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Abstract

We present Tiara — a self-stabilizing peer-to-peer network maintenance al-
gorithm. Tiara is truly deterministic which allows it to achieve exact perfor-
mance bounds. Tiara allows logarithmic searches and topology updates. It
is based on a novel sparse 0-1 skip list. We then describe its extension to a
ringed structure and to a skip-graph.

Key words:

1. Introduction

Due to the rise in popularity of peer-to-peer systems, dynamic overlay
networks have recently received a lot of attention. An overlay network is a
logical network formed by its participants across a wired or wireless domain.
The number of users of a peer-to-peer system may reach millions. Therefore,
the research focuses on designing scalable and efficient overlay networks |1,
2,3,4,5,6,7, 8 9]. Two usual optimization parameters are the speed of
searching for items in the network and the speed of topology updates.

A popular design of peer-to-peer networks is based on a sorted list or a
ring [2, 3, 5, 9]. To decrease the network diameter and improve the search
speed, the peers maintain a set of shortcut links to the nodes progressively
further away. A skip list [10, 11] is an alternative to a balanced tree structure
that is built on the basis of such list. It enables searches and topology updates
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that are proportional to the logarithm of the number of nodes in the network
|IN|. A skip graph [2, 3, 5] is an extension of a skip list is an extension of
a skip graph that preserves it search and topology update properties while
decreasing the network’s congestion — a measure of the ability of the network
to handle concurrent search requests and increasing its expansion — a measure
of network’s connectivity.

In open peer-to-peer systems, participants may frequently enter and leave
the overlay network either voluntarily or due to failure. The scale of a peer-to-
peer system dictates that faults and inconsistencies should be regarded as the
norm rather than an exception. Hence, overlay networks require mechanisms
that continuously counter such disturbances. Simplistic ad hoc approaches
that handle individual fault conditions do not adequately perform in case
of unanticipated, complex or systemic failures. In practice many peer-to-
peer systems, such as KaZaA, Bittorrent, Kademlia, use heuristic methods
in order to maintain their topology. Solutions presented in the research
literature focus on efficiency of the proposed structure while offering only ad
hoc solutions to fault tolerance.

One can argue that if nodes are randomly distributed, a sorted list or
ring with a sufficient number of redundant connections will not disintegrate
with high probability. However, it is not clear whether practical systems
always satisfy such randomization assumption. In addition, the problem of
generating high-quality trusted random numbers in a peer-to-peer systems
is far from trivial and it is known that an adversary can quickly degrade
the randomness of the peer-to-peer system even if perfectly random numbers
are reliably generated [12]. Moreover, if a faulty state is improbable, it
is not impossible. Failure to consider recovery from such states may lead to
catastrophic consequences. Thus, some researchers [13, 14] argue that overlay
network architects need to consider holistic approaches to fault tolerance and
recovery, such as self-stabilization.

In this paper we present Tiara. It is a self-stabilizing deterministic skip-
list. We extend Tiara to deterministic a skip graph. To the best of our knowl-
edge Tiara is the first such structure with the property of self-stabilization.

Related literature. Several algorithms presented in the literature focus on
stabilizing parts of overlay networks. Onus et al. [14] present several high-
atomicity solutions to linearizing an overlay network. Shaker and Reeves [15]
describe a distributed algorithm for forming a directed ring network topology.
Hérault et al. [16] describe a spanning tree formation algorithm for overlay
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networks. Cramer and Fuhrmann [17] show that ISPRP — a ring-based
overlay network is, in certain cases, self-stabilizing. Caron et al. [18] describe
a snap-stabilizing prefix tree for peer-to-peer systems. Bianchi et al. [19]
present a stabilizing search tree for overlay networks optimized for content
filters.

Several randomized overlay network algorithms have also been proposed.
Dolev and Kat [20] introduce the HyperTree and use it as a basis for their
self-stabilizing peer-to-peer system. Dolev et al. [21] describe a self-stabilizing
intrusion-tolerant overlay network.

Our contribution. In this paper we present Tiara. It stabilizes a novel 0-1
distributed skip list. Specifically, we demonstrate a self-stabilizing algorithm
for a sorted list and then show how to extend it to a self-stabilizing algorithm
for a skip list. Tiara can construct these structures without any knowledge
of global network parameters such as the number of nodes in the system,;
each node utilizes only the information available to its immediate neighbors.
Moreover, Tiara preserves network connectivity so long as the initial network
is connected. That is, Tiara reconstructs the connectivity of the base sorted
list on the basis of skip list links. We rigorously prove Tiara correct in an
asynchronous communication register based model.

We show how Tiara can be extended to form ring structures and prove
the correctness of the resultant algorithm. On the basis of Tiara we de-
velop an algorithm that maintains a deterministic skip graph. We prove that
the search cost in this skip graph is logarithmic while the update cost is
polylogarithmic. Note that the congestion and expansion of a skip list are
in O(|N|) and ©(1/|N|) respectively. We analyze the skip graph produced
by our extension to Tiara and demonstrate that its congestion decreases to
O(|N|'/%93) and its expansion correspondingly increases to Q(1/|N|/!093),

Organization of the paper. First, we introduce our computational model.
Then, we describe a self-stabilizing algorithm for the sorted list and formally
prove it correct. We then extend it to a ringed structure and a skip graph.
We complete the paper with future research directions and open problems.

2. Model

A peer-to-peer system consists of a set N of processes. Each process has
a unique integer identifier. A process contains a set of variables and actions.



An action has the form (name) : (guard) — (command). name is a label,
guard is a Boolean predicate over the variables of the process and command
is a sequence assigning new values to the variables of the process. For each
pair of processes a and b, we define a Boolean variable (a, b) that is shared
among them. Two processes a and b are neighbors if this variable is true.
The neighborhood of a process a is defined as the set of all of its neighbors.

Sets of neighbors may be maintained on different levels. A neighborhood
of process a at level i is denoted as a.i. NB. The right neighborhood of a,
denoted a.i.R, is the set of neighbors of a with identifiers larger than a.
That is, a.i. R = {b: b € a.i.NB : b > a}. Similarly, the left neighborhood of
a, denoted a.i.L, are a’s neighbors with smaller identifiers. That is, a.i.L =
{b:b€b.i.NB:b< a}. Naturally, the union of a.i.R and a.i.L is a.i.NB.

When describing a link we always state the smaller identifier first. That
is, a is less than b in (a,b). Two processes a and b are consequent if there is
no process ¢ whose identifier is between a and b. That is, cnsq(a,b) = (Ve
(c < a)V (b<c)). The length of a link (a,b) is the number of processes ¢
such that a < ¢ < b. By this definition the length of a link that connects
consequent processes is zero.

A system state is an assignment of a value to the variables of each process.
An action is enabled in some state if its guard is true at this state. A
computation is a maximal fair sequence of states such that for each state s;,
the next state s;,1 is obtained by executing the command of an action that is
enabled in s;. This disallows the overlap of action execution. That is, action
execution is atomic. The execution of a single action is a step. Maximality
of a computation means that the computation is infinite or it terminates in
a state where none of the actions are enabled. Such state is a fizpoint. In
a computation the action execution is weakly fair. That is, if an action is
enabled in all but finitely many states of an infinite computation then this
action is executed infinitely often. This defines an asynchronous program
execution model.

