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Discovering Network Topology
in the Presence of Byzantine Faults

Mikhail Nesterenko and Sébastien Tixeuil

Abstract—We pose and study the problem of Byzantine-robust topology discovery in an arbitrary asynchronous network. The problem
is an abstraction of fault-tolerant routing. We formally state the weak and strong versions of the problem. The weak version requires that
either each node discovers the topology of the network or at least one node detects the presence of a faulty node. The strong version
requires that each node discovers the topology regardless of faults. We focus on non-cryptographic solutions to these problems. We
explore their bounds. We prove that the weak topology discovery problem is solvable only if the connectivity of the network exceeds
the number of faults in the system. Similarly, we show that the strong version of the problem is solvable only if the network connectivity
is more than twice the number of faults. We present solutions to both versions of the problem. The presented algorithms match the
established graph connectivity bounds. The algorithms do not require the individual nodes to know either the diameter or the size of the
network. The message complexity of both programs is low polynomial with respect to the network size. We describe how our solutions
can be extended to add the property of termination, handle topology changes and perform neighborhood discovery.

Index Terms—Fault tolerance, topology discovery, Byzantine faults.
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1 INTRODUCTION
In this paper, we investigate the problem of Byzantine-tolerant
distributed topology discovery in an arbitrary network. Each
node is only aware of its neighboring peers and it needs to
learn the topology of the entire network.

As reliability demands on distributed systems increase, the
interest in developing robust distributed applications grows.
One of the strongest fault models is Byzantine [12]: the faulty
node behaves arbitrarily. This model encompasses a rich set
of fault scenarios. Moreover, Byzantine fault tolerance has
security implications, as the behavior of an intruder can be
modeled as Byzantine.

However, in most studies to date, Byzantine faults are con-
sidered in completely connected networks. That is, the routing
between the nodes in the system is assumed to be established
in spite of the faults. In this paper we address the problem
of Byzantine-robust routing. To allow us to abstract from the
details of routing table establishment and maintenance, we
state the problem of the topology discovery and study its
properties and solutions to it. Besides being attractive in its
own right, the solutions to the topology discovery problem
easily translate into routing algorithms.
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• S. Tixeuil is with Université Pierre & Marie Curie - Paris 6, France. He
was supported in part by the ANR grant SOGEA from “Sécurité, Systèmes
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One approach to deal with Byzantine faults is by enabling
the nodes to use cryptographic operations such as digital signa-
tures or certificates. This limits the power of a Byzantine node
as a non-faulty node can verify the validity of received topol-
ogy information and authenticate the sender across multiple
hops. However, this option may not be available. For example,
the nodes may not have enough resources to manipulate dig-
ital signatures. Moreover, cryptographic operations implicitly
assume the presence of trust infrastructure: secure channels to
a key server or a public key infrastructure. Establishing and
maintaining such infrastructure in the presence of Byzantine
faults may be problematic.

Another way to limit the power of a Byzantine process is to
assume synchrony: all processes proceed in lock-step. Indeed,
if a process is required to send a message with each pulse,
a Byzantine process cannot refuse to send a message without
being detected. However, the synchrony assumption may be
too restrictive for practical systems.

Our contribution. In this study we explore the fundamental
properties of topology discovery. We select the weakest prac-
tical programming model, establish the limits on the solutions
and present the programs matching those limits.

Specifically, we consider networks of arbitrary topology
where up to fixed number of nodes k are faulty. The execution
model is asynchronous. We are interested in solutions that
do not use cryptographic primitives. The solutions should be
terminating and the individual processes should not be aware
of the network parameters such as network diameter or its total
number of nodes.

We state two variants of the topology discovery problem:
weak and strong. In the former — either each non-faulty node
learns the topology of the network or one of them detects a
fault; in the latter — each non-faulty node has to learn the
topology of the network regardless of the presence of faults.
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As negative results we show that any solution to the weak
topology discovery problem can not ascertain the presence of
an edge between two faulty nodes. Similarly, any solution
to the strong variant can not determine the presence of an
edge between a pair of nodes at least one of which is
faulty. Moreover, the solution to the weak variant requires the
network to be at least (k +1)-connected. In case of the strong
variant the network must be at least (2k + 1)-connected.

The main contribution of this study are the algorithms
that solve the two problems: Detector and Explorer. The
algorithms match the respective connectivity lower bounds.
To the best of our knowledge, these are the first asynchronous
Byzantine-robust solutions to the topology discovery problem
that do not use cryptographic operations. In practice these
bounds can be viewed as working tolerances of the algorithms.
That is, the algorithms are specified to operate correctly until
the number of faults exceeds the theoretical tolerance limit.

Explorer solves the stronger problem. However, Detector
has better message complexity. In both algorithms, faulty
nodes may generate arbitrary number of messages. However,
in fault-free operation, Detector either determines in O(δn3)
messages where δ and n are the maximum neighborhood size
and the number of nodes in the system respectively. Explorer
finishes in O(n4) messages.

Detector is not as robust as Explorer. Detector just alerts
the system about the presence of the fault instead of masking
it. The system has to have an external mechanism to cope with
faults. For example, the system operators may have to man-
ually take measures to neutralize the faulty node. However,
Detector requires weaker connectivity and it is asymptotically
more efficient. Thus, the system designers may consider this
variant of the solution in case the faults are rare or the system
cannot guarantee the necessary connectivity requirements for
a more robust solution.

We extend our algorithms to (a) terminate (b) handle
topology changes (c) discover neighbors if ports are known (d)
discover a fixed number of routes instead of complete topology
and (e) reliably propagate arbitrary information instead of
topological data.

Related work. A number of researchers employ cryptographic
operations to counter Byzantine faults. Avromopolus et al
[2] consider the problem of secure routing. Therein see the
references to other secure routing solutions that rely on
cryptography. Perrig et al [21] survey robust routing methods
in ad hoc sensor networks. The techniques covered there
also assume that the processes are capable of cryptographic
operations.

A naı̈ve approach of solving the topology discovery problem
without cryptography would be to use a Byzantine-resilient
broadcast [3], [7], [10], [20]: each node advertises its neigh-
borhood. However all existing solutions for arbitrary topology
known to us require that the graph topology is a priori known
to the nodes.

Let us survey the non-cryptography based approaches to
Byzantine fault-tolerance. Most programs described in the
literature [1], [13], [14], [18] assume completely connected
networks and can not be easily extended to deal with arbi-

trary topology. Dolev [7] considers Byzantine agreement on
arbitrary graphs. He states that for agreement in the presence
of up to k Byzantine nodes, it is necessary and sufficient
that the network is (2k + 1)-connected and the number of
nodes in the system is at least 3k + 1. However, his solution
requires that the nodes are aware of the topology in advance.
Also, this solution assumes the synchronous execution model.
Recently, the problem of Byzantine-robust reliable broadcast
has attracted attention [3], [10], [20]. However, in all cases the
topology is assumed to be known. Bhandari and Vaidya [3] and
Koo [10] assume two-dimensional grid. Pelc and Peleg [20]
consider arbitrary topology but assume that each node knows
the exact topology a priori. A notable class of algorithms
tolerates Byzantine faults with either space [17], [19], [22] or
time [16] locality. Yet, the emphasis of space local algorithms
is on containing the fault as close to its source as possible.
This is only applicable to the problems where the information
from remote nodes is unimportant such as vertex coloring, link
coloring or dining philosophers. Also, time local algorithms
presented so far can hold at most one Byzantine node and are
not able to mask the effect of Byzantine actions. Thus, local
containment approach is not applicable to topology discovery.

Masuzawa [15] considers the problem of topology discovery
and update. However, Masuzawa is interested in designing a
self-stabilizing solution to the problem and thus his fault model
is not as general as Byzantine: he considers only transient and
crash faults.

