGraw-Hill Publishing Company, New York (1998) 6.

11. Malkhi, D., Reiter, M., Rodeh, O., Sella, Y.: Efficient update diffusion in byzantine
environments. In: The 20th IEEE Symposium on Reliable Distributed Systems
(SRDS ’01), Washington - Brussels - Tokyo, IEEE (2001) 90–98

12. Malkhi, D., Mansour, Y., Reiter, M.K.: Diffusion without false rumors: on propa-
gating updates in a Byzantine environment. Theoretical Computer Science 299(1–
3) (2003) 289–306

13. Minsky, Y., Schneider, F.B.: Tolerating malicious gossip. Distributed Computing
16(1) (2003) 49–68

14. Masuzawa, T., Tixeuil, S.: A self-stabilizing link-coloring protocol resilient to
unbounded byzantine faults in arbitrary networks. Technical Report 1396, Labo-
ratoire de Recherche en Informatique (2005)

15. Nesterenko, M., Arora, A.: Tolerance to unbounded byzantine faults. In: Proceed-
ings of 21st IEEE Symposium on Reliable Distributed Systems. (2002) 22–29

16. Sakurai, Y., Ooshita, F., Masuzawa, T.: A self-stabilizing link-coloring protocol
resilient to byzantine faults in tree networks. In: Proceedings of the 2004 Interna-
tional Conference on Principles of Distributed Systems (OPODIS’2004). Lecture
Notes in Computer Science, Springer-Verlag (2004)

17. Masuzawa, T.: A fault-tolerant and self-stabilizing protocol for the topology prob-
lem. In: Proceedings of the Second Workshop on Self-Stabilizing Systems. (1995)
1.1–1.15

18. Yellen, J., Gross, J.L.: Graph Theory & Its Applications. CRC Press (1998) ISBN:
0–849–33982–0.

19. Dijkstra, E.W., Scholten, C.S.: Predicate Calculus and Program Semantics.
Springer-Verlag, Berlin (1990)

20. Nesterenko, M., Tixeuil, S.: Bounds on topology discovery in the presence of byzan-
tine faults. Technical Report TR-KSU-CS-2006-01, Dept. of Computer Science,
Kent State University (2006) http://www.cs.kent.edu/techreps/TR-KSU-CS-2006-
01.pdf.

21. Nesterenko, M., Tixeuil, S.: Discovering network topology in the presence of byzan-
tine faults. Technical Report TR-KSU-CS-2005-01, Dept. of Computer Science,
Kent State University (2005) http://www.cs.kent.edu/techreps/TR-KSU-CS-2005-
01.pdf.

22. Dijkstra, E., Scholten, C.: Termination detection for diffusing computations. In-
formation Processing Letters 11(1) (1980) 1–4