A state conforms to a predicate if this predicate is true in this state;
otherwise the state wviolates the predicate. By this definition every state
conforms to predicate true and none conforms to false. Let 1" and U be
predicates over the state of the program. Predicate T is closed with respect
to the program actions if every state of the computation that starts in a
state conforming to 7" also conforms to T'. Predicate T' converges to U if T
and U are closed and any computation starting from a state conforming to
T contains a state conforming to U. The program stabilizes to T if true
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process u

variables

u.0.NB — set of neighbor processes of .
shortcuts

u0.L={z:2€u0.NB:z<u}, u.00.R={z:2€u.0.NB:z>u}
actions

grow right: (s € u.0.R) A (t € s.0.L) A (t ¢ u.0.NB) —
w.0.NB := u.0.NB U {t}

trim right: (s,t € u.0.R)A(t € s.0.L)AN(Vz:2€u0.R: 2<s)A(Vz:2€s0.L:2z>u) —
u.0.NB := u.0.NB/{s}

grow left and trim left are similar

Figure 1: The bottom component of Tiara (b-Tiara).

converges to T'. Since we will focus on self-stabilizing algorithms for overlay
networks, and self-stabilization is only possible for overlay networks that
are initially connected, we identify with true any state where the graph is
connected.

While most of our program model is fairly conventional, we would like
to draw the reader’s attention to our way of modeling overlay network link
management. If one process updates its neighborhood, the change affects
the neighbors of other processes. For example, if process a adds b to its
neighborhood by creating a link (a, b), this also means that a is atomically
added to b’s neighborhood. If a removes b from its neighborhood, then also
a is removed from b’s neighborhood.

3. Core Tiara Description, Correctness Proof and Complexity Es-
timate

In its core, Tiara contains two components: the bottom component (b-
Tiara) that maintains the processes at the lowest level in sorted order and
the skip-list component (s-Tiara) that constructs the higher levels of Tiara.
These components are interdependent. s-Tiara relies on b-Tiara to sort the
lowest level, while s-Tiara may append links to the bottom level to preserve
the connectivity of the system.

We present the components and prove them correct bottom up starting
with b-Tiara. However, the presentation of b-Tiara is divided into two parts:
the growing and trimming. We prove the stabilization of the growing part
first as the stabilization of s-Tiara depends on its correct operation. We prove
the stabilization of the trimming part last as it depends on the stabilization
of s-Tiara.



3.1. The Bottom Component of Tiara (b-Tiara) and Stabilization of Grow

Description. The objective of b-Tiara is to transform the system into
a linear graph with the processes sorted according to their identifiers. The
algorithm for b-Tiara is shown in Figure 1. The only variables that b-Tiara
manipulates are the neighbor sets for each process u — u.0.NB. The right
neighborhood of u, denoted u.0.R is a subset of u.0.NB with the identifiers
greater than w. Since u.0.R can be computed from u.0.NB as necessary,
u.0.R is not an independent variable but a convenient shortcut. The left
netghborhood u.0.L is defined similarly.

Each process u has two pairs of actions: grow and trim that operate to
the right and to the left of u. Action grow right is enabled if u discovers that
its right neighbor s has a left neighbor ¢ that is not a neighbor of u. In this
case u adds t to its neighborhood. That is, u adds a link (u,t) to the graph.
Even though w is the left neighbor of s, £ may be either to the left or to the
right of u. That is ¢ < uw or ¢ > u. Regardless of this relation, u connects to
t. Action grow left operates similarly in the opposite direction.

Action trim right eliminates extraneous links from the graph. This action
removes link (u, s) if u has a neighbor s that satisfies the following properties.
The guard for trim right stipulates that there has to be another process ¢ that
is a neighbor of both w and s. Hence, if (u,s) is removed the connectivity
of the graph is preserved. Also, all right neighbors of u must be smaller
than or equal to s and all left neighbors of s are greater than or equal to u.
The latter condition is necessary to break symmetry and prevent continuous
growing and trimming of the same link. Action trim left operates similarly in
the reverse direction. We show an example operation of b-Tiara in Figure 2.

Correctness proof. Denote B(N) the graph that is induced by the pro-
cesses of the system and the links of b-Tiara. We define the following predi-
cate: GZ = (Va,b € N :: cnsq(a,b) = 3(a,b)). That is, GZ states that two
consequent processes are also neighbors.

Lemma 1. If a computation of b-Tiara starts from a state where B(N) is
connected, it is connected in every state of this computation.

Proof. The actions of b-Tiara do not disconnect B(N). Indeed, the actions
that remove links are trim right and trim left. Consider trim right. It removes
a link (a, b) if there exists a node ¢ such that there are links (a, ¢) and (c, b).
Thus, the removal of (a,b) does not disconnect the graph. The argument for
trim left is similar. O
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(f) trim left at a or trim right
at ¢ removes (a, ¢) and brings
the system to the legitimate
state.

(e) grow right is enabled at a
and b. It adds (a,b).

Figure 2: Example computation of b-Tiara. The processes are listed in in-
creasing order of their identifiers.

Lemma 2. If a computation of b-Tiara starts from a state where B(N) is
connected, b-Tiara stabilizes to GT.

Proof. To prove the lemma we need to show that (i) GZ is closed under the
execution of the actions of b-Tiara and (ii) regardless of the initial state,
every computation contains a state satisfying GZ. Let us consider closure
first. The grow actions may not violate GZ as they only add links. The
trim action may affect GZ by disconnecting two processes a and b. However,
trim right, which removes link (a,b), is only enabled at process a if there is
a process c¢ such that a < ¢ < b. Therefore, if a and b are consequent, trim
right is disabled. The reasoning is similar for trim left. Hence the closure.
To show convergence, let us assume that there are two consequent pro-
cesses a and b that are not neighbors. That is b € a.0.NB. Since the graph
itself is connected, there is a path p between a and b. If there are multiple
paths, we shall consider the shortest one. Let the length of p be the sum of
the lengths of its constituent links. The execution of a trim action does not
change the length of p. The execution of any of the grow actions does not
increase the length of p. Path p must contain at least one segment d, e, f
such that both d and f are either smaller than e or larger than e. In this
case grow right, or respectively, grow left, is enabled in both d and f. The
execution of this action decreases the length of the path. Hence, throughout
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the computation, the length of p decreases until it is zero and a and b are
neighbors. The lemma follows. O

3.2. The Skip List Component of Tiara (s-Tiara)

Description. The objective of s-Tiara is to establish a skip list on top
of the linearized graph created by b-Tiara. The structure maintained by
s-Tiara is a sparse 0-1 skip list. At each level i, node u maintains a set of
neighbors w... NB. Out of this set, the rightmost and leftmost neighbors are
defined as right and left skip links: w.i.rs and wu.i.ls. A node may not have
a right or left skip link at some level if it is on either end of the list.

We denote right and left skip list neighbors of u at level ¢ — 1 as v and
x respectively. Nodes w and y are respectively right and left neighbors of v
and x at the same level. We illustrate this notation in Figure 3 as we will be
using it extensively throughout the correctness proof of the algorithm.