Paper outline. The rest of the paper is organized as fol-
lows. After stating our programming model and notation in
Section 2, we formulate the topology discovery problems, as
well as state the impossibility results in Section 3. We present
Detector and Explorer in Sections 4 and 5 respectively. We
discuss the composition of our programs and their extensions
in Section 6. In conclusion we state several problems that our
research opens in Section 7.

2 NOTATION, DEFINITIONS AND
ASSUMPTIONS

Graphs. A distributed system (or program) consists of a set
of processes and a neighbor relation between them. This
relation is the system topology. The topology forms a graph
G. Denote n and e to be the number of nodes1 and edges in
G respectively. Two processes are neighbors if they share an
edge in G. A set P of neighbors of process p is neighborhood
of p. In the sequel we use small letters to denote singleton
variables and capital letters to denote sets. In particular, we
use a small letter for a process and a matching capital one for
this process’ neighborhood. Since the topology is symmetric,
if q ∈ P then p ∈ Q. Denote δ to be the maximum number
of nodes in a neighborhood.

A node-cut of a graph is the set of nodes U such that
G \ U is disconnected or trivial. A node-connectivity (or just
connectivity) of a graph is the minimum cardinality of a node-
cut of this graph. In this paper we make use of the following

1. We use terms process and node interchangeably.
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fact about graph connectivity that follows from Menger’s
theorem (see [24]): if a graph is k-connected (where k is some
constant), then for every two vertices u and v there exists at
least k internally node-disjoint paths connecting u and v in
this graph.

Program model. A process contains a set of variables. When
it is clear from the context, we refer to a variable var
of process p as var.p. Every variable ranges over a fixed
domain of values. For each variable, certain values are initial.
Each process p, initially contains a set of neighbor identifiers
P . Each pair of neighbor processes share a pair of special
variables called channels. We denote Ch.b.c the channel from
process b to process c. Process b is the sender and c is the
receiver. The value for a channel variable is chosen from the
domain of (potentially infinite) sequences of messages. That
is, each channel is a FIFO queue. Each process is capable of
recognizing the sender of the message.

A state of the program is the assignment of a value to
every variable of each process from its corresponding domain.
A state is initial if every variable has initial value. Each
process contains a set of actions. An action has the form
〈name〉 : 〈guard〉 −→ 〈command〉. A guard is a boolean
predicate over the variables of the process. A command is
sequence of assignment and branching statements. A guard
may be a receive-statement that accesses the incoming chan-
nel. A command may contain a send-statement that modifies
the outgoing channel. A parameter is used to define a set of
actions as one parameterized action. For example, let j be a
parameter ranging over values 2, 5 and 9; then a parameterized
action ac.j defines the set of actions

ac.(j = 2) ][ ac.(j = 5) ][ ac.(j = 9).

Either guard or command can contain quantified constructs
[6] of the form: (〈quantifier〉〈bound variables〉 : 〈range〉 :
〈term〉), where range and term are boolean constructs.

Semantics. An action of a process of the program is enabled
in a certain state if its guard evaluates to true. An action con-
taining receive-statement is enabled when appropriate message
is at the head of the incoming channel. The execution of the
command of an action updates variables of the process. The
execution of an action containing receive-statement removes
the received message from the head of the incoming channel
and inserts the value the message contains into the specified
variables. The execution of send-statement appends the spec-
ified message to the tail of the outgoing message.

A computation of the program is a maximal fair sequence
of states of the program such that the first state s0 is initial and
for each state si the state si+1 is obtained by executing the
command of an action whose state is enabled in si. That is, we
assume that the action execution is atomic. The maximality of
a computation means that the computation is either infinite
or it terminates in a state where none of the actions are
enabled. The fairness means that if an action is enabled in
all but finitely many states of an infinite computation then
this action is executed infinitely often. That is, we assume
weak fairness of action execution. Notice that we require

the receive statement to appear as a standalone guard of
an action. This means, that if a message of the appropriate
type is at the head of the incoming channel, the receive
action is enabled. Due to weak fairness assumption, this
leads to fair message receipt assumption: each message in the
channel is eventually received. Observe that our definition of
a computation considers asynchronous computations.

To reason about program behavior we define boolean pred-
icates on program states. A program invariant is a predicate
that is true in every initial state of the program and if the
predicate holds before the execution of the program action, it
also holds afterwards. Notice that by this definition a program
invariant holds in each state of every program computation.

Faults. Throughout a computation, a process may be either
Byzantine (faulty) or non-faulty. A Byzantine process contains
an action that assigns to each local variable an arbitrary value
from its domain. This action is always enabled. Yet, the weak
fairness assumption does not apply to this action. That is,
we consider computations where a faulty process does not
execute any actions. Observe that we allow a faulty node to
send arbitrary messages. We assume, however, that messages
sent by such a node conform to the format specified by the
algorithm: each message carries the specified number of val-
ues, and the values are drawn from appropriate domains. This
assumption is not difficult to implement as message syntax
checking logic can be incorporated in receive-action of each
process. We assume oral record [12] of message transmission:
the receiver can always correctly identify the message sender.
The channels are reliable: the messages are delivered in FIFO
order and without loss or corruption. Throughout the paper
we assume that the maximum number of faulty nodes in the
system is bounded by some constant k.

Graph exploration. The processes discover the topology of
the system by exchanging messages. Each message contains
the identifier of the process and its neighborhood. Process
p explored process q if p received a message with (q, Q).
When it is clear from the context, we omit the mention of
p. An explored subgraph of a graph contains only explored
processes. A Byzantine process may potentially circulate in-
formation about the processes that do not exist in the system
altogether. A process is fake if it does not exist in the system,
a process is real otherwise.

3 THE TOPOLOGY DISCOVERY PROBLEM:
STATEMENT AND SOLUTION BOUNDS

Problem statement.
Definition 1 (Weak Topology Discovery Problem): A pro-

gram is a solution to the weak topology discovery problem
if each of the program’s computation satisfies the following
properties: termination — either all non-faulty processes de-
termine the system topology or at least one process detects
a fault; safety — for each non-faulty process, the determined
topology is a subset of the actual system topology; validity —
the fault is detected only if there are faulty processes in the
system.
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Definition 2 (Strong Topology Discovery Problem): A pro-
gram is a solution to the strong topology discovery problem
if each of the program’s computations satisfies the following
properties: termination — all non-faulty processes determine
the system topology; safety — the determined topology is a
subset of the actual system topology.

According to the safety property of both problem definitions
each non-faulty process is only required to discover a subset
of the actual system topology. However, the desired objective
is for each node to discover as much of it as possible.
The following definitions capture this idea. A solution to a
topology discovery problem is complete if every non-faulty
process always discovers the complete topology of the system.
A solution to the problem is node-complete if every non-
faulty process discovers all nodes of the system. A solution
is adjacent-edge complete if every non-faulty node discovers
each edge adjacent to at least one non-faulty node. A solu-
tion is two-adjacent-edge complete if every non-faulty node
discovers each edge adjacent to two non-faulty nodes.

Observe that for (k+1)-connected graphs an adjacent-edge
complete solution is also node complete and, therefore, simply
complete. If k = 1, then an edge complete solution is also
node complete and simply complete.

Solution bounds. To simplify the presentation of the negative
results in this section we assume more restrictive execution
semantics. Each channel contains at most one message. The
computation is synchronous and proceeds in rounds. In a
single round, each process consumes all messages in its
incoming channels and outputs its own messages into the
outgoing channels. Notice that the negative results established
for this semantics apply for the more general semantics used
in the rest of the paper.

Theorem 1: There does not exist a complete solution to the
weak topology discovery problem if the number of faults k is
greater than one.

