
Digital Object Identifier (DOI) 10.1007/s00446-004-0111-6
Distrib. Comput. (2004)

Unifying stabilization and termination in message-passing systems�

Anish Arora1,��, Mikhail Nesterenko2,���

1 Department of Computer and Information Science, Ohio State University, Columbus, OH 43210, USA (e-mail: anish@cis.ohio-state.edu)
2 Department of Computer Science, Kent State University, Kent, OH 44242, USA

Published online: November 15, 2004 – c© Springer-Verlag 2004

Abstract. The paper dispels the myth that it is impossible for
a message-passing program to be both terminating and sta-
bilizing. We consider a rather general notion of termination:
a terminating program eventually stops its execution after the
environment ceases to provide input. We identify termination-
symmetry to be a necessary condition for a problem to admit
a solution with such properties. Our results do confirm that
a number of well-known problems (e.g., consensus, leader
election) do not allow a terminating and stabilizing solution.
On the flip side, they show that other problems such as mu-
tual exclusion and reliable-transmission allow such solutions.
We present a message-passing solution to the mutual exclu-
sion problem that is both stabilizing and terminating. We also
describe an approach of adding termination to a stabilizing
program. To illustrate this approach, we add termination to a
stabilizing solution for the reliable transmission problem.

Keywords: Self-stabilization, termination, fault-tolerance

1 Introduction

Asynchronous message-passing is a standard model for rep-
resenting distributed systems. The model specifies no bound
on the relative execution speed of processes or the speed of
message communication. While it captures a rich class of sys-
tems, it also allows many combinations of process states to
be reachable during process execution. The set of combina-
tions becomes even more complex in the presence of failures
in processes and message communication. Calculating the set

� Some of the results in this paper were presented at the 21st In-
ternational Conference on Distributed Computing Systems, Mesa,
Arizona, April 2001, pp 99–106.
�� Supported in part by DARPA contract OSU-RF #F33615-01-C-

1901, NSF grant NSF-CCR-9972368, Ohio State University Fellow-
ship, and 2002-2003,2003-2004 grants from Microsoft Research.
��� Supported in part by DARPA contract OSU-RF #F33615-01-C-
1901 and by NSF CAREER Award 0347485
Correspondence to: Mikhail Nesterenko
(e-mail: mikhail@cs.kent.edu)

is often difficult. Moreover, in some cases it is found that ar-
bitrary global states are reached in the presence of process
crashes and communication failures [10]. Thus, there is mo-
tivation to consider recovery from arbitrary global states as a
way of dealing with faults in asynchronous message-passing
systems, i.e., to consider stabilization. A program is stabiliz-
ing if, regardless of its initial state, the program eventually
reaches a state in the set of legitimate states and remains in
this set thereafter. Another program property we address is
termination. A program is terminating if it eventually stops its
execution after its environment ceases to provide input. The
inherent efficiency of this mode of program operation makes
termination attractive.

For some time now, there has been a general belief that
stabilization and termination are not co-satisfiable in the asyn-
chronous message-passing model. Dolev, for example, gives
an informal justification for this belief in his book [6, p. 10].
This belief stems from the fact that each individual process
in a message-passing program cannot unilaterally determine
whether the program is in a legitimate global state. Since a
stabilizing program may start from an arbitrary state (includ-
ing a terminal state), if there are no messages in the channels,
no process can distinguish a legitimate terminal state from an
illegitimate one. The work of Gouda and Multari [8] is cited
as a partial justification of this belief. Gouda and Multari de-
fine “proper termination” and prove that stabilizing message-
passing programs cannot be properly terminating. According
to their definition, all final states in a properly terminating
program have no messages in the channels and the actions of
all processes are disabled; thus, each process is blocked from
receiving any further messages. They then show that there ex-
ist illegitimate states where each process actions are disabled
yet there are messages in the channels. The disabled process
actions prevent the processes from receiving the messages.
Therefore, the program cannot be stabilizing.

As a result of the belief in the lack of termination, the stabi-
lizing message-passing programs that have been reported hith-
erto in the literature are not terminating: either their processes
periodically exchange messages to verify the legitimacy of the
global state [7] or they are assumed to receive input infinitely
often [1]. This belief prompted the researchers to explore be-
havior that is “close to” termination. Along these lines, Dolev

A. Arora, M. Nesterenko: Unifying stabilization and termination in message-passing systems

et al [7] defined the concept of silency. A program is silent if it
converges to a global silent state where the values of local pro-
cess variables do not change. However, the processes still have
to continually exchange messages to confirm the legitimacy
of the state. Mizuno and Nesterenko [12] and Nesterenko and
Arora [13], for instance, designed specific stabilizing silent
programs. If termination and stabilization indeed cannot be
jointly achieved, then making a program stabilizing has to
incur significant resource overhead due to continuous opera-
tion. The property of stabilization is therefore questioned as a
practical way of dealing with faults in asynchronous message-
passing systems. The importance of the issue of termination of
stabilizing programs has led us to clearly separate the impos-
sible from the achievable when stabilization and termination
are unified in message-passing systems.

Contribution of the paper. We consider the program to be
terminating if it eventually stops its execution after its environ-
ment ceases to provide input. In a terminal state the program is
in a fixpoint – a state where all its internal actions are disabled.
We assume (cf. [5]) that a process always has an enabled action
if there is a message in an incoming channel. Thus, this notion
of termination is weaker than “proper” termination of Gouda
and Multari [8]. Our notion of termination is more general than
transformational termination [15] used by some researchers.
A transformationally terminating program assumes no inputs
from the environment after the initial state. The results pre-
sented in this paper apply to this definition of termination as
well. Observe that we assume that the fact that the program
is in terminal state is known to the environment only and the
processes are not aware of termination.

We introduce the concept of state symmetry. Intuitively,
given some set of states of each individual process, the sym-
metric set of global program states is the Cartesian product of
these process states. We define a problem specification to be
termination-symmetric if it contains a symmetric set of global
states where each such state is either (a) a prescribed terminal
state or (b) a state where the environment is expected to pro-
vide additional input. A more formal definition of termination
symmetry is given in the sequel. We prove that if a problem
admits a stabilizing and terminating solution in a message-
passing system, then this problem is termination-symmetric.

On the basis of this proof we show that the consensus prob-
lem is not termination-symmetric and thus does not admit a
stabilizing and terminating solution.We observe that this nega-
tive result extends to a large number of well known problems:
leader election, graph coloring, spanning tree construction,
renaming and routing topology construction. By way of con-
trast, we show that there are termination-symmetric problems.
We prove that the mutual exclusion and reliable transmission
problems are in fact termination-symmetric. Furthermore, we
present a stabilizing and terminating solution to the mutual
exclusion problem. Our solution is loosely based on Ricart-
Agrawala’s [14] mutual exclusion algorithm.