1 oy

1—1 &y — 0, — 0, —90, 9,

Figure 3: Aliases for neighbors of w in s-Tiara. v = w.(i — 1).rs, w =
v.(i—1)rs,z =u.(i—1).ls, and y = x.(i — 1).ls, where u.i.rs and u.i.ls are
right and left skip-list neighbors of u at level 7, respectively.

If both nodes u and v exist at level ¢ and u.i.rs = v then this link is 0-skip
link. If v and w exist at level ¢ and w.i.rs = w, then this link is a 1-skip
link. A process that exists at level ¢ — 1 is up if it also exists at level 4, it
is down otherwise. If a process that 1-skip link spans is down it is a cage.
For example u, v and w form a cage if w.i.rs links to w and v is down. The
middle process is inside the cage. Refer to Figure 4 for the illustration of
the concept of a cage. The sparse 0-1 skip list has two rules of organization.
First, all links are either 0 or 1 skip links. Second, if a node is on level ¢ and
it is not on the end of the list on level i — 1 then at least one of its links is a
1 skip link.

The the algorithm is shown in Figure 5. As before, to simplify the presen-
tation we introduce a few shortcuts. Sets u.i.R and u.i.L are the subsets of
u.i.NB that contain the identifiers of u’s neighbors with respectively higher
and lower identifiers than u. We define u.i.rs to be the neighbor with the
link of the smallest length among w.2.R. To put another way, u.i.rs connects
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(a) u is adjacent (b) w is inside the (c) u is adjacent
to the cage on the cage. to the cage on the
left. right.

Figure 4: Possible cages with respect to node wu.

to u’s right neighbor with the smallest identifier. Note that u.i.rs is L if
u.t.R is empty. Shortcut w.i.ls is defined similarly.

Predicate exists(z,7) is true if node z is present at all and if z.i. NB is
not empty. Node v may read only its immediate neighbor states. Thus, u
may only invoke exists on its neighbors and itself. Observe that exists is
defined to return false if it is invoked on a non-existent node. For example,
if u is at the right end of the list at level ¢ and w invokes exists(u.i.rs,1).
In this case exists(u.i.rs,i) returns false. Predicate valid(u, ) captures the
correct state of the system. Specifically, it states that if u exists at level ¢
then the length of the skip links should not be more than 1 and either x or
v does not exist at level 2. The latter condition guarantees that at least one
link of w is a 1 skip link.

The actions of s-Tiara are as follows. Action upgrade right establishes a
link to w at level ¢ if v is not up. That is, this link is a 1 skip link. If u
is not up, upgrade right brings u up to level 7. Action upgrade left operates
similarly in the opposite direction. Actions bridge right and left establish 0
skip links if both nodes being connected are up. Action prune eliminates the
links other than w.i.rs and w.i.ls from u.:.N B. In case the links are not 0 or
1 skip, action downgrade right completely removes the right neighborhood of
u. Action downgrade left operates similarly. And the last action downgrade
center eliminates three consecutive up nodes. This ensures that there could
not be two consecutive 0 skip links. An example computation of s-Tiara is
shown in Figure 6.

Correctness proof. Our proof proceeds as follows. We state five predicates
on the level ¢ of s-Tiara. In the sequence of lemmas we show that if the lower
levels of s-Tiara have stabilized, then level i of s-Tiara stabilizes to these
predicates. The conjunction of these predicates implies the stabilization of
level ¢ of s-Tiara. We then use this fact as an inductive step in the convergence



process u
parameter i > 0: integer — level of the skip list
variables
u.i.NB — set of neighbor processes of u at level ¢
shortcuts
v=u.(i—1)rs, w=v.(i —1)rs, = u.(t —1).ds, y=z.(: — 1).Is
ui.R={z:z€ui.NB:z>u}, ui.L={z:2 € uwi.NB:z <u}
(s:s€uiR: (Vt:t€wiR:t>s)), ifuiR#Q
1, otherwise
u.i.ls is defined similarly
exists(z,i) = ((z # L) A (2.i.NB # 2))
valid(u,1) = (((w.ids = y) V (w.ilds = x) V (u.i.ls = L)) A (u.irs = w)) V
(((wirs =v) V (uirs =w)V (wirs = L)) A (u.ils =y)) vV
((w.ils = L)A (wirs= 1)) v
—(exists(x,7) A exists(u, ) A exists(v,7)))

u.g.rs =

actions for ¢ > 0

upgrade right: valid(u, i) A —exists(v,i) A (v # L) A (w # L) A (u.irs #w) —
w.i.NB := w.i. NBU {w}

upgrade left is similar

bridge right: valid(u, i) A exists(u, i) A exists(v, ) A (w.i.rs # v) —
w.t.NB := u.i. NB U {v}

bridge left is similar

prune: valid(u, i) A exists(u, i) A (u.i.NB # {u.i.rs,u.ils}) —
u.0.NB := w.0.NB U u.i. NB/{u.i.rs,u.i.ls},
u.i.NB := {u.i.rs,u.i.ls}

downgrade right: —wvalid(u,i) A =((u.i.rs =v) V (u.i.rs = w) V (wirs= 1)) —
%.0.NB :=u.0.NBUu.i.R,
uw.i.R:= &

downgrade left is similar

downgrade center: —valid(u, i) A exists(z, 1) A exists(u, i) A exists(v, i) —
u.0.NB :=u.0.NB Uu.i.NB,
u.i.NB := &

Figure 5: The skip list component of Tiara (s-Tiara).

proof of stabilization of s-Tiara.

Before proceeding with the proof, we introduce notation and terminology
we are going to use. Denote S(NNV) the graph induced by the processes of the
system as well as the links of b-Tiara and s-Tiara. Throughout the discussion
we consider process u and its neighbors as defined in the description of s-
Tiara. A node wu is middle at level ¢ if it has both left and right neighbors
as well at least one two hop neighbor. That is, middle(u, i) = (exists(v,i —
1) N exists(x,i — 1) A (exists(y,i — 1) V exists(w, i — 1))).

Below are the predicates to which s-Tiara stabilizes. The good_links.:
predicate states that process u connects to processes at most two hops away.
Predicate one_links.i enforces the rules of 0-1 skip list. Specifically, it stipu-
lates that u should either be inside the cage or should have adjacent cages to
the left or to the right. Predicates zero_right_links.i and zero_left_links.:
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(a) Level 1. downgrade right is en-
abled at f, downgrade left is enabled
at ¢ and upgrade left is enabled at e.
These actions remove (f,7) and add

(e, c).
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I
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I
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(c) Level 1. upgrade right is enabled
at a, upgrade left is enabled at c,
bridge right is enabled at e and bridge
left is enabled at f. These actions
add (a,c) and (e, f).

3 ®c—Of

: -
R —

0 "af°bf°‘c70df°‘e7"f*'g7°‘hf°7:

(e) Level 2. upgrade right is enabled
at a and upgrade left is enabled at e.
These actions add (a, e).