Proof: Assume there exists a complete solution to the
problem. Consider k ≥ 2 and topology G1 that is not
completely connected. Let none of the nodes in G1 be faulty.
By the validity property, none of the nodes may detect a fault
in such topology. Consider a computation s1 of the solution
program where each node discovers G1. Let p ∈ G1, q 6= p,
and r 6= p be three nodes in G1, with q and r being non-
neighbor nodes in G1. Since G1 is not completely connected
we can always find two such nodes.

We form topology G2 by connecting q and r in G1. Let q
and r be faulty in G2. We construct a computation s2 which
is identical to s1. That is, q and r, being faulty, in every round
output the same messages as in s1. Since s2 is otherwise
identical to s1, process p determines that the topology of
the system is G1 6= G2. Thus, the assumed solution is not
complete.

Theorem 2: There does not exist a node- or adjacent-
edge complete solution to the weak topology problem if the
connectivity of the graph is lower or equal to the total number
of faults k.

Proof: Assume the opposite. Let there be a node- and
adjacent-edge complete program that solves the problem for

graphs whose connectivity is k or less. Let G1 and G2 be two
graphs of connectivity k.

This means that G1 and G2 contain the respective cut node
sets A1 and A2 whose cardinality is k. Rename the processes
in G2 such that A1 = A2. By definition, A1 separates G1

into two disconnected sets B1 and C1. Similarly, A2 separates
G2 into B2 and C2. Assume without loss of generality that
B1 6= B2. Specifically, there is a node q1 such that q1 ∈ B1

but q1 6∈ B2 and a pair of nodes q2 and q3 that share an edge
in B1 but not in B2.

Since A1 = A2 we can form graph G3 as A1 ∪B2 ∪ C1.
Let s1 be any computation of the assumed program in the

system of topology G1 and no faulty nodes. Since the program
solves the weak topology discovery problem, the computation
has to comply with all the properties of the problem. By
validity property, no fault is detected in s1. By termination
property, each node in G1, including some node p ∈ C1,
eventually discovers the system topology.

By safety property the topology discovered by p is a subset
of G1. Since the solution is complete, the discovered topology
is G1 exactly. Let s2 be any computation of the assumed
program in the system of topology G2 and no faulty nodes.
Again, none of the nodes detects a fault and all of them
discover the complete topology of G2 in s2.

We construct a new computation s3 of the assumed program
as follows. The system topology for s3 is G3 where all nodes
in A1 are faulty. Each faulty node r ∈ A1 behaves as follows.
In the channels connecting r to the nodes of C1 ⊂ G3,
each round r outputs the messages as in s1. Similarly, in the
channels connecting r to the nodes of B2 ⊂ G3, r outputs the
messages as in s2. The non-faulty nodes of B2 and C1 behave
as in s1 and s2 respectively.

Observe that for the nodes of B2, the topology and com-
munication is indistinguishable from that of s2. Similarly, for
the nodes of C1 the topology and communication is indistin-
guishable from that of s1. Notice that this means that none of
the non-faulty nodes detect a fault in the system. Moreover,
node p ∈ C1 decides that the system topology is the subset
of G1. Yet, by construction, G1 6= G3. Specifically, B1 6= B2.
None of the nodes in B2 are faulty. If this is the case then, by
the assumptions on B1 and B2, either s3 violates the safety
property of the problem or the assumed solution is neither
adjacent-edge nor node-complete. The theorem follows.

Theorem 3: There does not exist an adjacent-edge complete
solution to the strong topology discovery problem.

Proof: Assume such a solution exists. Consider system
graph G1 that is not completely connected. Let p ∈ G1 be
an arbitrary node. Let q 6= p and r 6= p be two non-neighbor
nodes of G1. We form topology G2 by connecting q and r in
G1.

We construct computations s1 and s2 as follows. Let s1 and
s2 be executed on G1 and G2 respectively. And let q be faulty
in s1 and r be faulty in s2. Set the output of q in each round
to be identical in s1 and s2. Similarly, set the output of r to
be identical in both computations as well. Since the output of
q and r in both computations is identical, we construct the
behavior of the rest of the nodes in s1 and s2 to be the same.
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Due to termination property, p has to decide on the system
topology in both computations. Due to the safety property, in
s1 process p has to determine that the topology of the graph
is a subset of G1. However, since the behavior of p in s2 is
identical to that in s1, p decides that the topology of the system
graph is G1 in s2 as well. This means p does not include the
edge between q and r to the explored topology in s2. Yet, one
of the nodes adjacent to this edge, namely q, is not faulty. An
adjacent-edge complete program should include such edges in
the discovered topology. Therefore, the assumed program is
not adjacent-edge complete.

Theorem 4: There does not exist a node- or two-adjacent-
edge complete solution to the strong topology problem if the
connectivity of the graph is less than or equal to twice the
total number of faults k.

Proof: Assume that there is a program that solves the
problem for graphs whose connectivity is 2k or less. Let
G1 and G2 be two different graphs whose connectivity is
2k. Similar to the the proof of Theorem 2, we assume that
G1 = A1 ∪ B1 ∪ C1 and G2 = A2 ∪ B2 ∪ C2 where the
cardinality of A1 and A2 are 2k, A1 = A2, B1 ∩ C1 = ∅,
B2 ∩C2 = ∅. Also B1 6= B2. Specifically, there is a node q1

such that q1 ∈ B1 but q1 6∈ B2 and a pair of nodes q2 and q3

that share an edge in B1 but not in B2.
Form G3 = A1∪B2∪C1. Divide A1 into two subsets A′

1 and
A′′

1 of the same number of nodes. Construct a computation s1

with system topology G1 where all nodes in A′
1 are faulty; and

another computation s3 with system topology G3 where all
nodes in A′′

1 are faulty. The faulty nodes in s1 in the channels
connecting A′

1 to C1 communicate as the (non-faulty) nodes
of A′

1 in s3. Similarly, the faulty nodes in s3 in the channels
connecting A′′

1 to C1 communicate as the nodes of A′′
1 in s1.

Observe that s1 and s3 are indistinguishable to the nodes in
C1. Let the nodes in C1, including p ∈ C1 behave identically
in both computations. According to the termination property of
the strong topology discovery problem every node, including
p, has to determine the system topology in both s1 and s3.
Due to safety, the topology that p determines in s1 is a subset
of G1. However, p behaves identically in s3. This means that
p decides that the system topology in s3 is also a subset of G1.
Since G1 6= G3 (specifically, B1 6⊆ B2) and none of the nodes
in B2 are faulty, then either s3 violates the safety property of
the problem or the assumed is neither two-adjacent-edge nor
node complete. The theorem follows.

4 DETECTOR
Outline. Detector solves the weak topology discovery problem
for system graphs whose connectivity exceeds the number
of faulty nodes k. The algorithm leverages the connectivity
of the graph. For each pair of nodes, the graph guarantees
the presence of at least one path that does not include a
faulty node. The topology data travels along every path of
the graph. Hence, the process that collects information about
another process can find the potential inconsistency between
the information that proceeds along the path containing faulty
nodes and the path containing only non-faulty ones.

Care is taken to detect the fake nodes whose information
is introduced by faulty processes. Since the processes do not

know the size of the system, a faulty process may potentially
introduce an infinite number of fake nodes. Graph connectivity
is leveraged to detect such fake nodes. As faulty processes are
the only source of information about fake nodes, all the paths
from the real nodes to the fake ones have to contain a faulty
node. Yet, the graph connectivity is assumed to be greater
than k. If a fake node is ever introduced, one of the non-
faulty processes eventually detects a graph with too few paths
leading to the fake node.