We demonstrate how termination can be added to a stabi-
lizing program. This addition eliminates undesirable computa-
tions starting from illegitimate fixpoints (i.e. such fixpoints are
made legitimate). Recall that a stabilizing program has to even-
tually reach a legitimate state. Thus, if a stabilizing program
has an illegitimate fixpoint then the program can stabilize from
it by only receiving environmental input. Essentially, such a

program relies on the environment to move it into a legitimate
state. We eliminate such reliance as follows. If a process does
not have any internal actions enabled and it receives input from
the environment, the process delays servicing this input until
the program state is corrected. The environment input enables
an action starting a procedure that restores the program to a
state from which every computation of the original program
is allowed by the problem. We illustrate the idea by adding
termination to a stabilizing alternating-bit protocol. We also
discuss how this idea can be generalized.

Global state correctors are also used in snap-stabilization
[4]. By definition, a snap-stabilizing program, regardless of its
initial state, correctly services every request from the environ-
ment. To satisfy this requirement the servicing of each request
is either done concurrently with state correction or suspended
until the correction is completed. Our approach is less strict.
During stabilization, a program does not have to produce cor-
rect output in response to the requests from the environment.
Hence, the corrector is invoked less frequently in a stabilizing
and terminating program. Namely, the corrector is run when
there is both input from environment to process and a suspi-
cion that the system is in an illegitimate terminal state.

Organization of the paper. In Sect. 2 we formalize the
programming model to be considered. In Sect. 3 we define
termination-symmetry and use it to state the necessary con-
dition for a problem to allow a stabilizing and terminating
solution in a message-passing system. We present such a so-
lution to the mutual exclusion problem in Sect. 5. In Sect. 6
we describe a way to make a stabilizing program terminating
and illustrate it with an alternating-bit protocol. We conclude
this section by outlining how this idea can be generalized to
an arbitrary program and how it can lead to a sufficient condi-
tion for the existence of a stabilizing and terminating solution
to a problem. In Sect. 7, we discuss possible extensions and
applications of our research.

2 Programming notation

2.1 Syntax

A program is a set of processes each of which consists of
variables and actions. A variable ranges over a fixed domain,
such as booleans, integers, or other common types. Variable v
of process p is denoted v.p. Some variables of a process are
input variables. Others are output variables. Input and out-
put variables are external variables. An action is of the form:
〈guard〉 −→ 〈command〉. A guard is a boolean expression
over the variables of the process. A command is a sequence
of assignment and branching statements. A parameter is used
to define a set of actions as one parameterized action. For ex-
ample, let j be a parameter ranging over values 2, 5, and 9;
then a parameterized action ac.j defines the set of actions:
ac.(j := 2)][ac.(j := 5)][ac.(j := 9). An action is input if it
updates input variables, it is internal otherwise. A guard of an
input action is always true. An input action does not mention
internal variables.

In a program in a message-passing system the only vari-
ables that may be shared by (i.e. are common to) processes are
of type channel. A channel variable has a value chosen from
the domain of (potentially infinite) sequences of messages. A

A. Arora, M. Nesterenko: Unifying stabilization and termination in message-passing systems

channel is shared by exactly two processes, one of which is
the sender and the other is the receiver. Channel variables are
accessed only in the following manner. The receiver contains a
receive action guard. The guard of a receive action starts with
receive. This guard specifies the identity of the sender, the type
of message to be received, and the receiver variables to store
the values carried by the message. The sender contains a send
action. This action contains send statement. This statement
specifies the identity of the receiver, the type of message to be
sent, and the receiver variables whose values the message is
to carry.

2.2 Semantics

States and state sequences. A state s of some set of variables
V is an assignment of a value to every variable in V . This
definition allows us to reason about states of a process and a
program. For simplicity, we consider the value of a channel
only in the receiver process. A state sequence σ, formed by
a set of variables V , is a sequence of states of variables of
V . The first and last states of a sequence are its initial and
terminal states respectively.

A projection of a state sequence σ formed by a set of
variables V onto a set of variables W ⊂ V is obtained as
follows. Every state in the sequence is projected onto W and
consecutive identical states are eliminated. The projection of
a state sequence is external if this state sequence is projected
onto external variables.

An input step is a sequence of two states that differ in
the value of the input variables. Given a set of sequences A a
subset B ⊂ A is input-complete if the sequences in B preserve
both the results and the order of the input steps of A. Namely,
for every sequence α ∈ A there exists a sequence β ∈ B such
that: every input step s1 of α is also in β and for every pair or
input steps s1 and s2, their order α and β is the same.

Actions and computations. An action whose guard is true at
some system state is enabled at that state. A receive statement
is enabled if a message of the type specified in the guard of
this statement is at the head of the corresponding channel.

A fixpoint is a program state where no internal action is
enabled. A program action may be executed in a program state
only if its guard is enabled in that state. Depending on the
action type the effect of the execution of this action differs.
The execution of an assignment statement changes the values
of variables that are assigned to. The execution of a receive
action removes the message from the specified channel and
assigns the values contained in that message to the specified
variables. The execution of send appends the message being
sent to the tail of the corresponding channel. An input action
is always enabled, its execution is prescribed by the particular
problem that the program solves.

A computation is a fair, maximal sequence of steps: each
step is produced of executing an enabled action in the preced-
ing program state to obtain the next program state. By fairness,
we mean that if a computation is infinite and an internal action
is enabled in all but finitely many states of the computation
then this action is executed infinitely often. That is, we assume
weak fairness for internal action execution (weak fairness does
not apply to input actions). By maximality, we mean that each
computation is either infinite or ends in a fixpoint. A program

is terminating if every computation of this program where the
input is finite is itself finite.

Problems, state predicates. A problem specification S is a
set of sequences formed by a set of external variables. We use
the terms problem and problem specification interchangeably.

In problem sequences two consecutive states, where the
values of input variables differ, signify input from the envi-
ronment. If a state of a program projects to the first one of
such external states the input program action may be executed.
This execution takes the program to the state that projects to
the second external state. This way the program receives in-
put. An external state is input-displaced in a set of external
sequences, if it only appears as a first state of an input step. An
input-displaced state is significant because the only way for
the system to move from this state is to receive extra input from
the environment. Notice that, by definition, an input-displaced
state cannot also be a terminal state. Notice also, that if a state
is input-displaced in some set of external sequences, this state
is also input-displaced in every subset of this set.

A state predicate (or just predicate) is a boolean expression
over program variables. A state conforms to a predicate if the
predicate evaluates to true in this state; otherwise, the state
violates the predicate. By this definition every state conforms
to predicate true and none conforms to false. Let P be a
program and R and S be state predicates of P . R is closed in
P if each state of every computation of P that starts in a state
conforming to R also conforms to R. R converges to S in P if
R is closed in P , S is closed in P , and any computation starting
from a state conforming to R contains a state conforming to
S. P stabilizes to R iff true converges to R in P . In the rest
of the paper, we omit the name of the program whenever it is
clear from the context.

