
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

J. Parallel Distrib. Comput. 70 (2010) 1220–1230

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Snap-stabilization in message-passing systems✩

Sylvie Delaët a, Stéphane Devismes b, Mikhail Nesterenko c, Sébastien Tixeuil d,∗
a LRI UMR 8623, Université de Paris-Sud, France
b VERIMAG UMR 5104, Université Joseph Fourier, France
c Computer Science Department, Kent State University, United States
d LIP6 UMR 7606, Université Pierre et Marie Curie, France

a r t i c l e i n f o

Article history:
Received 17 August 2009
Received in revised form
14 April 2010
Accepted 24 April 2010
Available online 25 May 2010

Keywords:
Distributed systems
Self-stabilization
Snap-stabilization

a b s t r a c t

In this paper, we tackle the problem of snap-stabilization in message-passing systems. Snap-stabilization
allows designing protocols that withstand transient faults: indeed, any computation that is started after
faults cease immediately satisfies the expected specification.

Our contribution is twofold: we demonstrate that in message-passing systems (i) snap-stabilization
is impossible for nontrivial problems if channels are of finite yet unbounded capacity, and (ii) snap-
stabilization becomes possible in the same setting with bounded capacity channels. The latter contri-
bution is constructive, as we propose two snap-stabilizing protocols for propagation of information with
feedback and mutual exclusion.

Our work opens exciting new research perspectives, as it enables the snap-stabilizing paradigm to be
implemented in actual networks.

© 2010 Published by Elsevier Inc.

1. Introduction

Self-stabilization [18,19,28] is an elegant approach to forward
failure recovery: regardless of the global state to which the failure
drives the system, after the failures stop, a self-stabilizing system
is guaranteed to resume correct operation within finite time. This
guarantee comes at the expense of temporary safety violation in
the sense that a self-stabilizing system may behave incorrectly
as it recovers, without a user of the system being notified of this
misbehavior.

Bui et al. [9] introduce the related concept of snap-stabilization
which guarantees that a protocol immediately operates correctly,
regardless of the arbitrary initial state of the system. Snap-
stabilization offers stronger fault-tolerance properties than self-
stabilization: regardless of the global state to which the failure
drives the system, after the failures stop, a snap-stabilizing system
immediately resumes correct behavior.

The notion of safety that is guaranteed by snap-stabilization
is orthogonal to the notion of safety that is guaranteed by super-
stabilization [20] or safe stabilization [22]. In [20,22], some safety

✩ A preliminary version of this paper will be presented in Delaët et al. (2009) [16].
∗ Corresponding author.

E-mail addresses: sylvie.delaet@lri.fr (S. Delaët), stephane.devismes@imag.fr
(S. Devismes), mikhail@cs.kent.edu (M. Nesterenko), sebastien.tixeuil@lip6.fr
(S. Tixeuil).

predicates on configurations and executions are preserved at
all times while the system is running. Of course, not all safety
predicates can be guaranteed when the system is started from
an arbitrary global state. In contrast, snap-stabilization’s notion of
safety is user-centric: when the user initiates a request, then the
received response is correct. However, between the request and
the response, the systemcan behave arbitrarily (except fromgiving
an erroneous response to the user). In the snap-stabilizing model,
all user-safety predicates can be guaranteedwhile recovering from
arbitrary states. Then, if the system user is sensitive to safety
violation, snap-stabilization becomes an attractive option.

However, nearly every snap-stabilizing protocol presented
so far assumes a high level communication model in which
any process is able to read the states of every communication
neighbor and update its own state in a single atomic step (this
model is often referred to as the shared memory model with
composite atomicity in the literature). Designing protocols with
forward recovery properties (such as self-stabilizing and snap-
stabilizing ones) using lower level communication models such
as asynchronous message-passing is rather challenging. In such
models, a processmay either send amessage to a single neighbor or
receive a message from a single neighbor (but not both) together
with some local computations; also messages in transit could be
lost or duplicated. It is especially important to consider these
low level models since Varghese and Jayaram [30] proved that
simple process crashes and restarts and unreliable communication
channels can drive protocols to arbitrary states.