To simplify the presentation, we describe Detector assuming
that the system contains at most one faulty node (k = 1). We
then explain how to generalize the algorithm to an arbitrary
fixed k.

process p
const

P : set of neighbor identifiers of p
k = 1: integer, upper bound on the number of

faulty processes
parameter

q : P
var

detect : boolean, initially false, signals fault
start : boolean, initially true, controls sending of

p’s neighborhood info
TOP : set of tuples, initially {(p, P )},

(process ids, neighbor id set) received by p
∗[

init: start −→
start := false,
(∀j : j ∈ P : send (p, P ) to j)

][
accept:receive (r, R) from q −→

if (∃s, S : (s, S) ∈ TOP : s = r ∧ S 6= R) ∨
(connectivity(TOP ∪ {(r, R)}) < k + 1)

then
detect := true

else
if (@s, S : (s, S) ∈ TOP : s = r) then

TOP := TOP ∪ {(r, R)},
(∀j : j ∈ P : send (r, R) to j)

]

Fig. 1. Process of Detector

Detailed description. The program is shown in Figure 1. Each
process p stores the identifiers of its immediate neighbors.
They are kept in set P . Each process is aware of the upper
bound k = 1 on the number of faulty processes in the system.
Process p maintains the following variables. Boolean variable
detect indicates if p discovers a fault in the system. Boolean
variable start guards the execution of the action that sends
p’s neighborhood information to its neighbors. Set TOP (for
topology) stores the subgraph explored by p; TOP contains
tuples of the form: (process identifier, its neighborhood). In
the initial state, TOP contains (p, P ).

Function connectivity evaluates the topology of the sub-
graph stored in TOP . Recall that a node u is unexplored by
p if for every tuple (s, S) ∈ TOP , s is not the same as u.
That is u may appear in S only. We construct graph G′ by
adding an edge to every pair of unexplored processes present
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in TOP . We calculate the value of connectivity as follows.
If the information of TOP is inconsistent, that is:

(∃u, v, U, V : ((u, U) ∈ TOP ) ∧ ((v, V ) ∈ TOP ) :
(u ∈ V ) ∧ (v 6∈ U))

then connectivity returns 0. Otherwise the function returns
the connectivity of graph G′. In the proof of algorithm’s
correctness we demonstrate that the connectivity G′ may fall
below k only if there is a fault in the graph.

Processes exchange messages of the form (process identifier,
its neighborhood id set). A process contains two actions:
init and accept. Action init starts the propagation of p’s
neighborhood throughout the system. Action accept receives
the neighborhood data of some process, records it, checks
against other data already available for p and possibly further
disseminates the data. If the data received from neighbor q
about a process r contradicts what p already holds about r
in TOP or if the newly arrived information implies that G
is less than 2-connected p indicates that it detected a fault by
setting detect to true. That is, the connectivity of the resultant
graph is less than k + 1. Alternatively, if p did not previously
have the information about r, p updates TOP and sends the
received information to all its neighbors.

Observe that the propagation of information about the
neighborhood of a certain process is independent of the
information propagation of another process. Thus, we will
focus on the propagation of the information about a particular
non-faulty process a.

Let COR contain each process b such that b is not faulty
and TOP.b holds (a,A). Let a itself belong to COR if start.a
is false.

Lemma 1: The following predicate is an invariant of De-
tector.

(∀ non-faulty b, c : b ∈ COR, c ∈ B :
(c ∈ COR)∨
((a,A) ∈ Ch.b.c)) ∨
(∃ non-faulty j : j ∈ N : detect.j = true)

(1)

The predicate states that unless one of the non-faulty
processes in the program detects a fault, if a process b belongs
to COR then each neighbor c of b either belongs to COR as
well or the channel from b to c contains (a,A).

Proof: To prove that Predicate 1 is an invariant of the
program, we need to show that it holds in the initial state of
any computation and it is closed under the execution of actions
of Byzantine as well as non-faulty processes. The predicate
holds initially as the first disjunct is vacuously true.

Note that no action of a Byzantine process immediately
affects the validity of the predicate. Observe also that a
non-faulty process can only set detect to true. Thus, once
this happens the predicate holds throughout the rest of the
computation. Suppose detect is false in all processes of the
program. Then the predicate is violated only if there is a non-
faulty pair of neighbors b and c such that b belongs to COR, c
does not and there is no message (a,A) in the channel from b
to c. Notice that a non-faulty process adds the first value (r, R)
to TOP and never changes it afterwards. Thus, provided that

detect = false, to violate the predicate, a process has to join
COR without sending (a,A) to its neighbors or consume a
message with (a,A) without joining COR. Let us examine
the actions of a non-faulty process and ensure that neither of
this happens.

Observe that init is only of interest in a. This action sets
start.a = false which, by definition, adds a to COR. Also,
init atomically sends (a,A) to all neighbors of a. Thus, the
predicate is not violated by the execution of init.

Let us now consider accept in an arbitrary non-faulty
process u. Let the message received by u carry (r, R). Observe
that accept affects Predicate 1 only if r = a. accept may make
u join COR or consume a message with (a,A). Notice, that
if u is already in COR the receipt of a message with (a,A)
does not violate the predicate. Also, u joins COR only if
it receives (a,A). Hence, the only case we have to consider
is when u does not belong to COR before the execution of
accept, u receives (a,A) and joins COR.

The behavior of u in this case depends on whether it has an
element (s, S) in TOP.u such that s = a. Since u 6∈ COR,
if (a, S) ∈ TOP.u, then S differs from A. In this case if
u receives (a,A) then it sets detect = true. This preserves
the validity of the predicate. Alternatively, if such an entry
in TOP.u does not exist, then the receipt of (a,A) causes
u to join COR and forward (a,A) to all its neighbors. This
preserves the predicate as well.

Thus, Predicate 1 holds in the initial state of every com-
putation of the program and is preserved by its every action.
Which means that this predicate is an invariant of the program.

Lemma 2: If a computation of Detector contains a state
where there is a process u that belongs to COR that has a
non-faulty neighbor v that does not, then further in the com-
putation, either some non-faulty process sets detect = true or
v joins COR.

Proof: According to Lemma 1, Predicate 1 is an invariant
of the program. Hence, if u belongs to COR and its non-faulty
neighbor v does not, then channel Ch.u.v contains a message
with (a,A). Due to fair message receipt assumption, (a,A)
is received. Observe that if v is not in COR and it receives
(a,A), then either v sets detect = true or joins COR.

Lemma 3: Every computation of Detector contains a state
where either detect = true in some non-faulty process or
every non-faulty process belongs to COR.

Proof: The proof is by induction on the number of non-
faulty processes in the program. As a base case, we show that
a itself eventually joins COR. Recall, that we assume that a
itself is not faulty. Observe that the program starts in a state
where start.a is true. If this is so, init is enabled. Moreover,
init is the only action that sets start.a to false. Thus, init stays
enabled until executed. By weak fairness assumption, init is
eventually executed. When this happens, a joins COR.

Assume that COR contains i: 1 ≤ i < n processes at some
state of a computation and there is a non-faulty process that
does not belong to COR. We assume that the connectivity of
the graph exceeds the maximum number of faulty processes.
Thus, there is a non-faulty process u ∈ COR that has a
non-faulty neighbor v 6∈ COR. According to Lemma 2, this
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computation contains a state where COR contains v. Thus,
every non-faulty process eventually joins COR.

Lemma 4: If a computation of Detector contains a state
where non-faulty process u explores a fake process v, then
this computation contains a state where detect = true in some
non-faulty process.

Proof: Observe that the only source of fake process
information is a Byzantine process. Hence, if u explores a
fake process v, then every path to v leads through a Byzantine
process. Thus, in a graph with a fake node, the maximum
number of node-disjoint paths between a real and a fake node
is no more than k = 1.