An invariant of program P for a specification S is a closed
predicate on the states of P with the following property. For
every computation of P that starts from a state conforming to
the invariant, the projection of this computation on the exter-
nal variables belongs to S. P satisfies (or solves) S if there
exists an invariant of P for S such that the projections of the
computations of P starting from the invariant onto the exter-
nal variables form an input-complete subset of S. A program
state conforming to an invariant is legitimate. P is stabilizing
if every computation starting from an arbitrary state contains
a legitimate state.

We conclude this section by discussing the relationship
between some of the concepts we introduced. We define a
problem to be a set of sequences of external variables. In
essence these sequences prescribe the acceptable inputs and
corresponding outputs that a solution to the problem must ex-
hibit. A program that solves this problem, potentially adds
some internal variables to the external state space. However,
if the program starts its execution from a legitimate state and
the program is given the inputs specified by one of the prob-
lem’s sequences then the outputs produced by the program
should also be the same as in this sequence. Observe, that a
solution does not have to thus implement all sequences spec-
ified by the problem. Nonetheless, a solution has to accept all
inputs. Hence our definition of input-completeness. Multiple
computations of a solution may implement the same external
sequence. These computations vary in the order of internal
steps.

A. Arora, M. Nesterenko: Unifying stabilization and termination in message-passing systems

Some of the problem’s sequences can be finite (i.e. end
in a terminal state). The program may not implement such a
sequence at all or implement it without termination. The latter
case the program continuously updates the internal variables.
However, if a computation of a program ends in a fixpoint, this
fixpoint corresponds to a terminal state of the specification.
A fixpoint does not necessarily terminate a computation. A
fixpoint may appear in the middle of it. Since all the internal
actions of a program are disabled in a fixpoint, the program
may leave it only if an input action is executed. Thus, the
external projection of a legitimate fixpoint is either a terminal
or input-displaced state of the specification.

Stabilization is a particular program property. If a stabi-
lizing program starts in an arbitrary state then its computa-
tion contains a suffix that implements one of the problem’s
sequences. Notice that by definition, if a computation of a
stabilizing program terminates in a fixpoint, this fixpoint is
legitimate.

3 Necessary condition for stabilization and termination

Definition 1 (State symmetry) A set of states S is symmetric
if for every pair of states s1 ∈ S and s2 ∈ S and every pair
of processes p and q there exists a state s3 ∈ S such that the
state of p is the same in s1 and s3 and the state of q is the same
in s2 and s3.

Figure 1 illustrates Definition 1. A program is fixpoint-
symmetric if its set of fixpoints is symmetric.

Lemma 1 If a program in a message-passing system is
terminating then it is fixpoint-symmetric.

Proof. A terminating program with less than two fixpoints is
trivially fixpoint-symmetric.

Let us consider a terminating program that has at least two
fixpoints. We select an arbitrary pair of fixpoints f1 and f2 and
an arbitrary pair of processes p and q. We construct a state f3
as follows. The state of p in f3 is the same as in f1, the state of
q in f3 is the same as in f2, and the states of the other processes
are taken from an arbitrary fixpoint. Note that since the states
of each process (recall that we consider the channels to belong
to receiver processes) are the same as in some fixpoint, in a
message-passing system all internal process actions must be
disabled in f3. That is, f3 is a fixpoint of the program. ��

Lemma 2 If a problem has a stabilizing solution, then each
fixpoint of this solution projects onto either a terminal or input-
displaced state of the problem.

s1.p s1.q

s2.qs2.p

s1

s2
s3

s4

Fig. 1. Condition for system state symmetry. Let the respective states
of a pair of processes p and q be s1.p and s1.q in system state s1 and
s2.p and s2.q in system state s2. If a symmetric set of states contains
both s1 and s2 then it also should contain s3 (and, by symmetry, s4)

Proof. Recall that a legitimate fixpoint indeed projects onto
a terminal or input-displaced state. We now show that every
illegitimate fixpoint of a stabilizing program projects onto an
input-displaced external state.

Consider a computation whose initial state is an illegit-
imate fixpoint. All internal program actions are disabled in
a fixpoint. Hence, the only way for a program to leave this
state is to execute an input action. If no input is forthcom-
ing the computation terminates in the fixpoint. By definition,
every computation of a stabilizing program reaches a legit-
imate state. Since this fixpoint is illegitimate, the program
has to leave it. Therefore, the fixpoint projects onto an input-
displaced external state. ��

Definition 2 (Termination-symmetry) Problem specifica-
tion S is termination-symmetric if there exists a symmetric
set of states A whose states are either input-displaced or ter-
minal in S and an input-complete subset R of S, such that
every terminal state of R belongs to A.

Theorem 1 If a problem has a stabilizing and terminating
solution in a message-passing system, then the problem is
termination-symmetric.

Proof. Let S be a problem specification. Also, let P be a sta-
bilizing and terminating solution to S in a message-passing
system. By definition of solution, the external projections of
the computations of P that start from a legitimate state form
an input-complete subset R of S.

Let F be the set of fixpoints of P . Since P is terminat-
ing and its system model is message-passing, by Lemma 1,
F is symmetric. Since P is stabilizing, according to Lemma
2, its every fixpoint projects onto either a terminal or input-
displaced external state. Observe that state-symmetry is in-
variant under projection. Thus, the projections of F form a
symmetric set A of terminal and input-displaced states.

To complete the proof we need to show that every ter-
minal state of R belongs to A. Let us consider an arbitrary
terminal state t of R. By definition, it ends a finite sequence
and, therefore, has finite input. This sequence is the projection
of a computation of P . Since P is terminating, a finite input
computation ends in a fixpoint. Hence t is the projection of a
fixpoint of P . Which means that t belongs to A. The theorem
follows. ��

4 The necessary condition applied to example problems

Mutual exclusion. The problem of mutual exclusion MX
is specified as follows. The processes request to execute the
critical section (CS) of code. Throughout the computation a
process may request the CS arbitrarily many (including zero)
times. A process executing the CS eventually leaves it and
starts executing non-critical code. The solution to the problem
has to satisfy two properties: safety – no two processes execute
the CS at the same time; liveness – each requesting process is
eventually given a chance to execute the CS.

Let us give a more formal specification of MX . Each
process p has two external boolean variables: an input variable
require.p to indicate that the process requests the CS and an
output variable enter.p to indicate that it is safe to enter the
CS. The specification contains state sequences conforming

A. Arora, M. Nesterenko: Unifying stabilization and termination in message-passing systems

to the following rules. In no two processes enter is true in
the same state. If for some process p, request.p is true in
some state of any sequence, then eventually either request.p
is false or enter.p is true. If in some state of any sequence
enter.p is true, then enter.p is false in one of the consequent
states. Observe that if in some state request.p is false, then the
specification does not require enter.p to eventually be true.

Observe that MX has only one terminal state: the state
where the external variables of all processes are false. Hence,
the set of terminal states of this specification is trivially sym-
metric. Any input-complete subset of state sequences of the
problem specification which includes this terminal state sat-
isfies the conditions of Theorem 1. This allows us to state the
following theorem.

Theorem 2 The mutual exclusion problem allows a solution
in a message-passing system such that this solution is both
stabilizing and terminating.