2 o, — 9
I |

1 .(l - .b -C

0 0, — 0, — 0. —0; 0, 07 _0; 9, —9;

(b) Level 1. downgrade center is en-
abled at b, upgrade right is enabled
f and upgrade left is enabled at h.
These actions remove (a,b) and add

(f:h).
3 . — O
.
2 o, — & o, —Of
| I
1 ®, o o, —Of e

0 ®%a—®%—0—0;—0 —0f 0 9, 9

(d) Level 2. downgrade right is en-
abled at a and downgrade left is en-

abled at b. These actions remove
(a,b).
3 o, —9Of
I
2 o o — .f
\
1 .‘a . .‘e - .f L

0 0, — 0, —0. —0; 0, 07 _0; 9, 0,

(f) The system has reached a legiti-
mate state.

Figure 6: s-Tiara. We list the processes in the increasing order of their
identifiers. b-Tiara has stabilized to GZ. In each state we only mention the
enabled actions that are relevant to the discussion. We do not illustrate the
operation of prune.
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ensure that the O-links are in place. That is, the processes that are con-
sequent at level ¢ — 1 and are up, are also connected at level i. Predicate
only_good_links.i states that the neighborhood of u does not have links
other than rs and [s.

good_links.i = (VYu :: —exists(u.i) V
((w.irs =v) V (uirs =w) V (wirs = L) A
(w.ils =y) V (u.irs =) V (u.ils = 1))

one_links.s = (Vu : middle(u, 1) :
(—exists(u, i) A (z.i.rs = v) A (v.ils = x)) V
(—exists(v, i) A (mexists(w,i — 1) V (u.i.rs = w))) V
(—exists(z, i) A (mexists(y,i — 1) V (u.i.ls = y))))

zero_right_links.i = (Vu :: —exists(u.i) V mexists(v.i) V (u.i.rs = v))
zero_left_links.i = (Vu :: —exists(u.t) V —exists(z.i) V (u.i.ls = z))

only_good_links.i = (Vu :: —exists(u.1) V (u.i. NB = {u.i.rs,u.i.ls}))

Lemma 3. Assuming that neighbor relations at level i — 1 do not change
throughout the computation, s-Tiara stabilizes to good_links.:

Proof. In proving this and consequent lemmas we show a stronger property
of closure and convergence of the predicate for a particular process u. This
implies the stabilization of the predicate for all u at the specified level.

Let us show closure first. The topology at level ¢+ — 1 does not change.
Hence once w.i.rs points to one or two hop neighbors v or w, the neighbor’s
relative positions do not change. Similar argument applies to u.i.ls. Let us
consider the actions and how they affect good_links.i. Let us start with the
actions of u. Actions upgrade right and bridge right do not violate the pred-
icate since they set u.i.rs to respectively w and v. Similar argument applies
to upgrade left and bridge left. Action prune does not affect the predicate
since it does not modify either w.i.rs or w.i.ls. Neither do downgrade right
and downgrade left since they respectively set u.i.rs and u.i.ls to L. Action
downgrade center removes u from level i altogether and hence cannot violate
the predicate. The nodes further than two hops away never connect to wu.
Hence the actions of other nodes cannot violate the predicate either.

Let us now address convergence. The predicate can be violated only if u
is up. It is violated if either w.i.rs or u.i.ls points to a node other than u’s
one or two-hop neighbors. In this case either downgrade right or downgrade
left are enabled that bring the links in compliance with the predicate. O
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Lemma 4. Assuming that neighbor relations at level i — 1 do not change
throughout the computation and good_links.i is satisfied, s-Tiara stabilizes
to one_links.:

Proof. As a first step, we would like to make the following observation: once
a cage is formed, it is never destroyed. For example, assume that u, v and
w form a cage. The actions of u, and, similarly, w do not affect this link.
Also, if v is down, the only actions it can use to come up is upgrade right
or upgrade left. However, both are disabled since u and v are up. This
observation guarantees the closure of one_links.i.

Let us discuss convergence. Assume that u is down. We consider two
cases: u is initially down and w is initially up and never goes down. If u is
down, the only way, v can come up is through execution of upgrade right or
upgrade left at u, w or y. In all cases cages adjacent to u are formed and
the predicate is satisfied. If u is down, then upgrade right is enabled in x
and upgrade left in v. Thus if u does not come up, then = or v execute these
upgrade actions. In which case a cage is formed with u inside. This satisfies
the predicate as well.

Assume that u is up. If it ever goes down, the foregoing discussion applies.
The only remaining case is if u stays up for the remainder of the computation.
Throughout a computation of b-Tiara a node can come up only once. Indeed,
a node comes up only if it forms a cage. Since a cage is never destroyed, the
node never goes down. This means that a node can go down only once. Let
us consider the state of the computation where u’s neighbors x and v do not
change their up and down position. Both x and v cannot be simultaneously
up in this state, as it enables downgrade center at u. The execution of this
action brings u down. However, we assumed that u stays up for the remainder
of the computation. Thus, either z or v are down. Assume, without loss of
generality, that v is down. If w does not exist at level 7 — 1, one_links.i is
satisfied. Assume that w exists. If link u.i.rs = w is present, one_links.i is
also satisfied. However, if it is not present, then upgrade right is enabled in u.
Its execution establishes the link, forms a cage and satisfies the predicate. [

Lemma 5. Assuming that neighbor relations at level i — 1 do not change
throughout the computation and good_links.: as well as one_links.i are
satisfied, s-Tiara stabilizes to zero_left_links.i and zero_right_links.;

Proof. We prove the lemma for zero_right_links.; only. The proof for
zero_left_links.; is similar. Let us argue closure. If one_links.i is satis-
fied processes do not go up or down. Thus, the only actions that can be
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enabled are bridge and prune. The execution of either action maintains the
validity of zero_right_links.i. Hence the closure.

Let us address convergence. The predicate is violated only if the neighbor
processes u and v are both up and they do not have a link at level 7. If
one_links.: is satisfied, u forms a cage to its left, while v forms a cage to its
right. Recall that the cages are never destroyed. In this case u has bridge
right while v has bridge left enabled. When either action is executed the
predicate is satisfied. O

Lemma 6. Assuming that neighbor relation at level i — 1 does not change
throughout the computation and good_links.7, one_links.i,
zero_right_links.i as well as zero_left_links.i are satisfied, s-Tiara stabi-
lizes to only_good_links.¢

Proof. (outline) The satisfaction of good_links.i, one_links.i,

zero_right_links.i and zero_left_links.: leaves only one possible action en-
abled — prune. In this case there are links in w...NB besides u.i.rs and
u.i.ls and they are moved to u.0.NB. O

Lemma 7. If a computation of Tiara starts from a state where S(N) is
connected, this computation contains a state where B(N) is connected.

Proof. The non-trivial case is where S(N) is connected while B(NN) is not.
That is, the overall graph connectivity is achieved through the links at the
higher levels of Tiara. Let X and Y be two graph components of B(V) such
that they are connected in S(N). Let ¢ > 0 be the lowest level where X and
Y are connected. Assume, without loss of generality that there is a pair of
processes a € X and b € Y, such that a.t.rs = b. In this case downgrade
right is enabled at a. The execution of downgrade right connects X And Y
in B(N). The lemma follows. O

Define

SZ = (Vi:i>0:good_links.i A one_links.iA
zero_right_links.i A zero_left_links.i A only_good_links.7)

Lemma 8. Tiara stabilizes to ST.