0743-7315/$ – see front matter© 2010 Published by Elsevier Inc.
doi:10.1016/j.jpdc.2010.04.002

Author's personal copy

S. Delaët et al. / J. Parallel Distrib. Comput. 70 (2010) 1220–1230 1221

1.1. Related works

Several papers investigate the possibility of self-stabilization
in message-passing systems [23,26,2,1,25,29,5,6,17]. The crucial
assumption for communication channels is their boundedness.
That is, whether or not processes are aware of the maximum
number of messages that can be in transit in a particular channel.
Gouda and Multari [23] show that for a wide class of problems
such as the alternating bit protocol (ABP), deterministic self-
stabilization is impossible using bounded memory per process
when channel capacities are unbounded. They also present a self-
stabilizing version of the ABP with unbounded channels that uses
unbounded memory per process. Afek and Brown [2] present
a self-stabilizing ABP replacing unbounded process memory by
an infinite sequence of random numbers. Katz and Perry [26]
derive a self-stabilizing ABP to construct a self-stabilizing snapshot
protocol. In turn, the snapshot protocol allows to transform almost
all non-stabilizing protocols into self-stabilizing ones. Delaët
et al. [17] propose a method to design self-stabilizing protocols
with bounded memory per process in message-passing systems
with unreliable channels with unbounded capacity for a class of
fix-point problems. Awerbuch et al. [7] introduce the property
of local correctability and demonstrate that protocols that are
locally correctable can be self-stabilized using bounded memory
per process in spite of unbounded capacity channels. Guaranteeing
self-stabilization with bounded memory per process for general
(i.e.ABP-like) specifications requires considering bounded capacity
channels [1,25,29,5,6]. In particular, Varghese [29] presented such
self-stabilizing solutions for a wide class of problems, e.g. token
circulation and propagation of information with feedback (PIF).

A number of snap-stabilizing protocols are presented in
the literature. In particular, PIF is the ‘‘benchmark’’ application
for snap-stabilization [10,13]. Moreover [14,12] present token
circulation protocols. Snap-stabilization has also been investigated
for fix-point tasks such as binary search tree construction [8] and
cut-set detection [15]. Following the scheme of [26], Cournier
et al. [11] propose a method to add snap-stabilization to a large
class of protocols. To our knowledge, the only paper that dealswith
snap-stabilization in message-passing networks is [21]. However
the snap-stabilizing snapshot protocol that is presented in [21]
for multi-hops networks relies on the assumption that there
exists an underlying snap-stabilizing protocol for one-hopmessage
transmission, we do not make such an assumption here. To
date, the question whether this assumption can be implemented
remains open.

1.2. Our contribution

In this paper, we address the problem of snap-stabilization in
one-hop message-passing systems. Our contribution is twofold:

(1) We show that contrary to the high level shared memory
model, snap-stabilization is strictly more difficult to guarantee
than self-stabilization in the low level message-passing
model. In more detail, for nontrivial distributed problem
specifications, there exists no snap-stabilizing (even with
unbounded memory per process) solution in message-passing
systems with unbounded yet finite capacity channels. This is
in contrast to the self-stabilizing setting, where solutions with
unbounded memory per process [23], unbounded sequences
of random numbers [2], or operating on a restricted set of
specifications [17,7] do exist.

(2) We prove that snap-stabilization in the low level message-
passing model is feasible when channels have bounded
capacity. Our proof is constructive both for dynamic and fix-
point distributed specifications, as we present snap-stabilizing
protocols for PIF and mutual exclusion.

1.3. Outline

The rest of the paper is organized as follows. We define the
message-passing model in Section 2. In the same section, we de-
scribe the notion of snap-stabilization and problem specifications.
In Section 3, we exhibit awide class of problems that have no snap-
stabilizing solution in message-passing systems with unbounded
capacity channels. We present snap-stabilizing algorithms for
the message-passing systems with bounded capacity channels in
Section 4. We conclude the paper in Section 5.

2. Preliminaries

2.1. Computational model

We consider distributed systems having n processes and a fully-
connected topology: any two distinct processes can communicate
by sendingmessages through a bidirectional link, i.e., two channels
in the opposite direction.