Reliable transmission. The reliable transmission problem
RT requires the sender process p to reliably pass a sequence of
packets to the receiver process q over unreliable media. When
we discuss RT we always use these names for the sender
and receiver processes. The environment submits a sequence
of packets to p to be transmitted to q. Process q delivers suc-
cessfully transmitted packets to the environment. A solution
to RT has to satisfy the following properties: safety – q de-
livers packets in the order they are submitted to p; liveness –
q eventually delivers a packet submitted to p.

To simplify the presentation in our formal specification of
RT we allow the program and the environment to jointly mod-
ify external variables. That is, the external variables are not
separated into input and output ones. It is, however, straight-
forward to reconstruct the specification where the types of ex-
ternal variables are clearly defined. Infinite queues of packets
in.p and out.q are the external variables of p and q respec-
tively. The environment inserts a packet into in.p. Process p
removes a packet from in.p and transmits it to q. When q re-
ceives a packet it inserts it into out.q. The received packet is
removed from out.q by the environment. The specification of
RT contains the state sequences with the following property:
in every state sequence, the sequence of packets removed from
out.q is a prefix of the sequence of packets inserted into in.p.

Similar to MX , RT has only one terminal state. This is
the state where in.p and in.q are empty. The uniqueness of a
terminal state ensures termination symmetry of RT .

Theorem 3 The reliable transmission problem allows a so-
lution in a message-passing system such that this solution is
both stabilizing and terminating.

Consensus and similar problems. The problem of consensus
CN is to make all processes of the program agree on one
particular input value. The formal specification of CN is as
follows. Each process p has a boolean input variable in.p and
a boolean output variable out.p. The set of sequences that CN
contains, satisfies the following three properties: termination
— in the initial state, in variable of each process is set to true
or false and never changed, each sequence is finite; agreement
– in a terminal state the out variable of each process contains
the same value; validity – in a terminal state, for at least one
process p, the values of in.p and out.p are the same.

Lemma 3 The consensus problem is not termination-symmet-
ric.

Proof. We show that CN does not comply with the defini-
tion of termination-symmetry. Namely, we prove that an arbi-
trary subset R of CN is either not input-complete or does not
contain a symmetric set A of terminal states augmented with
input-displaced states.

According to the termination property of CN , every se-
quence of CN is finite. Thus, if R is input-complete A is not
empty. Observe that due to the agreement property, CN has
only two terminal states. In one of these states all processes
output true, and in the other – false. Let us denote these states
t and f respectively.

Suppose that A includes only one of the terminal states. We
assume without loss of generality that A includes t only. Let
us consider an arbitrary external sequence γ where the input to
each process is false. Due to the termination property of CN ,
γ is finite. According to the validity property γ terminates in
f . Hence γ does not belong to R. Which means that R is not
input-complete.

Let us now suppose that A includes both t and f . Let us
consider two processes of the program: p and q. In t, out.p
is true. In f , out.q is false. Let g be a state where out.p =
true and out.q = false and the values for the variables of
the other processes are taken from either t or f . According to
Definition 1, any symmetric set of states containing t and f
also contains g. Observe however, that in CN all input is given
at the beginning of the sequence, hence CN does not contain
input-displaced states. Also, by the validity property of CN , g
is not a terminal state. Thus, A does not contain g. However,
this means that A is not symmetric.

That is, either R is not input-complete or A is not sym-
metric. The lemma follows. ��

From Theorem 1 and Lemma 3 we obtain the following
theorem.

Theorem 4 The consensus problem does not allow a solution
in a message-passing system such that this solution is both
stabilizing and terminating.

We observe that a number of problems share with CN the
lack of terminating and stabilizing solutions. Certainly, the
abundance of such problems caused the belief in the impos-
sibility of such programs that we set out to disprove in this
paper. We list some of the most well known problems in the
proposition below.

Proposition 1 The following problems do not allow solu-
tions in message-passing systems that are both stabilizing and
terminating: leader election, graph coloring, spanning tree
construction, renaming and routing topology construction.

To give an intuition as to how the theorem applies to these
problems we consider leader election. Let the problem be
stated such that the process with the smallest identifier is to be
elected the leader. The input for the problem is a set of process
identifiers and the output is the id of the leader. The system
should terminate in a state where each process outputs this
id. Observe that a non-trivial problem statement allows inputs
where the identifier of the leader varies. Suppose there are two

A. Arora, M. Nesterenko: Unifying stabilization and termination in message-passing systems

potential leader identifiers: id1 and id2 and two corresponding
outputs. To make the set of terminal states symmetric, there
must exist a terminal state where some processes output id1
and the others – id2. This, however, would violate the spec-
ification of the problem of leader election. Further reasoning
proceeds similar to the proofs of Lemma 3 and Theorem 4.

Notice that if the specification of CN is altered to allow
input-displaced states then the modified problem may have a
terminating and stabilizing solution. Consider a specification
such that every output state, where processes do not agree on
the output value, is displaced with extra input which sets all
input variables to the same value. Such a specification allows
a solution where each process simply copies from its in to its
out. In this case, if the problem gives the same input to all
processes, then the same output is produced. Otherwise, the
problem gives extra uniform input to make processes agree
on the output. Such problem specification, however, does not
convey the nature of the original consensus problem, since all
the agreement decisions are externalized.

The positive results for the mutual exclusion, reliable
transmission and the above modification to the consensus
problems may lead the reader to assume that for the prob-
lem to allow a stabilizing and terminating solution, the spec-
ification has to either have only one terminal state or have
input-displaced states. It also seems that all transformational
problems such as consensus, leader election, etc. do not allow
such solution. Recall that a transformational problem does not
have input from the environment after the initial state. This
perception is false.

For a transformational problem to allow termination, the
terminal states of the problem have to form a Cartesian product
of the terminal states of the processes. Consider the follow-
ing example specification. It has two processes p and q, each
of which has one boolean input variable in and one boolean
output variable out. Consider the following states of p:

{(in.p = true, out.p = true),

(in.p = false, out.p = false)}

and q:
{(in.q = true, out.q = true),

(in.q = false, out.q = true)}.

The set of terminal states of the specification is the Carte-
sian product of the above states of p and q. Therefore, there are
four terminal states. Observe that this problem is transforma-
tional, hence there are no input-displaced states. Observe that
this set is input-complete and this specification is termination-
symmetric. Thus, due to Theorem 1, it allows a stabilizing and
terminating solution. The trivial solution for the problem is
where p copies the value from in.p to out.p and q ignores the
input and assigns true to out.q.