Proof. According to Lemma 7, every computation contains a state where
B(N) is connected. Due to Lemma 2, if B(V) is connected, b-Tiara sta-
bilizes to GZ. The remainder of the proof is by induction on the levels of
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s-Tiara. If B(N) is connected and GZ is satisfied the topology of the level
0 does not change. Hence, the requisite five predicates are vacuously satis-
fied. Assume that these predicates are satisfied for all levels 7 — 1. Once the
predicates are satisfied, none of the actions for processes at level i — 1 are
enabled. This means that the topology at this level does not change. Ap-
plying Lemmas 3, 4 5 and 6 in sequence we establish that the five predicates
are satisfied at level i. Hence the lemma. O

3.3. Stabilization of Trim in b-Tiara

Link (a, b) is independent if there exists no link (¢, d) different from (a, )
such that ¢ < a and b < d. Consider an arrangement where the nodes are
positioned in the increasing order of their identifiers.

Lemma 9. If a computation of b-Tiara that starts in a state where the graph
1s connected and contains an independent link of non-zero length, this com-
putation also contains a suffix of states without this link.

Proof. Let (a,b) be an independent link of non-zero length. None of the
grow actions create independent links. The only action that makes a link
independent is a trim of another independent link. Thus, if an independent
link is deleted, it is never added. Thus, to prove the lemma it is sufficient to
show that (a,b) is eventually deleted.

Link (a, b) is non-zero length. This means that the node ¢ consequent to
a is not the same as b. In other words a < ¢ < b. b-Tiara stabilizes to GZ
which ensures that a and ¢ are connected. If ¢ and b are not connected, both
of them have a grow action enabled that connects them. Observe that (a, b)
is independent. This means that all the right neighbors of a are to the left
of b and all the left neighbors of b are to the right of a. Moreover, we just
showed that there exists a node ¢ such that a < ¢ < b and there are links
¢ € a.R and ¢ € b.L. This means that trim right is enabled at a and trim
left is enabled at b. The execution of either action deletes (a,b). O

We define the following predicate:
7T = (VYa,b € N :: d(a,b) = cnsq(a, b))

Lemma 10. If Tiara starts in a state where it satisfies GI and ST, then it
stabilizes to TT
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Proof. (outline) The conjunct of G and 77 is closed under the execution of
b-Tiara. Note also that if GZ and SZ are satisfied, then the actions s-Tiara
are disabled. Hence the closure of 77.

Let us consider convergence. Since the actions of s-Tiara are disabled,
they do not add links to B(N). If 7Z does not hold, then there is at least
one independent link of non-zero length. If the graph is connected the grow
actions never create an independent link. Consider a computation of b-
Tiara that starts in an illegitimate state. Let [ be the length of the longest
independent link. Since the state is not legitimate, [ > 0. According to
previous discussion, new links of length [ do not appear. Let (a,b) be the
independent link of length I. According to Lemma 9, (a,b) is eventually
removed. Thus, all links of length [ are eventually removed. The lemma can
be easily proven by induction on [. O

The discussion in this section culminates in the following theorem.

Theorem 1. Tiara stabilizes to the conjunction of GZ, ST and TZ.

4. Searches and Updates in Tiara

Searches. Tiara maintains a skip list [10, 11] which is equivalent to a
distributed balanced search tree. Hence the searches in Tiara proceed similar
to searches in such trees. Let b be a right neighbor of a at some level i of Tiara.
The right interval of a, denoted [a,b), is the range of identifiers between a
and b. Left interval is defined similarly. If a does not have a right neighbor,
its interval is not finite. That is, a’s interval contains all process identifiers
greater than a. Similarly, if a lacks left neighbor it’s interval is infinite on
the left. Thus in any level, the collection of intervals contains the complete
range of identifiers.

Suppose a, ¢ and b are consequent at level i — 1 of Tiara and a and b are
consequent at level 7. That is ¢ is in the cage. Since the identifiers are sorted,
¢ belongs to the interval [a, ). If a node is down, then one if its neighbors is
up. Thus a client process that has a pointer to a node in Tiara and wishing
to advance up the skip list only needs to examine the node’s neighbors.

Assuming that a client process connects to an arbitrary node in Tiara, the
search proceeds first upward then downward in the skip list. In the upward
phase, the client is moving up the list looking for the node whose interval
contains the identity. Since every level contains the complete id-range, this
phase terminates. Once the range is found, the client advances downward
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evaluating the cages it encounters to narrow the search range. This procedure
continues until the desired node x is located or it is established that x belongs
to the interval of the consequent nodes at the bottom level. The latter case
means that = is not present in the system. There are O(log|N|) levels in
Tiara. Thus, the upward and the downward phases take O(log|N|) number
of steps.

Joins and leaves. We assume that each process has two read-only Boolean
variables maintained by the environment: join and leave. Since the vari-
ables are read-only, stabilization of their operation is the responsibility of
the environment. Let us consider join operation first. The joining node x
connects to an arbitrary node of the network. The variable join is set to
true. We assume that the environment may only set join to false after the
node successfully inserts itself at the bottom level of Tiara. The joining node
executes a search to find the bottom level interval [a,b) to which it belongs.
Then, x makes a and b its right and left neighbors respectively. After a and
b discover the presence of a node whose join is set to true, they remove link
(a,b). Then, the upper levels of Tiara adjust. The insertion of the node at
the bottom level entails at most a constant number of steps at each level of
Tiara. Since the search takes at most O(log|N|) steps, the total number of
steps required for node join is also in O(log|N]|).

Let us discuss the leave operation. The environment sets leave to true to
indicate that the node x requests disconnect. We assume that leave cannot
be set when join is set and it cannot be set back to false until the node
disconnects. When the right and left neighbors of x notice that the leave of
x is set to true, the neighbors add a link bypassing x at the bottom level.
Node x can then disconnect. The higher levels of Tiara execute the regular
Tiara actions to accommodate the missing node. At most a constant number
of adjustment steps is required at each level. Hence the total number of steps
required for the node to leave Tiara is in O(log|N]).

5. Extension to a Ring (r-Tiara)

Outline. Tiara can be extended to a ring structure similar to Chord [9]. We
call this extension r-Tiara. The idea is as follows. For b-Tiara, as well as for
each level of s-Tiara, the lowest id-process needs to add a special wraparound
link to the highest-id process. This wraparound link maintenance is carried
out by the process without left neighbors. After b-Tiara and s-Tiara stabilize,
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the lowest-id process at each level is the only such process. The highest-id
process at each level is the only process without right neighbors.