According to Lemma 3, eventually, either detect = true at
a non-faulty process or u explores every non-faulty process in
the system. In this case u detects that all paths to the fake node
v lead through no more than k processes and sets detect =
true.

Lemma 5: If the system does not contain a faulty process,
then the connectivity of the explored graph G′ is at least k+1.

Proof: We prove the lemma by inductively removing each
node p of G that is not present in G′ and replacing it with
edges between p’s neighbors. If a graph is k+1-connected then
each node has at least k + 1-neighbors. Note that at least one
node is always explored in G′. Thus, the number of nodes
in G′ is no less than k + 1. In our proof we make use of
the Menger’s theorem and show that such removal does not
decrease the number of node-independent paths connecting
two arbitrary nodes below k + 1.

Let G′ = G. If G is k + 1-connected, so is G′. Let G′.i be
a graph with i > (k+1) nodes of G remaining in G′. Assume
that the connectivity of G′.i is greater than k + 1.

Consider how the removal of an arbitrary node p ∈ G′.i
affects node-independent paths connecting a pair of arbitrary
nodes. Note that it is sufficient to only consider paths whose
ends are the neighbors of p as other affected paths include the
neighbors of p as segments.

Let us start with the case where p shares an edge with every
node in G′.i. If p is removed, G′.(i− 1) becomes completely
connected and its connectivity is k + 1 > k. Now, let us
consider the case where there is a node u that is not a neighbor
of p in G′.i. Let v and w be two neighbors of p.

Consider the case v and w do not share an edge. There may
be an independent path v, p, w that connects the two nodes in
G′.i. After the removal of p, v and w are connected. This
means that a path v, p, w is replaced by another path: v, w.
That is, the independent path is preserved in G′.(i− 1).

Consider the case where v and w share an edge in G′.i.
That is, an edge that connects them is not added in G′.(i−1).
In this case the two nodes may lose an internally node disjoint
path v, p, w that connects them. Assume the number of nodes
in the neighborhood of p is greater than k + 1. Since the
neighborhood is completely connected in G′.(i− 1), there are
at least k + 1 internally node disjoint paths between v and
w in G′.(i − 1). Assume that the number of nodes in p’s
neighborhood is exactly k + 1. In this case, there are only k
internally node disjoint paths between v and w that only use
the neighbors of p. We now show that there is another path.

According to Menger’s theorem, three are at least k + 1

internally node-disjoint paths that connect p and u in G′.i.
Each path then has to go through a different neighbor of p.
This includes v and w. That is there exist two paths p, v, · · · , u
and p, w, · · · , u in G′.i that do not share nodes except p and
u. Neither do these paths contain any other neighbors of p.
Consider path v, · · · , u, · · · , w composed of the segments of
these two paths. The new path does not contain neighbors of
p. This new path exists in G′.(i− 1) and it is internally node
disjoint with the other k paths that connect v and w. That is,
the connectivity of G.(i−1) remains at least k+1. The lemma
follows by induction.

Lemma 6: Any computation of a detector program contains
a state where a Byzantine process is detected only if there is
indeed a Byzantine process in the system.

Proof: A non-faulty process sets detect to true if it
encounters divergent information about some node’s neigh-
borhood or when it detects that connectivity is less than 2
(i.e. k + 1). However, a non-faulty process never modifies the
neighborhood information about other processes. Hence, if the
program does not have a faulty process, all the information
about a particular neighborhood that is circulated in the system
is identical. Also, according to Lemma 5 if there are no faulty
processes in the system, the connectivity never falls below 2
(k +1). Hence, detect is set to true only if indeed the system
contains a faulty process.

Theorem 5: Detector is an adjacent-edge complete solution
to the weak topology discovery problem in case the connec-
tivity of system topology graph exceeds the number of faults.

Proof: To prove the theorem we show that every compu-
tation of Detector conforms to the properties of the problem.
We then show that the discovered topology is adjacent-edge
complete.

Termination property follows from Lemma 3, safety —
from Lemma 4, while validity follows from Lemma 6. Notice
that Lemma 3 states that unless a fault is detected, the
neighborhood of every non-faulty process is added to COR.
That is, edges adjacent to a non-faulty processes are detected
by every non-faulty processes. Thus, Detector is adjacent-edge
complete. Hence the theorem.

Note that with k = 1 an adjacent-edge complete solution is
also, node and simply-complete. Hence the following corol-
lary.

Corollary 1: Detector provides a complete solution to the
topology discovery problem in case the system is doubly
connected and contains at most one fault.

Efficiency evaluation. Since we consider an asynchronous
model, the number of messages a Byzantine process can send
in a computation is infinite. We evaluate the efficiency of
Detector in case there are no faults in the system. To make the
estimation fair, we assume that the unit is log(n) bits. Since
it takes that many bits to assign unique process identifiers to
n processes, we assume that one identifier is exactly one unit
of information. A message in Detector carries up to δ + 1
identifiers, where δ is the maximum number of nodes in the
neighborhood of a process. Observe that a process can receive
at most n messages from each incoming channel. Thus, the
total number of messages that can be sent by Detector is 2en,



8

where e is the number of edges in the graph. The message
complexity of the program is in O(2enδ). If e is proportional
to n2, then the complexity of the program is in O(δn3).

Modification to handle k > 1 faults. Observe that the above
discussion and correctness proofs are still valid if the possible
number of faulty nodes is greater than one and the required
network graph connectivity is k + 1.

5 EXPLORER
Outline. The main idea of Explorer is for each process to
collect information about some node’s neighborhood such that
the information goes along more than twice as many paths as
the maximum number of Byzantine nodes. While the paths
are node-disjoint, the information is correct if it comes across
the majority of the paths. In this case the recipient is in
possession of confirmed information. It turns out that the
topology information does not have to come directly from the
source. Instead it can come from processes with confirmed
information. The detailed description of Explorer follows.

To simplify the presentation, we describe and prove correct
the version of Explorer that tolerates only one Byzantine fault.
We describe how this version can be extended to tolerate
multiple faults in the end of the section.

Description. Since we first describe the 1-fault tolerant version
of Explorer we assume that the graph is 3-connected. The pro-
gram is shown in Figure 2. Similar to Detector, each process p
in Explorer, stores the ids of its immediate neighbors. Process
p maintains the variable start, whose function is to guard
the execution of the action that initiates the propagation of
p’s own neighborhood. Unlike Detector, however, p maintains
two sets that store the topology information of the network:
uTOP and cTOP . Set uTOP stores the topology data that
is unconfirmed; cTOP stores confirmed topology data. Set
uTOP contains the tuples of neighborhood information that
p received from other nodes. Besides the process id and the set
of its neighbor ids, each such tuple contains a set of process
identifiers, that relayed the information. We call it visited set.
The tuples in cTOP do not require a visited set.

Processes exchange messages where, along with the neigh-
bor identifiers for a certain process, a visited set is propagated.
A process contains two actions: init and accept. The purpose of
init is similar to that in the process of Detector. Action accept
receives the neighborhood information of some process r, its
neighborhood R which was relayed by nodes in set S. The
information is received from p’s neighbor — q.

First, accept checks if the information about r is already
confirmed. If so, the only manipulation is to record the re-
ceived information in uTOP . Actually, this update of uTOP
is not necessary for the correct operation of the program, but
it makes the its proof of correctness easier to follow.

If the received information does not concern already con-
firmed process, accept checks if this information differs from
what is already recorded in uTOP either in r or in R. In
either case the information is broadcast to all neighbors of p.
Before broadcasting, p appends the sender — q to the visited
set S.