5 Stabilizing and terminating programs

In this section we describe a stabilizing and terminating so-
lution to the mutual exclusion problem (MX) in message
passing systems. Recall that the problem itself was specified
in Sect. 4. We call our solution T RA because it is loosely
based on Ricart-Agrawala’s algorithm [14].

process p
const

P , set of process identifiers of the system
var

request : boolean, input, true if the CS needed
myts, timestamp of CS request
L : L ⊂ P , set of locked processes
needcs : boolean, true if the CS needed
ts, timestamp of received message
needrep : boolean, true if message needs reply

param
q : q ∈ P

∗[
(r1) request ∧ ¬needcs −→

myts := newts(),
L := ∅,
needcs := true

][
(r2) q �∈ L ∧ needcs −→

send(myts, true) to q
][

(r3) receive(ts, needrep) from q −→
if needcs then

if ts ≥ myts then
L := L ∪ {q}

else
myts := newts(),

if needrep then
send(myts, false) to q

][
(r4) L = P ∧ needcs −→

/* the CS execution */
needcs := false

]

Fig. 2. Process of T RA

T RA description. The code for a process p of T RA is
shown in Fig. 2. To make the program easy to understand we
tried to present the code as simple as possible. Notice that we
omit the environment actions that update the input. We discuss
how to make T RA more realistic at the end of the section.

The idea of T RA is as follows. The program uses un-
bounded timestamps. A process with the smallest timestamp
in the system is allowed to enter the CS. A process requesting
the CS is in CS contention. When a process needs to enter
the CS it selects a new, greater than previous, timestamp and
sends messages bearing this timestamp to all other processes.
When process p gets a message from another process q with a
timestamp greater than p’s timestamp, p locks q. When p locks
all the other processes in the system, p enters the CS.

We now describe the program actions and variables in
greater detail. Function newts() returns a greater timestamp
each time it is called. There is just one type of messages. A
message carries the timestamp of the sender and a boolean
value stating if the sender needs a reply. The input variable
request is true when the environment needs to access the
CS. To enter the CS the process obtains a new timestamp,
stores it in myts, sets needcs to true to indicate that it is in
the CS contention, and empties the set of locked processes

A. Arora, M. Nesterenko: Unifying stabilization and termination in message-passing systems

L (see action r1). If a process is not in L (r2) and p is in CS
contention, p sends a message to this process requesting reply.

When p receives a message from another process q (r3), it
compares its timestamp with q’s. If p is in CS contention and
q has a greater timestamp, p adds q’s identifier to the set of
locked processes. If p is not in CS contention it gets a newer
timestamp in an attempt to exceed the timestamp of q and let
q execute the CS. If q requests reply, p sends it a message with
its own timestamp. When p locks all processes in the system
(r4), it executes the CS. After the CS execution p sets needcs
to false. Notice that to simplify the presentation we dispense
with enter output variable described in MX specification and
assume that a process completes the CS in one action (r4).

Correctness proof. Denote C.p.q the channel from p to q.

Lemma 4 If a computation starts from a state where needcs.p
is true then the computation contains a state where needcs.p
is false.

Proof. To prove the lemma we need to show that if needcs.p
is true then p eventually executes r4. r4 is executed when
L.p = P . Note that a process identifier is not removed from
L.p while p is in CS contention. Thus, we need to show that
each process identifier is eventually added to L.p.

Observe that myts.p does not increase if p is in CS con-
tention. Also when p is in CS contention, p continuously sends
messages to each process that is not in L.p requesting reply.
When another process q receives such a message, q replies
with its own timestamp. When the reply is received, p adds
q to L.p if q has higher timestamp than p. Thus, p eventually
adds to L.p every process whose timestamp is greater than
myts.p. If p has the smallest timestamp in the system, then
eventually L.p = P and r4 is executed.

Let us consider the case where p does not have the smallest
timestamp in the system. Let q be the process with the smallest
timestamp. According to the discussion above, if q is in CS
contention it eventually enters the CS. When q exits the CS,
q increases its timestamp. If q is not in CS contention and it
receives a message from p requesting reply, q also increases its
timestamp. Thus, in either case, when p is in CS contention the
smallest timestamp in the system keeps increasing. Eventually
p is going to have the smallest timestamp in the system which
allows p to execute the CS. The lemma follows. ��

We show that the following predicate (denoted ITRA) is
an invariant of T RA. That is, every computation that starts
from a state conforming to ITRA satisfies MX .

The timestamp of the last message in C.p.q is at most
myts.p, and
the messages in C.p.q are in non-decreasing order of
timestamps, and
if p ∈ L.q and needcs.q is true
then the timestamp of any message in C.p.q and
myts.p

are greater than myts.q.

Lemma 5 T RA stabilizes to ITRA.

Proof. We observe that if a state conforms to ITRA, the exe-
cution of any action keeps the program in ITRA. That is, ITRA

is closed.

To show convergence of the first two conjuncts of ITRA

we observe that myts of any process can never decrease. The
message always carries the value of sender’s myts. Thus, the
messages in channels will eventually be in non-decreasing
order and the first two conjuncts of ITRA become true. To show
convergence of the last conjunct it suffices to demonstrate that
needs.q is eventually false. This is indeed the case due to
Lemma 4. ��

Theorem 5 T RA is a stabilizing and terminating solution to
the mutual exclusion problem.

Proof. According to Lemma 5, T RA stabilizes to ITRA. To
prove the theorem we need to show that ITRA is indeed the
invariant for MX and that T RA is terminating. To prove the
invariance of ITRA, we show that any computation of T RA
starting from a state conforming to ITRA satisfies the safety
and liveness properties of MX . To show safety we observe
that ITRA prohibits states where more than one process have
the CS action enabled. Liveness follows from Lemma 4.

Let us now focus on termination. To prove termination
we need to show that every computation of T RA where the
environment makes finitely many CS requests is itself finite.
Due to liveness, T RA satisfies every CS request and every
process eventually gets out of CS contention (both request
and needcs are false).

We would like to show that the computation where every
process is out of CS contention contains a state that has no mes-
sages in the channels. Indeed, if the process is not requesting
the CS its actions r1, r2 and r4 are disabled. The execution of
r3 may result in the message being sent. However, the execu-
tion of r3 results in a message being received. Hence, when
none of the processes in the system are requesting the CS, the
number of messages in the system may only decrease. Notice
that when a process is out of CS contention, every message
it sends carries false flag. This means that the receipt of such
message does not result in another message being sent. Thus
eventually, there will be no messages in the channels.

If the processes are out of CS contention and there are no
messages in the channels, all the process actions are disabled,
i.e. the system is in fixpoint. Thus, every computation with
finitely many CS requests terminates. ��

T RA implementation and efficiency improvements. Let us
discuss ways to make T RA more realistic. When joining CS
contention, the requesting process may send messages to all
the other processes in the system. In this case r2 is needed only
as a timeout action to be periodically executed when a reply
from a certain process is not received. Note that this timeout
need not be executed when the process is not requesting the
CS, thus termination is preserved.

To speed up CS entry, each process p can maintain a set
of processes that lost CS contention. After executing the CS,
p can send messages to these processes to let them know that
they can proceed with the CS.

Bounded overtaking property specifies that each process
enters the CS only a finite number of times before another
process requesting the CS enters it. Note that T RA does not
guarantee bounded overtaking. To amend that the processes
can execute Lamport’s logical clock algorithm [11] to syn-
chronize the timestamps of each process.