Once the process determines that it has no left neighbors it starts posi-
tioning the wraparound link. Essentially, the process continues to move the
link to a right neighbor of the destination of the link. This movement stops
once the wraparound link reaches the highest-id process at that level. If the
maintainer of the wraparound link determines that it has left neighbors, it
destroys its wraparound link.

process u

variables
u.0. NB, set of neighbor processes of u.
u.0. WA, wraparound link set

shortcuts

u0.L={s:s€ul0.NB:s<u}, u.R={s:s €u.0.NB:s>u}
actions
wrap: (u.0.L = @) A (u.0. WA = &) A (u.0.R # &) —

u.0. WA := {s|]s€ ul0.R: (Vz:z€u0.R: 2z <s)}
extend: (u.0.L = @) A (t € u.0. WAUu.0.R) A
(s,t:(s€t0.RUU.0.R): (Vz:2€u0.WA:s>2)) —
u.0. WA := u.0. WA U {s}
purge: (w0 L=2)AN(s:s€ul.WA: (Fz:z€u0.WA:u<s<z)) —
w.0.NB := u.0.NB U {s},
u.0. WA := u.0. WA/{s}
expunge: (u.0.L#@)AN(s:s€ul0.WA:s>u) —
u.0.NB := u.0.NB U {s},
w.0. WA := u.0. WA/{s}

Figure 7: The ring component of Tiara (r-Tiara)

Description. We describe the operation of r-Tiara at the bottom level, al-
though it would execute on all levels. The objective of r-Tiara is to construct
a ring on the level. This ring is established by connecting the lowest-id pro-
cess on the level to the highest-id process on the level, which is respectively
min(N) and max(N) on the bottom level. The code for r-Tiara is shown in
Figure 7. In addition to the neighbor set, r-Tiara maintains a wraparound set
(u.0. WA). Each process u has four actions: wrap, extend, purge and expunge.
Action wrap is enabled at the lowest-id process. Specifically, wrap is enabled
if u does not have left neighbors, has a right neighbor, and currently is not
participating in a wraparound link. In this case, u adds the rightmost process
it has in its neighborhood to a wraparound variable. Action extend grows
the wraparound link towards max(N) on the bottom level. This action adds
to the wraparound set a neighbor of u or a neighbor of a neighbor of u that
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has an identifier greater than any process id already in the wraparound set.
When superfluous links exist in the wraparound variable, they are removed
by the purge action. In the case where u gains a left neighbor and is currently
maintaining the wraparound variable, action expunge removes all links to the
right of u from the wraparound variable. Both purge and ezpunge move links
to the neighbor variable to prevent the possibility of partitioning the graph.
The operation of r-Tiara on the bottom level is illustrated in Figure 8.

o, — @, o, o — O, o, — 0, o, — 0 — 0,
v v

(a) wrap is enabled at a and
grow right is enabled at c.
The wraparound link (a, ¢) is
established and link (¢, d) is
added.

o

& — 9 o] — O¢

(c) extend is enabled at a,
trim right is enabled at a
and trim left is enabled at c.
The wraparound link is ex-
tended to d and link (a,c) is
removed.

0, e

o

o — O,
(e) purge is enabled at a.
Links (a,c) and (a,d) are
moved to a.0.NB.

(b) expunge is enabled at
d, trim right is enabled
at ¢, trim left at e and
grow left is enabled at c.
The wraparound link (d,e)
is moved to d.0.NB. Link
(¢,€) is removed. Link (b,¢)
is added.

.a;.b o, o; o
(d) extend is enabled

at a, which extends the
wraparound link to e.

.ai.b .(17.d7.e
(f) The system has reached
a legitimate state with only

one wraparound link and
min(N).0. WA = maz(N).

Figure 8: Example computation of r-Tiara. The processes are listed in in-
creasing order of their identifiers. Not all enabled actions are listed.

Correctness proof. We denote R(N) the graph induced by the processes,
the b-Tiara links (the level 0 s-Tiara links) and the wraparound links. We
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define the following predicate

RZ = (min(N).0.WA =maz(N)) A
(Va € N : (a # min(N)) A (a # max(N))) : a.0. WA = @)

That is, RZ states that the only wraparound link that the bottom level has
connects the nodes with the largest and smallest identifiers.

Lemma 11. If a computation of b-Tiara, s-Tiara and r-Tiara starts from a
state where B(N) is connected, it stabilizes to GI N ST N RZL.

Proof. Let us address the closure first. We have to consider the influence of
the actions of r-Tiara on GZ since some of them modify the variables of b-
Tiara. Fortunately, purge and expunge are the only such actions. Moreover,
they cannot invalidate GZ since they only add links to the neighborhood of
a node and do not remove them. The actions of r-Tiara do not influence
ST. Let us attend to the closure of RZ. If GZ AN SZ AN RZ is satisfied,
the only node on the bottom level that has an empty left neighborhood is
a = min(N). Thus, only a may have wrap and eztend enabled. Yet, RT
stipulates that the wraparound variable of a is not empty. Thus, wrap is
disabled when RZ holds. Also if RZ holds, the wraparound link connects a
and b = max(N). Node b has an empty right neighborhood (b.0.R). Thus,
extend is also disabled at a. Let us discuss expunge. If RZ holds, b is the
only node whose left neighborhood is not empty yet b.0. WA # &. However,
for b, b.0. WA = a which is less than b. Hence, expunge is disabled as well.
Action purge is disabled by definition if RZ holds.

Let us now address the convergence of the predicates. r-Tiara does not
affect the convergence of G7 or ST as it can only add links to a node’s neigh-
borhood but not remove them. Thus, we can prove the convergence of RZ
while G A 87 is satisfied. If a = min(N) on the bottom level does not have
a wraparound link, wrap is enabled. The execution of wrap creates this link.
No other wraparound links can be created. That is, if a computation starts
from a state where a has a wraparound link, the number of wraparound links
in the states of this computation can only decrease. Consider a wraparound
link whose left (smaller) incident link is not a. ezpunge is enabled at this
node. The execution of expunge removes such link. That is, each compu-
tation contains a suffix where a is incident to the only existing wraparound
link. If b = max(NN) on the bottom level is not incident to this link, extend
is enabled at a. If extend is executed the identifier of the right incident node
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increases. Thus, the computation contains a state where b is incident to this
link. If b € a.0. WA and a.0. WA # b, then purge is enabled at a. When
executed only b will remain in a.0. WA.

That is, if GT A ST is satisfied, a computation of r-Tiara contains a suffix
where in each state there is a single wraparound link that connects processes
with the minimum and maximum ids on the level. That is r-Tiara converges
to RZ. O

Lemma 12. If a computation of b-Tiara, s-Tiara and r-Tiara starts from
a state where R(N) is connected, this computation contains a state where

B(N) and S(N) are connected.

Proof. (outline) The only non-trivial case is where the computation of b-
Tiara, s-Tiara and r-Tiara start from a state in which R(N) is connected
while B(N) and S(N) are not. That is, the overall graph connectivity is
achieved via wraparound links.

Let X and Y be two disconnected graph components of B(/N) and S(N)
such that there is a pair of processes a € X and b € Y and a.0. WA = b. Let
us consider each component as a separate system. According to Lemma 11,
r-Tiara arrives at a state where the only existing wraparound link connects
the processes with the smallest and largest identifiers in each component.
That is link (a, b) is no longer a wraparound link. r-Tiara does not delete the
wraparound links. Instead, it moves them to B(N). Thus, the computation
contains a state where the (a,b) link belongs to B(N). That is, the graph
components X and Y are connected. The lemma follows. O

Lemmas 11 and 12 combined yield the following lemma

Lemma 13. If a computation of b-Tiara and s-Tiara with r-Tiara starts
from a state where R(N) is connected, it stabilizes to GIT N ST N RZ.