If the information about r and R has already been received
and recorded in uTOP , accept checks if the previously
recorded information came along an internally node disjoint
path. If so, the information about r is added to cTOP . In this
case, this information is also broadcast to all p’s neighbors.
Note, however, that p is now sure of the information it
received. Hence, the visited set of nodes in the broadcast
message is empty.

process p
const

P , set of neighbor identifiers of p
parameter

q : P
var

start : boolean, initially true, controls sending of p’s neighbors
cTOP : set of tuples, initially {(p, P )},

(process id, neighbor id set) confirmed topology info
uTOP : set of tuples, initially ∅,

(process id, neighbor id set, visited id set)
unconfirmed topology info

∗[
init: start −→

start := false,
(∀j : j ∈ P : send (p, P, ∅) to j)

][
accept:receive (r, R, S) from q −→

if (∀t, T : (t, T ) ∈ cTOP : t 6= r) then
if (∀t, T, U : (t, T, U) ∈ uTOP : t 6= r ∨ T 6= R)
then

(∀j : j ∈ P : send (r, R, S ∪ {q}) to j)
elsif (∃t, T, U : (t, T, U) ∈ uTOP :

t = r ∧R = T ∧ ((U ∩ (S ∪ {q}))) ⊂ {r}))
then

cTOP := cTOP ∪ {(r, R)},
(∀j : j ∈ P : send (r, R, ∅) to j)

uTOP := uTOP ∪ {(r, R, S ∪ {q})}
]

Fig. 2. Process of Explorer

Correctness proof. Just like for the Detector algorithm, we
are focusing on the propagation of the neighborhood informa-
tion A of a singular non-faulty process a. Notice that we use
A to denote the correct neighborhood info. We use A′ for the
neighborhood information of a that may not necessarily be
correct.

To aid us in the argument, we introduce an auxiliary set
SENT to be maintained by each process. Since this set does
not restrict the behavior of processes, we assume that the
Byzantine process maintains this set as well. SENT contains
each message sent by the process throughout the computation.
Notice that uTOP records every message received by the
process in the computation. Hence, the comparison of uTOP
and SENT allows us to establish the channel contents.

Since, a message cannot be received without being sent and
vice versa, the following proposition states the invariant of the
predicate that affirms it.

Proposition 1: The following predicate is an invariant of
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the Explorer program.

(∀b, non-faulty c, A′, V : c ∈ B :
(((a,A′, V ) ∈ Ch.b.c)∨
((a,A′, V ∪ {b}) ∈ uTOP.c)) ⇔
((a,A′, V ) ∈ SENT.b))

(2)

The predicate states that for any process b and its non-faulty
neighbor c the information about the neighborhood of a is
recorded in SENT.b if and only if this information is en
route from b to c or is recorded in uTOP.c with b appended
to the sequence of visited nodes V .

Before we proceed with the correctness argument we have
to introduce additional notation. We say that some process c
confirms (a,A′) if it adds this tuple to cTOP.c. We view the
propagation of A′ as construction of a tree of processes that
relayed A′. This tree carries A′. A tree contains two types
of nodes: a root and non-root. If process c is non-root, then
for some V , (a,A′, V ) ∈ SENT.c and (a,A′, V ) ∈ uTOP.c.
That is, a non-root is a process that forwarded the information
received from elsewhere without alteration. If c is a root, then
(a,A′, V ) ∈ SENT.c but (a,A′, V ) 6∈ uTOP.c. Node c’s
ancestor in a tree is the node that lies on a path from c to the
root.

Observe that the root of a tree can only be the process a
itself, the Byzantine node or a node that confirms (a,A′).
Notice also that since each non-faulty process c sends a
message about a’s information at most twice, c can belong
to at most two trees. Moreover, c has to be the root of one of
those trees.

The proposition below follows from Proposition 1.
Proposition 2: If some process d is the ancestor of another

process c in a tree carrying (a,A′) and (a,A′, V ) ∈ uTOP.c,
then d ∈ V .

Lemma 7: If a non-faulty node c confirms (a,A′), then
A′ = A and a is real.

Proof: Let us first suppose that a is real. Further, suppose
c is the first non-faulty process in the system, besides a, to
confirm (a,A′). To add (a,A′) to cTOP.c any process c 6= a
has to contain (a,A′, V ) ∈ uTOP.c and receive a message
from one of its neighbors b carrying (a,A′, V ′) such that
V ∩ V ′ ⊂ {a}. In our notation this means that c belongs
to a tree that carries (a,A′) and receives a message from b
(possibly belonging to a different tree) that carries the same
information: (a,A′). Let us consider if b and c belong to the
same or different trees.

Suppose b and c belong to the same tree. If this is the
case the messages that c receives have to share nodes in the
visited sets V and V ′. However, for c to confirm (a,A′) the
intersection of V and V ′ has to be a subset of {a}. That is, the
only common node between the two sets is a. Observe that a
does not forward the information about its own neighborhood
if it receives it from elsewhere. Thus, if a belongs to a tree
then a is its root. In this case A′ = A.

Suppose b and c belong to different trees. Recall that for c
to confirm (a,A′), both of these trees have to carry (a,A′).
However, if A′ 6= A then the root of the tree is either the
faulty node or another node that confirmed (a,A′). Yet, we

assumed that c is the first node to do so. Thus, if c receives
a message from b, the only tree that carries the information
(a,A′) such that A′ 6= A is rooted in the faulty node. Thus,
even if b and c belong to different trees, A′ = A.

Similarly, if a is fake, unless another node confirms (a,A′)
there is only one tree that carries (a,A′) and it is rooted in
the faulty node. In this case, no other node confirms (a,A′).

Lemma 8: Every computation of Explorer contains a state
where each non-faulty process belongs to at least one tree
carrying (a,A).

Proof: We prove the lemma by induction on the number
of nodes in the system. To prove the base case we observe
that the init action is enabled in a in the beginning of every
computation. This action stays enabled unless executed. Thus,
due to weak-fairness of action execution assumption, init is
eventually executed in a. When it is executed, a forms a tree
carrying (a,A).

Let us assume that there are i: 1 ≤ i < n non-faulty nodes
that belong to trees carrying (a,A). Since the network is at
least 3-connected, there exists a non-faulty process c that does
not belong to such a tree but has a neighbor b that does.

If b belongs to a tree carrying (a,A) then SENT.b con-
tains an entry (a,A, V ) for some set of visited nodes V .
If c does not belong to such a tree then, by definition,
(a,A, V ′) 6∈ uTOP.c. In this case, according to Proposition 1,
Ch.b.c contains (a,A, V ). Similar argument applies to the
other neighbors of c that belong to trees carrying (a,A). That
is, c has incoming messages from every such neighbor.

According to the fair message receipt assumption, these
messages are eventually received. We can assume, without loss
of generality, that c receives a message from b first. Since c
does not contain an entry (a,A, V ′) in uTOP.c, upon receipt
of the message from b, c sends a message with (a,A, V ∪{b}),
attaches this message to SENT.c and includes it in uTOP.c.
This means that c joins the tree carrying (a,A).

Thus, every non-faulty node eventually joins a tree carrying
correct neighborhood information about a.

A branch of a tree is either a subtree without the root or
the root process alone. The following proposition follows from
Proposition 1.

Proposition 3: If a computation of Explorer contains a
state where a non-faulty node c and its neighbor b either
belong to two different trees carrying the same information
(a,A) or to two different branches of the tree rooted in a,
then this computation also contains a state where c confirms
(a,A).

Lemma 9: Every non-faulty process c eventually confirms
(a,A).