A. Arora, M. Nesterenko: Unifying stabilization and termination in message-passing systems

Observe that T RA uses unbounded timestamps. Un-
bounded variables present a problem for implementation of
stabilizing programs. In a concrete computer architecture such
variables have to be implemented using finite counters. This
adds a constraint that the abstract program does not consider:
the concrete program may have to stabilize from a state where
the counter value reached its limit. A number of researchers
[2,3,9] studied ways of dealing with this issue in the context
of stabilization. We believe that the problems of bounding the
variables and adding termination in the context of stabiliza-
tion are orthogonal. Hence, bounded stabilizing and terminat-
ing programs are possible. For example, a bounded solution
to RT can be achieved by using the techniques studied by
Howell et al [9].

6 Making a stabilizing program terminating

All the fixpoints of the stabilizing program presented in the
previous section are legitimate. This, however, is not neces-
sarily always the case. As we discussed earlier, if a fixpoint
of a stabilizing program is not legitimate, this fixpoint has
to project to an input-displaced external state. We claim that
termination can be added to such a program in the following
manner. If a process does not have internal actions enabled,
it assumes that the system can be in an illegitimate fixpoint.
When the environment submits a new request, the process de-
lays satisfying it and launches a procedure that ensures that the
system is in a legitimate state. Thus, every computation from
this fixpoint becomes legitimate which moves the fixpoint into
the invariant.

As an example of this approach we present a non-terminat-
ing stabilizing version of alternating-bit protocol (SABP) and
add termination to it. SABP is a solution to a infinite version
(IRT) of the reliable transmission problem (RT) presented
in Sect. 4. IRT excludes the finite sequences of RT . SABP
has illegitimate fixpoints and relies, therefore, on environmen-
tal input to move it into legitimate states. Our termination addi-
tion results in stabilizing and terminating program – T ABP .
T ABP does not rely on finite environmental input and solves
RT .

6.1 Stabilizing alternating-bit protocol

Recall that the objective of a solution to RT is to pass packets
from sender process p to the receiver process q over lossy
channels. To model message loss in channels we assume that
send may either succeed or fail nondeterministically. If send
succeeds, it inserts its message at the end of the channel’s
sequence of messages. If send fails, no message is inserted.
To allow the possibility of satisfying any non-trivial liveness
property we assume transmission fairness. That is, if there are
infinitely many attempts to send a message over a channel in
some computation then infinitely many attempts must succeed.

SABP description. The code for the sender and receiver of
SABP is shown in Figs. 3 and 4 respectively.As with previous
examples we omit the input actions in our presentation of the
program.

Processes p and q maintain infinite queues in and out
respectively. The queues are called send buffer and receive

process p

var
in : queue, input, packets to transmit
ns : integer, sequence number of the last message sent
i : integer, sequence number of received message

∗[
(p1) receive ack(i) −→

if i = ns then
dequeue(in),
ns := ns + 1

][
(p2) ¬empty(in) −→

send data(first(in),ns)
]

Fig. 3. Sender process of SABP

buffer. Function enqueue appends a packet to the end of the
buffer. Function dequeue removes a packet from the head of
the buffer and returns the removed packet. Function empty re-
turns true when there are no packets in the buffer. Function
first returns the packet at the head of the buffer without remov-
ing it. To keep track of processed packets, p and q also maintain
(infinite) integer counters ns and nr respectively. Counter ns
keeps the sequence number (SN) of the packet last sent, nr –
last SN received.

When the send buffer is not empty, p sends a data message
carrying a packet and its SN (p2). When q receives a data
carrying an SN different from the SN last received (q1), the
packet that the message carries is appended to receive buffer
and delivered. The receipt of a message is acknowledged by
sending ack back to p. When the acknowledgment of the last
message sent (p1) is received, ns is incremented and a new
message can be sent.

Why SABP is not terminating. Note that SABP has il-
legitimate fixpoints. Namely the fixpoints where ns = nr.
A computation starting from any of these fixpoints violates
safety: the receiver does not deliver the first message submit-
ted for transmission. To stabilize from any of these fixpoints
SABP needs extra input. Which means that illegitimate fix-
points have to project onto an input-displaced external states.
Notice that all (legitimate and illegitimate) fixpoints of SABP

process q
var

out : queue, output, delivered packets
i : integer, sequence number of received message
m : packet, received packet
nr : integer, sequence number

of the last message received
∗[

(q1) receive data(m, i) −→
if i �= nr then

enqueue(m, out),
nr := i,

send ack(i)
]

Fig. 4. Receiver process of SABP

A. Arora, M. Nesterenko: Unifying stabilization and termination in message-passing systems

project to the same external state. This is the state where the
input and output queues are empty. Computations terminated
by legitimate fixpoints project onto sequences terminated by
this terminal state. By definition, an input-displaced external
state cannot be a terminal state. Hence, SABP cannot be a
stabilizing solution to a problem with this terminal state. Since
this is the only terminal state of RT , SABP is not terminat-
ing. We prove, however, that SABP is a stabilizing solution
to an infinite version of the reliable transmission problem –
IRT .

SABP correctness proof. Denote by C.qpq, the concate-
nation of sequences of messages in the two channels: C.q.p
followed by C.p.q. We show that predicate ISABP defined as
R ∧ (A ∨ B) (where R, A and B are as defined below) is an
invariant for SABP . We call A and B rotating predicates.

The sequence number carried by a message is at most
as large as ns, and
messages in C.qpq are in non-decreasing order of time-
stamps, and
nr ≤ ns, and
the sequence number of any message in C.p.q is at
least as large as nr, and
the sequence number of any message is C.q.p is at
most as large as nr.

(R)

ns �= nr ∧(
(data(m, i) ∈ C .p.q ∧ i = ns)

⇒ (¬empty(in) ∧ m = first(in))
)

∧(
(∀ack(i) ∈ C .q .p) ⇒ (i �= ns)

)
(A)

ns = nr ∧
¬empty(in) ∧(
(data(m, i) ∈ C .p.q) ⇒ (i = ns ∧ m = first(in))

)

(B)

Lemma 6 SABP converges to R.

Proof. We observe that if a state conforms to R, the execution
of any action keeps the system in R (i.e. R is closed). Let us
focus on the convergence part. When p sends a data, the SN
it carries is equal to ns. When q receives a data and sends
an ack back, it copies the SN from the data to the ack and to
nr. Thus, after p successfully sends a data and q receives it,
nr ≤ ns and the SN of any message in C.p.q is no less than
nr. q acknowledges every message it receives from p. After
q acknowledges the first data, that p actually sent during the
computation (it was not in C.p.q initially), the SN of the mes-
sage in C.q.p is no greater than nr. That is SABP converges
to R provided that eventually p succeeds in sending a data
and q in acknowledging it.