6. Extension to Skip Graph (g-Tiara)

Outline. The disadvantage of using skip lists for peer-to-peer systems is
their high congestion. Specifically, a large number of requests have to go
through the nodes at the highest level of the skip-list. These nodes become
a bottleneck. Moreover, the failure of a single node disconnects a skip list
without the ring extension. To mitigate these problems we propose to extend
Tiara to concurrently construct multiple skip lists forming a skip graph. We
call this component g-Tiara.
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The idea is as follows. Recall that at each level 7+ — 1, core Tiara does
not upgrade at least one-third of the nodes. The upgraded nodes form a
list at level ¢ while the remainder do not form any links in higher levels. In
g-Tiara, the remaining nodes form their own list at level /. This list is used
to concurrently run the next level of Tiara. In our description we ignore the
special cases that arise at the edges of the skip graph because the turn out
to be inconsequential. We also ignore the operation of r-Tiara at each level.

Description. The code of g-Tiara is shown in Figure 9. We assume that
b-Tiara is in operation. That is, b-Tiara links the processes with consecutive
identifiers at level 0. At each level i > 0, s-Tiara forms a list of nodes
upgraded from level 7+ — 1. g-Tiara does not interfere with the operation of
s-Tiara but uses this list to construct the alternative list of nodes that are
not upgraded by s-Tiara.

Recall that a process is down at a level ¢ if it is not upgraded by s-Tiara.
A down process can be at most two hops away from another down process at
level i — 1. To locate the nearest down neighbor, in g-Tiara each process u at
level 7, maintains a set u.i. NB2 of two hop neighbors. The set of alternative
neighbors is collected in u.i. NB’. This set contains the down processes that
are at most three hops away in level ¢ — 1.

g-Tiara has two actions. Action gather maintains u.i. NB2 on the basis
of the information stored in single-hop neighbors. Action connect updates
u.1.NB’. Note that even though gather shows the construction of the neigh-
borhood at level 7, connect uses two neighborhood information at level i — 1.

To avoid partitioning, the incorrect links are moved to u.0. NB. According
to the execution semantics, once a process z is added to one of the sets main-
tained by u, for example u.i. NB’. Process u is also added to the equivalent
set in z, that is z.i.NB’.

Let us examine the neighborhood wu.i. NB that is formed by each node u
upgraded by s-Tiara. The links to the closest left and right neighbors of u
form a list of nodes at level 7. This list is used to construct u.(i + 1).NB
by s-Tiara and u.(i + 1).NB’ by g-Tiara. Similarly, on the basis of u.i. NB’,
an alternative list of nodes not upgraded by s-Tiara is formed. Separate
instances of s-Tiara and g-Tiara run on the alternative list and construct
another pair of lists on level i+1 as well. Refer to Figure 10 for an illustration
of a complete skip graph built by this extension to core Tiara.

Correctness proof. The operation of the algorithm is rather straightfor-
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process u
parameter i > 0: integer — level of the skip graph
constant u.i.NB — set of neighbor processes of u at level 4
variables
u.1.NB2 — 2-hop neighborhood set variable of process u at level 4
u.i.NB' — alternative neighbors of u
shortcuts
exists(z,i) = ((z # L) A (2.i.NB # @))
w.i.NB2DST ={s: (Vt:t € w.i.NB : s € (u.i. NBUt.i.NB))}
ut.DOWN ={z:z€{s: (Vt:t € u.(:—1).NB2 :
s € (u.(¢ —1).NB2 Ut.(i — 1).NB)} : —exists(z,)}
actions
fori >0
gather: u.5.NB2 # u.i. NB2DST —
u.0.NB := w.0.NB U w.i.NB2 /u.i. NB2DST,
u.5.NB2 := u.i. NB2DST
fori >0
connect:  u.i.NB' # u.i. DOWN —
w.0.NB := u.0.NB U w.i.NB’ /u.i. DOWN,
u.i.NB’ := w.i. DOWN

Figure 9: The skip graph component of Tiara (g-Tiara).

ward. We, therefore, present the informal correctness statement in the below
theorem and show the proof outline.

Theorem 2. At each level @, for each down process u, the nearest left and
right down neighbors of u are in the alternative neighborhood set u.i.NB'.

Proof. (outline) The proof is by induction. The bottom level is maintained
by b-Tiara. This level stabilizes to GZ regardless of actions of g-Tiara. Thus,
the list of the processes at the bottom level eventually remains unchanged.
This allows r-Tiara to stabilize to RZ at level 0. Assume that the list of
processes and the corresponding wraparound link does not change at level
1 — 1. The construction of s-Tiara list at level ¢ proceeds independently of
g-Tiara. After s-Tiara stabilizes to SZ, the list at level 7 is a sparse 0 — 1
skip list. This means that for each down node the nearest neighbor is at
most three hops away. Meanwhile, due to action gather of g-Tiara, for each
process u, u.(i—1). NB2 contains correct two hop neighborhood information.
After this information is stable, connect adds down processes up to three
hops away from u to w.i.NB’. The theorem follows. O

Complexity Estimate. The skip graph can be viewed as a collection of
skip-lists rooted in every node. Thus, unlike a skip list, the search in a skip
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Figure 10: Example skip graph produced by g-Tiara.

graph has downward phase only. Therefore, the number of steps required to
perform a search in a skip graph is in O(log|N|).
The complexity estimate for join or leave of a node is more involved.

Lemma 14. A join of a node at level 1 — 1 requires a constant number of
steps, a join of a node in one of the resultant lists at level i and possibly a
change of a single node in the other list. Similarly, a leave of a node at level
1 — 1 requires a constant number of steps, a leave of a node in one of the
resultant lists at level i and a change of a single node in the other list.

Proof. We discuss node join. The argument for node leave is similar. Let
node z join the neighborhood of node u at level i —1. Let the neighbor aliases
be as shown in Figure 3.

2 oy *y 7 o, o,
il ., o, il ., o, o,
i—1 &, — 0, — O, — 0, —0, j—1 Oy — 0y — 0, — 0, — 0,
(a) initial state (b) final state

Figure 11: Node z joins the skip graph at level i — 1 under the bridge of the
s-Tiara list.

A node may join under the bridge of s-Tiara or inside a cage. Let us
consider the bridge first. See Figure 11 for illustration. In this case, the
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actions of s-Tiara are disabled and the only outcome is for z to be added
to the list maintained by g-Tiara at level ¢/. This requires two actions of
g-Tiara. That is, one of the sublists does not change while a node joins the
other list.

1—1 o 0, o, 9, _O,—90,_9, 9o

(a) initial state
1 [ ]

o, 9,

A

oy e, ®y

Z—l .—.y—.w—.u—.z—.v—.w—.

(b) final state if u or v executes the up-

grade action
i °

.Z - .'l)

1—1 o0, o, 9,90, 9,9, 9

(c) final state if z or x executes upgrade

Figure 12: Node z joins the skip graph inside a cage with no adjacent bridges.