A process is an asynchronous sequential deterministic machine
that uses a local memory, a local algorithm, and input/output
capabilities. The local algorithm modifies the state of the process
memory, and sends/receives messages through channels.

We assume that the channels incident to a process are locally
distinguished by a channel number. For the sake of simplicity, every
process numbers its channels from 1 to n − 1, and in the code
of any process we simply denote by the label q the number of
the channel incoming from the process q.1 We assume that the
channels are FIFO (meaning thatmessages are received in the order
they are sent) but not necessarily reliable (messages can be lost).
However they all satisfy the following fairness property: if a sender
process s sends infinitely many messages to a receiver process r ,
then infinitely many messages are eventually received by r from s.
Any message that is never lost is received in finite but unbounded
time.

Themessages are of the following form: ⟨message-type,message
-value⟩. The message-value field is omitted if the message does
not carry any value. A message may also contain more than one
message-value.

A protocol is a collection of n local algorithms, one held by each
process. A local algorithm consists of a collection of actions. Any
action is of the following form:
⟨label⟩ :: ⟨guard⟩ → ⟨statement⟩.
A guard is a boolean expression over the variables of a process
and/or an input message. A statement is a sequence of assignments
of the process variables and/or message sends. An action can be
executed only if its guard is true. We assume that the actions
are atomically executed, meaning that the evaluation of the guard
and the execution of the corresponding statement, if executed, are
done in one atomic step. An action is enabled when its guard is
true. Any continuously enabled action is executed within finite yet
unbounded time.

We reduce the state of each process to the state of its local
memory, and the state of each link to its content. The global state
of the system, referred to as configuration, is defined as the product
of the states of the memories of processes and the contents of the
links.

We describe a distributed system as a transition system [27]
S = (C, →, I) such that: C is a set of configurations, → is a
binary transition relation on C, and I ⊆ C is the set of initial
configurations. Here, we only consider systems S = (C, →, I)
such that I = C, meaning that any possible configuration can be
initial.

1 The label q does not denote the identifier of q. When necessary, we will use the
notation IDq to denote the identifier of q.

Author's personal copy

1222 S. Delaët et al. / J. Parallel Distrib. Comput. 70 (2010) 1220–1230

An execution of S is a maximal sequence of configurations
γ0, . . . , γi−1, γi, . . . such that: γ0 ∈ I and ∀i > 0, γi−1 → γi ∧

γi−1 ≠ γi. Any transition γi−1 → γi is called a step andmaterializes
the fact that some processes and/or links change their states. A
process changes its state by executing an enabled action of its local
algorithm. The state of a link is modified each time a message is
sent, received, or lost.

2.2. Snap-stabilization

In the following, we call specification a predicate defined over
sequences of configurations.

Definition 1 (Snap-Stabilization [9]). Let SP T be a specification. A
protocol P is snap-stabilizing for SP T if and only if starting from
any configuration, any execution of P satisfies SP T .

It is important to note that snap-stabilization is suited for user-
centric specifications. Such specifications are based on a sequence
of actions (request, start, etc.) rather than a particular subset
of configurations (e.g., the legitimate configurations) and are
composed of two main properties:
(1) Start. Upon an external (w.r.t. the protocol) request, a process

(called the initiator) starts within finite time a distributed
computation of specific task T 2 by executing a special type of
action called starting action.

(2) User-Safety. Any computation of T that has been started is
correctly performed.

In snap-stabilization, we consider the system after the last fault
occurs: hence we study the behavior of the system from an
arbitrary configuration, yet considered as the initial one, and
we assume that no more faults occur. Starting from such an
arbitrary configuration (i.e., after the end of faults), any snap-
stabilizing protocol always guarantee the start and the user-
safety properties. Hence, snap-stabilization is attractive for system
users: when a user make a request, it has the guarantee that the
requested task will be correctly performed regardless of the initial
configuration of the system under the assumption that no further
error occurs. We do not have such a guarantee with self-stabilizing
protocols. Indeed, while a snap-stabilizing protocol ensures that
any request is satisfied despite the arbitrary initial configuration,
a self-stabilizing protocol often needs to repeat its computations
an unbounded number of times before guaranteeing the proper
processing of any request.