We assume that the environment requests to transmit in-
finitely many packets. This means that in is not empty in in-
finitely many states of a computation of SABP . If in is not
empty, p2 is enabled. Moreover, in can become empty only
when p2 is executed. According to weak fairness assumption
of action execution in a computation, p2 must be executed in-
finitely many times in a computation of SABP . By message
transmission fairness assumption the sends also have to suc-
ceed in entering data into C.p.q infinitely often. This leads to

A B
p1

q1

Fig. 5. Sets of legitimate states and inter-set transitions for ISABP

q receiving data, sending ack infinitely often and eventually
succeeding. ��

Lemma 7 SABP converges to ISABP

Proof. We observe that if a state conforms to R and one of
the rotating predicates then the execution of any action either
keeps the system in the same rotating predicate or moves the
system to the other one. Thus, the ISABP is closed. The di-
agram of transitions between rotating predicates is shown in
Fig. 5. Loopback transitions are omitted.

Let us discuss convergence. According to Lemma 6,
SABP converges to R. By argument similar to the one sup-
plied in Lemma 6 we ascertain that p1 is executed infinitely
often in any computation of SABP . Note that if p1 is exe-
cuted when R holds, the state after the execution conforms to
A. Hence, SABP converges to ISABP . ��

Theorem 6 SABP is a non-terminating stabilizing solution
to the infinite reliable transmission problem.

Proof. Lemma 7 demonstrates that SABP converges to
ISABP . To prove the theorem we show that a computation
starting in a state conforming to ISABP satisfies the proper-
ties of IRT .

Safety: We construct a queue Ch as follows. If the system
conforms to A, Ch contains in appended to the tail of out. If
the system conforms to B, Ch contains all packets of in except
the head appended to the contents of out. To demonstrate the
safety property we show that if ISABP holds, none of the
actions change the contents of Ch.

Indeed, if A holds the only action that changes the state of
the queues is q1. q1 appends the first packet of in to out. When
out is updated the system moves from A to B and Ch is not
affected. When B holds the only internal action that changes
queues is p1. p1 deletes the first packet of in. However, in B
the first packet of in is not in Ch. Thus, Ch remains unchanged.

Liveness: To prove liveness we show that every packet in in is
eventually appended to out. To this end, it suffices to show that
in every computation a packet at the head of in is eventually
deleted.

Let us assume the opposite, suppose there is a computation
σ starting in a state conforming to ISABP such that a packet
m is at the head of the queue in every state of the computation.
Since in is not empty then p2 is enabled and must be executed
infinitely many times during σ. p2 attempts to send a data
to q carrying the SN equal to ns. By transmission fairness
assumption such attempts must succeed infinitely often. We
apply similar reasoning to q to demonstrate that sending of
an ack message to p carrying the SN equal to ns must also
succeed infinitely often. When such ack is received the first
packet in in is deleted. This contradicts our assumption.

Thus, SABP conforms to all properties of IRT . ��

A. Arora, M. Nesterenko: Unifying stabilization and termination in message-passing systems

process p

∗[
(p1) receive ack(i) −→

if i = ns then
dequeue(in),
ns := ns + 1

][
(p2) ¬empty(in) ∧ go −→

send data(first(in),ns)
][

(p3) empty(in) ∧ go −→
go := false

][
(p4) ¬empty(in) ∧ ¬go −→

send dummy(ns)
][

(p5) receive dack(i) −→
if i = ns then

go := true,
ns := ns + 1

]

Fig. 6. Sender process of T ABP

6.2 Stabilizing and terminating alternating-bit protocol

Program SABP is not terminating because it has illegitimate
fixpoints (where ns = nr). To add termination to SABP
we incorporate a procedure that ensures ns �= nr before the
system starts processing additional input. Thus, the input is
processed correctly which legitimizes the fixpoints and makes
the program terminating.

T ABP description. The sender and receiver process for
the terminating and stabilizing version of the alternating-bit
protocol (T ABP) are shown in Figs. 6 and 7 respectively. We
skip the declaration of the variables in the figures since they
are the same as in SABP . The only new variable is a boolean
go which indicates whether it is safe to start transmitting the
packets.

The modification of the design of T ABP compared to
SABP is as follows. When p notices that the input buffer is
empty, it sets go to false (see action p3) to indicate that T ABP
may potentially be in a fixpoint. When go is false and the input
buffer is non-empty again, p sends a dummy message (p4).
The purpose of this message is to synchronize the values of
ns and nr and avoid potential incorrect message delivery that
SABP is prone to. When q receives such a message (q2), it
updates the value of nr and acknowledges this message with
dack. When p receives dack (p5), p sets go to true and starts
transmitting packets to q.

T ABP correctness proof. We show that predicate ITABP

defined as R′ ∧ (A′ ∨ B′ ∨ C ∨ D) (where R′ and A′ through
D are as defined below) is an invariant of T ABP . Similar to
SABP predicates A′ through D are rotating predicates.

Sequence number carried by a message is no greater
than ns, and
messages in C.qpq are in non-decreasing order of time-
stamps, and

process q

∗[
(q1) receive data(m, i) −→

if i �= nr then
enqueue(m, out),
nr := i ,

send ack(i)
][

(q2) receive dummy(i) −→
if i �= nr then

nr := i ,
send dack(i)

]

Fig. 7. Receiver process of T ABP

if ack(i) is in C.q.p then i ≤ nr ≤ ns and for every
data(m, j) in C.p.q it follows that j ≥ nr.

(R′)

(ns �= nr) ∧ go ∧(
(data(m, i) ∈ C .p.q : i = ns)

⇒ (¬empty(in) ∧ m = first(in))
)

∧
no ack(i), dack(i), or dummy(i) such that i = ns.

(A′)

(ns = nr) ∧ go ∧
¬empty(in) ∧(
(data(m, i) ∈ C .p.q) ⇒ (i = ns ∧ m = first(in))

)
∧

no dack(i), or dummy(i) such that i = ns.
(B′)

(ns �= nr) ∧ ¬go ∧
no ack(i), dack(i), or data(i) such that i = ns. (C)

(ns = nr) ∧ ¬go ∧(
(dummy(i) ∈ C .p.q) ⇒ (i = ns)

)

no ack(i), or data(i) such that i = ns.
(D)

Lemma 8 T ABP converges to ITABP .

Proof. Similar to the proof of Lemma 6 we observe that if
the state of T ABP conforms to R′ then the execution of any
action keeps the system in R′. That is, R′ is closed. To show
the closure of ITABP we observe that if a state of the system
conforms to R′ and one of the rotating predicates then the
execution of any action either keeps the system in the same

p1

q2

p3

A

C

B’

D

q1’

p5

Fig. 8. Sets of legitimate states and inter-set transitions for ITABP

A. Arora, M. Nesterenko: Unifying stabilization and termination in message-passing systems

rotating predicate or moves it to another rotating predicate. The
diagram of transitions between rotating predicates is shown in
Fig. 8.

To prove convergence we first consider finite computa-
tions. We prove that the last state of any finite computation
conforms to the invariant. Since the last state of a computa-
tion does not have any actions enabled then C.p.q and C.q.p
are empty, in and out are empty and go = false. If ns �= nr –
the state conforms to R′ and C; if ns = nr the state conforms
to R′ and D.