Proof: The proof is by induction on the number of nodes
in the system. The base case trivially holds as a itself confirms
(a,A) in the beginning of every computation. Assume that i
non-faulty processes have (a,A) in cTOP , where 1 ≤ i < n.
We show that if there exists another non-faulty process c, it
eventually confirms (a,A). Two cases have to be considered:
there exists only one tree carrying (a,A), and there are
multiple such trees.
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Let us consider the first case. Notice, that in every compu-
tation there eventually appears a tree rooted in a. In this case,
we may only consider a tree so rooted. Since the network is
at least 3-connected, there exists a simple cycle containing a
and not containing the faulty process. According to Lemma 8,
every process in the cycle eventually joins this tree. Observe
that, by our definition of a tree branch, there always is a pair of
neighbor processes b and c that belong to different branches of
a tree rooted in a and carrying (a,A). In this case, according
to Proposition 3, one of the two nodes eventually confirms
(a,A).

Let us now consider the case of multiple trees carrying
(a,A). Again, according to Lemma 8, each non-faulty process
in the system joins at least one of these trees. Since the
network is at least 3-connected there exists a non-faulty
process c belonging to one tree that has a neighbor b belonging
to a different tree. In this case, according to Proposition 3, c
confirms (a,A).

By induction, every non-faulty process in the system even-
tually confirms (a,A).

Theorem 6: Explorer is a two-adjacent-edge complete so-
lution to the strong topology discovery problem in case of one
fault and the system topology graph is at least 3-connected.

Proof: Explorer conforms to the termination and safety
properties of the problem as a consequence of Lemmas 9 and
7 respectively.

Observe that a non-faulty node may potentially confirm
incorrect neighborhood information about a Byzantine node.
That is, an edge reported by the faulty process is either missing
or fake. However, due to the two above lemmas, if two nodes
are non-faulty the information whether there is an adjacent
edge between them is discovered by every non-faulty node.
Hence Explorer is two-adjacent-edge complete.

Modification to handle k > 1 faults. Observe that Explorer
confirms the topology information about a node’s neighbor-
hood, when it receives two messages carrying it over internally
node disjoint paths. Thus, the program can handle a single
Byzantine fault. Explorer can handle k > 1 faults, if it
waits until it receives k + 1 messages before it confirms the
topology info. All the messages have to travel along internally
node disjoint paths. For the correctness of the algorithm, the
topology graph has to be (2k + 1)-connected.

Proposition 4: Explorer is a two-adjacent-edge complete
solution to the strong topology discovery problem in case of
k faults and the system topology graph is at least (2k + 1)-
connected.
Efficiency evaluation. Similar to Detector, the number of
messages a faulty node may send in Explorer is arbitrary
large. However, we can estimate the message complexity of
Explorer in the absence of faults. Each message carries a
process identifier, a neighborhood of this process and a visited
set. The number of the identifiers in a neighborhood is no more
than δ, and the number of identifiers in the visited set can be
as large as n. Hence the message size is bounded by δ+n+1
which is in O(n).

Notice, that for the neighborhood A of each process a, every
process broadcasts a message twice: when it first receives the

information, and when it confirms it. Thus, the total number
of sent messages is 4e ·n and the overall message complexity
of Explorer if no faults are detected is in O(n4).

6 COMPOSITION AND EXTENSIONS

Composing Detector and Explorer. Observe that Detector has
better message complexity than Explorer if the neighborhood
size is bounded. Hence, if the incidence of faults is low, it
is advantageous to run Detector and invoke Explorer only
if a fault is detected. We assume that the processes can
distinguish between message types of Explorer and Detector.
In the combined program, a process running Detector switches
to Explorer if it discovers a fault. Other processes follow
suit, when they receive their first Explorer messages. They
ignore Detector messages henceforth. A Byzantine process
may potentially send an Explorer message as well, which
leads to the whole system switching to Explorer. Observe that
if there are no faults, the system will not invoke Explorer.
Thus, the complexity of the combined program in the absence
of faults is the same as that of Detector. Notice that even
though Detector alone only needs (k + 1)-connectivity of the
system topology, the combined program requires (2k + 1)-
connectivity.

Message Termination. We have shown that Detector and
Explorer comply with the functional termination properties
of the topology discovery problem. That is, all processes
eventually discover topology. However, the performance aspect
of termination, viz. message termination, is also of interest.
Usually, an algorithm is said to be message terminating if all
its computations contain a finite number of sent messages [5].

However, a Byzantine process may send messages indefi-
nitely. To capture this, we weaken the definition of message
termination. We consider a Byzantine-tolerant program mes-
sage terminating if the system eventually arrives at a state
where: (a) all channels are empty except for the outgoing
channels of a faulty process; (b) all actions in non-faulty
processes are disabled except for possibly the receive-actions
of the incoming channels from Byzantine processes, these
receive-actions do not update the variables of the process. That
is, in a terminating program, each non-faulty process starts
to eventually discard messages it receives from its Byzantine
neighbors.

Making Detector terminating is fairly straightforward. As
one process detects a fault, the process floods the announce-
ment throughout the system. Since the topology graph for
Detector is assumed (k+1)-connected, every process receives
such announcement. As the process learns of the detection,
it stops processing or forwarding the messages. Notice that
the initiation of the flood by a Byzantine node itself only
accelerates the termination of Detector as the other processes
quickly learn of the faulty node’s existence.

The addition of termination to Explorer is more involved. To
ensure termination, restrictions have to be placed on message
processing and forwarding. However, the restrictions should be
delicate as they may compromise the liveness properties of the
program. By the design of Explorer, each process may send at
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most one message about its own neighborhood to its neighbors.
Hence, the subsequent messages can be ignored. However, a
faulty process may send messages about neighborhoods of
other processes. These processes may be real or fake. We
discuss these cases separately.

Note that each process in Explorer can eventually obtain an
estimate of the identities of the processes in the system and
disregard fake process information. Indeed, a path to a fake
node can only lead through faulty processes. Thus, if a process
discovers that there may be at most k internally node disjoint
paths between itself and a certain node, this node is fake.
Therefore, the process may cease to process messages about
the fake node’s neighborhood. Notice, that since the system is
(2k+1)-connected, messages about real nodes will always be
processed. Therefore, the liveness properties of Explorer are
not affected.

As to the real processes, they can be either Byzantine or
non-faulty. Recall that each non-faulty process of Explorer
eventually confirms neighborhoods of all other non-faulty
processes. After the neighborhood of a process is confirmed,
further messages about it are ignored.

The last case is a Byzantine process u sending a message
to its correct neighbor v about the neighborhood of another
Byzantine process w. By the design of Explorer, v relays the
message about w provided that the neighborhood information
about w differs from what previously received about w. As
we discussed above, eventually v estimates the identities of
all real processes in the system. Therefore, there is a finite
number of possible different neighborhoods of w that u can
create. Hence, eventually they will be exhausted, and v starts
ignoring further messages form u about w.

Thus, Explorer can be made terminating as well.

Handling topology updates. In the topology discovery prob-
lem statement, it is assumed that the system topology does
not change. However, Detector and Explorer can be adapted
to manage topology changes as well. Observe, that apart from
detecting fake nodes in Explorer, both algorithms propagate
the information of one process neighborhood independently of
the others. We first describe how this propagation can be done
in case the topology changes and then address the fake node
detection. Each time the neighborhood of a process p changes,
p starts a new version of the topology discovery algorithm for
its neighborhood. Observe that a faulty process may also start
a new version for p.

The versions are distinguished by version numbers. Each
process maintains the version numbers of p. Each related
message carries the version number. Each process outputs the
discovered neighborhood of p with the highest received version
number. Observe that in the case of Explorer the processes
only output confirmed information. Notice that if a faulty
process sends incorrect information about p’s neighborhood
with a certain version number, this incorrect info will be
handled by the basic Detector or Explorer within that version.
For example, the faulty messages of version i about p’s
neighborhood will be countered by the correct messages of
the same version. Notice that a faulty process in Explorer may
start a version j for p’s neighborhood such that it is higher than

the highest version i that p itself started. However, according
to the basic Explorer, the incorrect information in version j
will not be confirmed.