3. Message-passing systemswithunbounded capacity channels

Alpern and Schneider [3] observe that a specification is an
intersection of safety and liveness properties. They define a safety
property as a set of ‘‘bad things’’ that must never happen. We
now introduce the notion of safety-distributed specifications and
show that no problem having such a specification admits a
snap-stabilizing solution in message-passing systems with finite
yet unbounded capacity channels. Intuitively, safety-distributed
specification has a safety property that depends on the behavior
of more than one process. That is, certain process behaviors
may satisfy safety if done sequentially, while violate it if done
concurrently. For example, in mutual exclusion, any requesting
process must eventually execute the critical section but if several
requesting processes execute the critical section concurrently, the
safety is violated. Roughly speaking, the class of safety-distributed
specifications includes all distributed problems where processes
need to exchange messages in order to preclude any safety
violation.

2 E.g., a broadcast, a circulation of a single token,

The following three definitions are used to formalize the safety-
distributed specifications.

Definition 2 (Abstract Configuration). We call an abstract configu-
ration any configuration restricted to the state of the processes (i.e.,
the state of each link has been removed).

Definition 3 (State-Projection). Let γ be a configuration and p be a
process. The state-projection of γ on p, denoted φp(γ), is the local
state of p in γ . Similarly, the state-projection of γ on all processes,
denoted φ(γ), is the product of the local states of all processes in
γ (n.b. φ(γ) is an abstract configuration).

Definition 4 (Sequence-Projection). Let s = γ0, γ1, . . . be a config-
uration sequence and p be a process. The sequence-projection of s
on p, denotedΦp(s), is the state sequence φp(γ0), φp(γ1), Sim-
ilarly, the sequence-projection of s on all processes, denotedΦ(s), is
the abstract configuration sequence φ(γ0), φ(γ1),

Definition 5 (Safety-Distributed). A specification SP is safety-
distributed if there exists a sequence of abstract configurationsBAD,
called bad-factor, such that:

(1) For each execution e, if there exist three configuration
sequences e0, e1, and e2 such that e = e0e1e2 andΦ(e1) = BAD,
then e does not satisfy SP .

(2) For each process p, there exists at least one execution ep
satisfying SP where there exist three configuration sequences
e0p , e

1
p , and e2p such that ep = e0pe

1
pe

2
p and Φp(e1p) = Φp(BAD).

Almost all classical problems of distributed computing have
safety-distributed specifications including all synchronization and
resource allocation problems. For example, in mutual exclusion a
bad-factor is any sequence of abstract configurationswhere several
requesting processes execute the critical section concurrently.
For the PIF, the bad-factor consists in the sequence of abstract
configurations where the initiator decides of the termination of a
PIF it started while some other processes are still broadcasting the
message.

We now consider a message-passing system with unbounded
capacity channels and show the impossibility of snap-stabilization
for safety-distributed specifications in that case. Since most of
classical synchronization and resource allocation problems are
safety-distributed, this result prohibits the existence of snap-
stabilizing protocols in message-passing systems if no further
assumption is made.

We prove the theorem by showing that a ‘‘bad’’ execution can
be obtained by filling the communication channels with messages
entailing an unsafe state, and no process can detect that those
messages occur due to errors because of the safety-distributed
nature of the specification.

Theorem 1. There exists no safety-distributed specification that
admits a snap-stabilizing solution in message-passing systems with
unbounded capacity channels.

Proof. Let SP be a safety-distributed specification and BAD = α0,
α1, . . . be a bad-factor of SP .

Assume, for the purpose of contradiction, that there exists a
protocol P that is snap-stabilizing for SP . By Definition 5, for
each process p, there exists an execution ep of P that can be split
into three execution factors e0p , e

1
p = β

p
0 , β

p
1 , . . ., and e2p such that

ep = e0pe
1
pe

2
p and Φp(e1p) = Φp(BAD). Let us denote by MesSeqqp the

ordered sequence of messages that p receives from any process q
in e1p . Consider now the configuration γ0 such that:

(1) φ(γ0) = α0.