Let us now consider infinite computations. The conver-
gence of T ABP to R′ in this case can be proven similar to
the convergence of SABP to R (cf. Lemma 6). Note that if
a computation starts in a state conforming to R′ and either
p1 or p5 are executed at least once, then the state after the
execution conforms to A′. Suppose a computation that starts
in a state conforming to R′ but does not contain the execu-
tion of either p1 or p5. Similar to the proof of Lemma 7, it
can be demonstrated that if the computation starts in a state
where go = false or contains the execution of p3, then the
computation contains a state conforming to D. Again, similar
to the proof of Lemma 7, it can be shown that in this case the
computation contains a state conforming to B′. ��

Theorem 7 T ABP is a stabilizing and terminating solution
to the reliable transmission problem.

Proof. According to Lemma 8, T ABP stabilizes to ITABP .
To prove the theorem we need to show that any computation
starting from a state conforming to ITABP satisfies safety,
liveness properties of RT and that T ABP is terminating. The
argument for safety satisfaction is similar to the one given in
the proof of Theorem 6.
Liveness: As in the proof of Theorem 6 it is sufficient to show
that in every computation the packet at the head of in is even-
tually deleted. If a computation starts in a state conforming to
A′ or B′ the argument is similar to the non-terminating case.
Suppose a computation starts in a state conforming to either
C or D. If a computation starts in a state conforming to C and
in is non-empty, p4 is enabled. Applying transmission fairness
property we can show that the system eventually moves to D
and then to A′.
Termination: To prove termination we show that any computa-
tion where in is finite, ends in a fixpoint. We start by observing
that if the system starts from a fixpoint and in is empty then
the system remains in either C or D.

If in is not empty in the beginning of the computation,
due to liveness, the computation eventually contains a state
where in is empty. Let us consider a computation starting from
such a state. Since in is empty no messages are sent by p in
this computation. After q receives all messages and p receives
the resultant acknowledgments, the communication channels
remain empty for the rest of the computation. If go is true, p3
is enabled. After p3 is executed go is false. Since in is empty,
go cannot be changed to true. Thus, the system arrives at a
fixpoint in C or D and remains there. ��

Sufficient condition. The fixpoint cleaning technique used
in T ABP can be generalized to yield a sufficient condition
for a problem to have a stabilizing and terminating solution
in a message passing system. This condition will be based
on a generic fixpoint cleaning program. Similar to T ABP ,

if a process receives input and the process suspects it is in
an illegitimate fixpoint, this process initiates a global state
corrective action. Observe that such action should not interfere
with the performance of the main program and be resilient
to launching from multiple places simultaneously. Designing
such a program is an interesting further avenue of research.

7 Implications and impact of the unification

The results presented in this paper are of both basic and prac-
tical importance.

The formal study of the combination of stabilization and
termination draws attention to termination as a fundamen-
tal aspect underlying efficient design of non-masking fault-
tolerant programs. The negative results we obtain help demar-
cate the realm of possibility. On the other hand, the existence
of non-trivial stabilizing and terminating programs increases
the attractiveness of stabilization as an approach to handling
faults in a distributed system. The existence of such programs
should prompt the researchers to reevaluate their views on
stabilization.

From a practical standpoint, the focus on termination leads
to stabilizing programs that do not carry out communication
when no input needs to be processed. Such a program performs
illegitimate state detection and corrective actions only when
additional input arrives.We illustrate this approach in the paper
by adding termination to a stabilizing alternating-bit protocol.
We also discuss how it can be generalized to lead to a sufficient
condition for the existence of a terminating and stabilizing
solution to a certain problem.

We would like to contrast this approach of achieving stabi-
lization with a more traditional one where detection and cor-
rection is done periodically regardless of the input. Demand-
driven stabilizing program consumes resources only when use-
ful work is carried out. However, such program adds control
overhead in direct proportion to the amount of input processed.
Conversely, periodic checking and correction adds constant
load to the system regardless of input. We consider both cases
as extremes in the variety of scheduling policies for detection
and correction. To this day, the selection of an appropriate pol-
icy is left up to the designer of a concrete system. We deem the
study of stabilization-inducing scheduling and the relation be-
tween demand-based and time-based techniques of enabling
stabilization to be a promising direction of future research.

References

1. Afek Y, Brown GM: Self-stabilization over unreliable commu-
nication media. Distributed Computing 7, 27–34 (1993)

2. Arora A, Gouda MG: Distributed reset. IEEE Transactions on
Computers 43, 1026–1038 (1994)

3. Awerbuch B, Patt-Shamir B, Varghese G: Bounding the un-
bounded (distributed computing protocols). In: Proceedings
IEEE INFOCOM 94 The Conference on Computer Commu-
nications, 1994, pp. 776–783

4. Bui A, Datta AK, Petit F, Villain V: State-optimal snap-
stabilizing PIF in tree networks. In: Proceedings of the Fourth
Workshop on Self-Stabilizing Systems (published in associa-
tion with ICDCS99 The 19th IEEE International Conference
on Distributed Computing Systems), 1999, pp. 78–85. IEEE
Computer Society

A. Arora, M. Nesterenko: Unifying stabilization and termination in message-passing systems

5. Dijkstra EW, Scholten CS: Termination detection for diffusing
computations. Information Processing Letters 11(1). 1–4 (1980)

6. Dolev S: Self-Stabilization. MIT Press, 2000
7. Dolev S, Gouda MG, Schneider M: Memory requirements for

silent stabilization. In: PODC96 Proceedings of the Fifteenth
Annual ACM Symposium on Principles of Distributed Comput-
ing, 1996, pp. 27–34

8. Gouda MG, Multari N: Stabilizing communication protocols.
IEEE Transactions on Computers 40, 448–458 (1991)

9. Howell RR, Nesterenko M, Mizuno M: Finite-state self-
stabilizing protocols in message passing systems. Journal of
Parallel and Distributed Computing 62(5), 792–817 (2002)

10. Jayaram M, Varghese G: The complexity of crash failures. In:
Proceedings of the Sixteenth Annual ACM Symposium on Prin-
ciples of Distributed Computing, pp. 179–188, Santa Barbara,
California, 21–24 August 1997

11. Lamport L: Time, clocks and ordering of events in distributed
systems. Communications of the ACM 21(7), 558–564 (1978)

12. Mizuno M, Nesterenko M: A transformation of self-stabilizing
serial model programs for asynchronous parallel computing en-
vironments. Information Processing Letters 66(6), 285–290
(1998)

13. Nesterenko M, Arora A: Stabilization-preserving atomicity re-
finement. In: Proceedings of the 13th International Symposium
on Distributed Computing, 1999, pp. 254–268

14. Ricart G, Agrawala AK: An optimal algorithm for mutual ex-
clusion in computer networks. Communications of the ACM
24(1), 9–17 (1981)

15. Schneider FB: On Concurrent Programming. Springer, 1997