Let us now consider the case of z joining inside a cage of s-Tiara. The
outcome differs depending on whether there are bridges adjacent to this cage.
Let us discuss the subcase of no adjacent bridges. Refer to Figure 12. The
appearance of z enables actions of s-Tiara at x, u, z and v. The execution
of downgrade actions at x or v does not affect the final state. The final
state depends on which process executes an upgrade action. If process u or
v executes upgrade, u joins the s-Tiara list at level ¢ while z replaces v in
g-Tiara list. If process x or z executes upgrade, z joins the s-Tiara list while,
g-Tiara list is not affected. In either case the conditions of the lemma are
satisfied.

The last case to consider is where z joins a cage and there is an adjacent
bridge. We only discuss the case where there is a single adjacent bridge to
the right of the cage. The other cases are similar. Refer to Figure 13. Again,
the final state depends on which process executes upgrade. If u or v execute
this action, it results in the formation of the second bridge, u joining the
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Figure 13: Node z joins the skip graph inside a cage with adjacent bridge to
the right.

s-Tiara list and z replacing u in the g-Tiara list. However, if z or x execute
upgrade, three consequent nodes z, v and w are upgraded to level i from
level ¢ — 1 in s-Tiara. This forces v to execute downgrade center. The final
state results in v joining the g-Tiara list while 2z replacing v in s-Tiara. This
satisfies the conditions of the lemma. O

We calculate the complexity of a topology update based on Lemma 14.
According to the lemma, the topology update requires a constant number of
steps and results in a similar topology update in one of the sublists and a
node replacement in the other. Let ¢ be the constant upper bound on the
number of steps required for this propagation to occur.

Single member replacement then requires ¢ number of steps at each level
in one of the sublists. In other words, the propagation of the update to a
single level i results in the addition of i - ¢ steps. There are at most log|N|
levels in the skip graph. Thus, the total number of steps required to add or
remove a node to g-Tiara skip list is:

log|N|

log|N| - (log|N| +1
Zi_C:COQ‘ ‘ (;g‘ ‘+ ):O(ZOQ2‘N‘)
=0

26



Congestion and expansion bounds. In a random routing problem, every
node in the network has exactly one message for a node chosen uniformly at
random [3, 22]. Given a routing strategy R in some graph G, the congestion
of a fixed routing problem is the maximum number of messages traversing a
node when using R for that problem. When using a random routing problem,
we are interested in the expected congestion. In a complete binary tree, for
example, the expected congestion is O(|N|) as, on expectation, half of the
nodes below the left son of the root want to send their message to one of
the nodes below the right son of the root, and vice versa. Hence, O(|V])
messages have to cross the root on expectation, no matter which routing
strategy is used for them. The same bound holds for the skip list since
the removal of the root node in the skip list cuts it into two connected
components of approximately the same size. Thus, any message from one of
these components to the other has to cross the root node. A much better
congestion can be achieved for the skip graph.

In our g-Tiara skip graph, any edge in a level ¢-ring connects nodes of
distance at most 3 in the (¢ — 1)-ring and no three consecutive nodes belong
to the same i-ring. Hence, any edge of an i-ring can skip at most 3’ nodes on
the base ring, and any i-ring contains at most (2/3)? - |[N| nodes. Consider
the routing strategy of routing every request to its destination in a top-down
fashion: in each hop, the highest level edge towards the destination is used
without getting beyond the destination. Then every request traversing an i-
level edge must originate from a node in that i-ring. Therefore, the expected
number of requests passing a node at level ¢ is at most

2\ ¢ 3 .
) LN — o
(3) NI /7

We can only have that many requests if 2° < (2/3)*-|N| (the number of nodes
in level 7), which is true so long as i < logs - |IN|. Therefore, the expected
congestion is at most 2'98s 1Nl = | N|1/1o83

With the help of the expected congestion, we can find a lower bound on
the expansion of a graph. Let U be an arbitrary subset of nodes in the given
graph. A neighbor set NB(U) is defined as {w € V\U | v € U : (v,w) €
E}. That is, a node belongs to NB(U) if it does not belong to U but is
a neighbor of at least one node of U. The (node) expansion of a graph is
defined as mingcn,juj<ni/2| NB(U)/|U|. The expansion captures the degree
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of connectivity of a graph, and the best expansion of a constant degree graph
is constant.

Given a congestion of «, it is possible to design a permutation routing
problem (every node is the source and destination of exactly one message) so
that there is a node that is passed by at least 1/a many messages, no matter
which routing strategy is used (all messages from the set U with |[NB(U)| =
a|U] are requested to leave U). On the other hand, every permutation routing
problem can be solved via two random routing problems: first, route each
message to a random intermediate destination and then from there to its final
destination. In fact, when using this strategy, the expected congestion for
routing any permutation routing problem is twice the expected congestion
of a random routing problem. Thus, if a random routing problem can be
routed with expected congestion C, any permutation routing problem can be
routed with expected congestion 2C', which implies that for any permutation
routing problem there is a routing strategy with congestion at most 3C. This,
however, is only possible if the expansion of the given graph is at least 1/3C'.
Thus, the g-Tiara has an expansion of Q(|N|~1/1°83)  which is much better
than the expansion ©(1/|N|) of the tree and the skip list.

7. Implementation and Extensions

Crash resistance. Tiara can be separated into disconnected components by
the crash of even a single process. Tiara can be fortified against separation
due to crashes in the following manner. At the bottom, each process main-
tains a crash-redundancy link to its right neighbor’s neighbor. That is, the
bottom level list becomes doubly connected. Thus, it can tolerate a single
crash. The crash tolerance can be further improved by adding similar links to
more distant processes. In an asynchronous model there is no reliable way to
distinguish a crashed process from a slow one [23]. Thus, to accomplish this,
the processes need to be equipped with failure detectors [24, 25]. A failure
detector alerts the process if its neighbor crashes. Then, Tiara stabilizes to
a legitimate state corresponding to the system without the crashed process.

Other improvements. There is a number of modifications to Tiara that
make it more efficient and applicable. At each level of Tiara, up to two out
of three nodes may be promoted to the next level. Although the number of
levels is logarithmic with respect to the system size, it may still be relatively
large. The number of levels may be decreased by modifying Tiara to promote
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fewer nodes. For example, we can allow the nodes at level ¢ to skip up to
two or three neighbors at level i« — 1. This would require for each node to
maintain data about its extended neighborhood.

The grow operation of b-Tiara may force a process to acquire up to O(|N|)
neighbors during stabilization. This may require devoting extensive memory
resources of each node to neighborhood maintenance. A simple way to miti-
gate it is to execute trim operations before grow. That is, if a process finds
that it has both trim and grow actions enabled. It executes trim. Care must
be taken to ensure that action execution is still weakly fair.

8. Future Work

We presented Tiara — a first deterministic self-stabilizing peer-to-peer
system with a logarithmic diameter. It provides a blueprint for a realistic
system. An important further task is to study the implementation of Tiara
in more realistic low-atomicity models such as message passing. We envision
several other directions of extending this work: further efficiency improve-
ments, such as keeping the runtime and the degree of the self-stabilization
process low, and adding features required by practical systems. An impor-
tant property is resistance to churn — continuous leaving and joining of
nodes. Improving Tiara’s resistance to churn is a significant avenue of future
research.
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