Author's personal copy

S. Delaët et al. / J. Parallel Distrib. Comput. 70 (2010) 1220–1230 1223

(2) For all pairs of distinct processes p and q, the link {p, q} has the
following state in γ0:
(a) The messages in the channel from q to p are exactly the

sequenceMesSeqqp (keeping the same order).
(b) The messages in the channel from p to q are exactly the

sequenceMesSeqpq (keeping the same order).

(It is important to note that we have the guarantee that γ0
exists becausewe assumeunbounded capacity channels. Assuming
channels with a bounded capacity c , no configuration satisfies
(2) if there are at least two distinct processes p and q such that
|MesSeqqp| > c.)

As P is snap-stabilizing, γ0 is a possible initial configuration
of P . To obtain the contradiction, we now show that there is an
execution starting from γ0 that does not satisfy SP . By definition,
φ(γ0) = α0. Consider a process p and the two first configurations
of e1p: β

p
0 and β

p
1 . Any message that p receives in β

p
0 → β

p
1

can be received by p in the first step from γ0: γ0 → γ1. Now,
φp(γ0) = φp(β

p
0). So, p can behave in γ0 → γ1 as in β

p
0 → β

p
1 .

In this case, φp(γ1) = φp(β
p
1). Hence, if each process q behaves in

γ0 → γ1 as in the first step of its execution factor e1q , we obtain
a configuration γ1 such that φ(γ1) = α1. By induction principle,
there exists an execution prefix starting from γ0 denoted PRED
such that Φ(PRED) = BAD. As P is snap-stabilizing, there exists
an execution SUFF that starts from the last configuration of PRED.
Now, merging PRED and SUFF we obtain an execution of P that
does not satisfy SP — this contradicts the fact that P is snap-
stabilizing. �

The proof of Theorem 1 hinges on the fact that after some transient
faults the configuration may contain an unbounded number of
arbitrary messages. Note that a safety-distributed specification
involves more than one process and thus requires the processes
to communicate to ensure that safety is not violated. However,
with unbounded channels, each process cannot determine if the
incoming message is indeed sent by its neighbor or is the result
of faults. Thus, the communication is thwarted and the processes
cannot differentiate safe and unsafe behavior.

4. Message-passing systems with bounded capacity channels

We now consider systems with bounded capacity channels. In
such systems, we assume that if a process sends a message in
a channel that is full, then the message is lost. For the sake of
simplicity, we restrict our study to systems with single-message
capacity channels. The extension to an arbitrary but known
bounded message capacity is straightforward (by applying the
principles described in [29,6,7]).

Below, we propose two snap-stabilizing protocols for fully-
connected networks (Algorithms 1 and 3) respectively for the PIF
(Propagation of Information with Feedback) and mutual exclusion
problems. The mutual exclusion algorithm is obtained using
several PIFs.

4.1. PIF for fully-connected networks

4.1.1. Principle
Informally, the PIF algorithm (also called echo algorithm) can

be described as follows: upon a request, a process – called initiator
– starts the first phase of the PIF by broadcasting a data message
m into the network (the broadcast phase). Then, each non-initiator
acknowledges3 to the initiator the receipt ofm (the feedback phase).

3 An acknowledgment is a message sent by the receiving process to inform the
sender about data it has correctly received (cf. [27]).

The PIF terminates by a decision event at the initiator.4 This
decision is taken following the acknowledgments for m, meaning
that when the decision event for the message m occurs, the last
acknowledgments the initiator delivers from all other processes
are acknowledgments form.

Note that any process may need to initiate a PIF. Thus, any
process can be the initiator of a PIF and several PIFs may run
concurrently. Hence, any PIF protocol has to cope with concurrent
PIFs.

More formally, the PIF problem can be specified as follows:

Specification 1 (PIF-Exec). An execution e satisfies Predicate
PIF-Exec if and only if e satisfies the following two properties:
(1) Start. Upon a request to broadcast a message m, a process p starts

a PIF of m.
(2) User-Safety. During any PIF of some message m started by p:
• Every process other than p receives m.
• p receives acknowledgments for m from all other processes.
• p executes the decision event in finite time, this decision is taken

following the acknowledgments for m.