There are two specific modifications to the basic Detector.
If the faulty process sends a message concerning p with the
version number higher than that of p, p itself detects the
fault. To detect fake nodes generated by a faulty process, each
node has to compile the topology TOP graph of the highest
version number for each node in the system and ensure that its
connectivity does not fall below k+1. Observe that Detector is
unable to differentiate between temporary lack of connectivity
from malicious behavior of the faulty nodes. Therefore, the
connectivity of the discovered network at each node should
never fall below k + 1. For that, we assume that throughout a
computation the intersection of all system topologies is k +1-
connected. Similarly, the topology has to always be 2k + 1-
connected for Explorer to operate correctly.

The topology update mechanism can be optimized in obvi-
ous ways. For Detector, each process has to keep the infor-
mation for p with only the highest version number. Obsolete
information can be safely discarded. For Detector, the process
may keep the latest version of confirmed neighborhood infor-
mation. Observe that this extension of the topology discovery
algorithms assumes infinite-size counters. Care must be taken
when implementing these counters in the actual hardware, as
the faulty processes may try to compromise topology discovery
if the counter values are reused. Hence, such an implementa-
tion would require a Byzantine-robust counter synchronization
algorithm. Lamport and Melliar-Smith [11] proposed such
algorithm for completely connected systems. Extending it to
arbitrary topology systems is an attractive avenue of further
research.

Discovering neighbors. As described, in the initial state of
Detector and Explorer, each process has access to correct
information about its immediate neighborhood. Note that,
in general, obtaining this information in the presence of
Byzantine processes may be difficult as they can mount a
Sybil attack [8]. In such an attack, a faulty process is able
to use an arbitrary identifier while a correct process cannot
determine whether two messages were sent by the same or
by different process. A Sybil attack is difficult to handle [4],
[23]. However, Detector and Explorer can be modified to
handle neighborhood discovery with known ports. That is, each
process does not know the identities of its neighbors but can
determine if a message is coming from the same process. Also
note that we assume that there are no actual topology changes
during the computation as it interferes with the neighborhood
discovery. Observe that with known ports a faulty process may
not be able to use more than one identifier per correct neighbor
without being detected.

Note that there are certain limits of what can be discovered
under these assumptions. First, no algorithm can determine
the identifier of a faulty process as it may assume an arbitrary
one. Moreover, with more than one faulty process, the system
is subject to “black hole” attack: a pair of colluding faulty
nodes may deceive their non-faulty neighbors into believing
that they share an edge. When communicating to a non-faulty
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node a, its faulty neighbor b assumes the identity of another
non-faulty node d. Similarly, a faulty neighbor c of d assumes
the identity of a. This way, non-faulty nodes a and d are led
to believe they share an edge.

The modified algorithms contain two phases: neighborhood
discovery phase and topology discovery proper phase. In
the first phase, each process broadcasts its identifier to its
neighbors. Observe that faulty processes may not send these
initial messages at all. Thus, the process should not wait for
a message from every possible neighbor. Instead, as soon as
each process p gets a message from a new port with q in
its identifier, p may start the second phase with {q} as its
neighborhood. Every time p gets a new distinct identity from a
fresh port, p treats it as topology update, increments its counter
and re-initiates the topology discovery. Note that a faulty
process may select an identifier of another neighbor r. Due to
known ports, the recipient will be able to distinguish between
the two processes. In case of Detector, the recipient can
immediately detect a fault. In case of Explorer the proposed
procedure is as follows. The recipient process identifies its
neighbors with the same identities r and r′ and propagates
the information to the other processes in this form. The other
processes treat these identities as distinct.

This identity discovery procedure can be further stream-
lined. Recall that for Detector and Explorer the topology graph
has to be respectively k + 1 and 2k + 1-connected. Thus,
depending on the algorithm, each process is guaranteed to
have at most 1 or k +1 non-faulty neighbors. Therefore, each
process may delay initiating topology discovery until it gets
this minimum number of distinct identities. However, though
the updates, each process learns the identities of all correct
processes in the system.

Other extensions. Observe that Explorer is designed to dis-
seminate the information about the complete topology to all
processes in the system. However, it may be desirable to just
establish the routes from all processes in the system to one
or a fixed number of distinguished ones. To accomplish this
Explorer needs to be modified as follows. No neighborhood
information is propagated. Instead of the visited set, each
message carries the propagation path of the message. That
is, the order of the relays is significant.

Only the distinguished processes initiate the message prop-
agation. The other processes only relay the messages. Just as
in the original Explorer, a process confirms a path to another
process only if it receives 2k + 1 internally process disjoint
paths from the source or from other confirming processes.
Again, like in Explorer, such process rebroadcasts the mes-
sage, but empties the propagation path. In the outcome of
this program, for every distinguished process, each non-faulty
process will contain paths to at least 2k+1 processes that lead
to this distinguished process. Out of these paths, at least k+1
ultimately lead to the distinguished process.

In Explorer, for each process the propagation of its neigh-
borhood information is independent of the other neighbor-
hoods. Thus, instead of topology, Explorer can be used for
efficient fault-tolerant propagation of arbitrary information
from the processes to the rest of the network.

7 CONCLUSION AND OPEN PROBLEMS
In this article we explored an unorthodox approach to
Byzantine-robust routing. It relies on topology itself rather
than on cryptographic primitives. It is best suited where the
more conventional cryptography-based solution is infeasible
due to lack of computing, storage and transmission resources
such as on motes [9]. However, our approach may be an
attractive alternative even if the platform technically allows
cryptographic operation. In topology-based Byzantine toler-
ance, the fault-recovery is based on route-based redundancy of
information propagation. If the system allows such redundancy
of routes, then our approach promises significant computation
savings since no cryptographic operations are required.

Note that our approach requires that the network is designed
to be dense enough to tolerate the acceptable number of
faults. Alternatively, the connectivity or density of the network
dictates the maximum number of faults it is able to tolerate.

In conclusion, we would like to outline a several interesting
research directions that this paper opens. The existence of
Byzantine-robust topology discovery solutions poses the ques-
tion of theoretical limits of efficiency of such programs. The
obvious lower bound on message complexity can be derived as
follows. Every process must transmit its neighborhood to the
rest of the nodes in the system. Transmitting information to
every node requires at least n messages, so the overall message
complexity is at least δn2. If k processes are Byzantine, they
may not relay the messages of other nodes. Thus, to ensure
that other nodes learn about its neighborhood, each process has
to send at least k + 1 messages. Thus, the complexity of any
Byzantine-robust solution to the topology discovery problem
is at least in Ω(δn2k).

Observe that Explorer and Detector may not explicitly
identify faulty nodes or the inconsistent view of the their
immediate neighborhoods. We believe that this identification
can be accomplished using the technique used by Dolev [7]. In
case there are 3k+1 non-faulty processes, they may exchange
the topologies they collected to discover the inconsistencies.
This approach, may potentially expedite termination of Ex-
plorer at the expense of greater message complexity: if a
certain Byzantine node is discovered, the other processes may
ignore its further messages.

In Section 6 we briefly considered the problem of trans-
formation of known ports to oral record [12] model in the
context of topology discovery. However, the problem can be
posed in a more general setting. That is, what are the necessary
and sufficient conditions for enable such transformation in an
arbitrary system?

Note that our solution assumes that the failures may affect
arbitrary nodes. As the system scale increases, this may lead
the designers to build the system with a lot of redundant links.
It would be interesting to study a problem with less potent
faults; for example where the placement of faulty nodes is
randomized.
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