Wenowoutline a snap-stabilizing implementation of the PIF called
PIF (the code is provided in Algorithm 1). In the following (and
in the rest of the paper), themessage-valueswill be replaced by ‘‘−’’
when they have no impact on the reasoning.

A basic PIF implementation requires the following input/output
variables:

• The variable Reqp is used to manage the requests at the process
p. The value of Reqp belongs to {Wait, In, Done}. Reqp = Wait
means that a PIF is requested. Reqp = In means that the
protocol is currently executing a PIF. Reqp = Done means no
PIF is under execution, i.e., the protocol is waiting for the next
request.
• The buffer variable BMesp is used to store the message to

broadcast.
• The array FMesp[1 . . . n−1] is used to store acknowledgments,

i.e., FMesp[q] contains the acknowledgment for the broadcast
message coming from q.

Using these variables, the protocol proceeds as follows: assume
that a user wants to broadcast amessagem from process p. It waits
until the current PIF terminates (i.e., until Reqp = Done) even if
the current PIF is due to a fault, and then notifies the request to
p by setting BMesp to m and Reqp to Wait. Consequently to this
request, a PIF is started (in particular, Reqp is set to In). The current
PIF terminates when Reqp is set to Done (this latter assignment
corresponds to the decision event). Between the start and the
termination, the protocol has to generate two types of events at
the application level. First, a ‘‘B-receive ⟨m⟩ from p’’ event at
each other process q. When this event occurs, the application at
q is assumed to process the broadcast message m and put an
acknowledgment Ackm into FMesq[p]. The protocol then transmits
FMesq[p] to p: this generates a ‘‘F-receive ⟨Ackm⟩ from q’’ event at
p so that the application at p can access the acknowledgment.

Note that the protocol has to operate correctly despite arbitrary
messages in the channels left after the faults. Note also that
messages may be lost. To counter the message loss the protocol
repeatedly sends duplicate messages. To deal with the arbitrary
initial messages and the duplicates, we mark each message with
a flag that ranges from 0 to 4. Two arrays are used to manage the
flag values:

• In Statep[q], process p stores a flag value that it attaches to the
messages it sends to its qth neighbor.

4 That is, an event that causally depends on an action at each process (this
definition comes from [27]).

Author's personal copy

1224 S. Delaët et al. / J. Parallel Distrib. Comput. 70 (2010) 1220–1230

• In NStatep[q], p stores the flag of the last message it has
accepted from its qth neighbor.

Using these two arrays, our protocol proceeds as follows: when p
starts a PIF, it initializes Statep[q] to 0, for every index q. The PIF
terminates when Statep[q] ≥ 4 for every index q.

During the PIF, p repeatedly sends ⟨PIF, BMesp,−, Statep[q],
−⟩ to every process q such that Statep[q] < 4. When a process
q receives ⟨PIF, B,−, pState,−⟩ from p, q updates NStateq[p] to
pState. Then, if pState < 4, q sends ⟨PIF,−, FMesq[p],−, NStateq
[p]⟩ to p. Finally, p increments Statep[q] only when it receives
a ⟨PIF,−, F ,−, qNState⟩ message from q such that qNState =
Statep[q] and qNState < 4.

The main idea behind the algorithm is as follows: assume
that p starts to broadcast the message m. While Statep[q] <
4, Statep[q] is incremented only when p received a message
⟨PIF,−, F ,−, qNState⟩ from q such that qNState = Statep[q].
So, Statep[q] will be equal to 4 only after p successively receives
⟨PIF,−, F ,−, qNState⟩ messages from q with the flag values 0,
1, 2, and 3. Now, initially there is at most one message in the
channel from p to q and at most another one in the channel from
q to p. So these messages can only cause at most two increments
of Statep[q]. Finally, the arbitrary initial value of NStateq[p]
can cause at most one increment of Statep[q]. Hence, since
Statep[q] = 3, we have the guarantee that p will increment
Statep[q] to 4 only after it receives a message sent by q after q
receives a message sent by p. That is, this message is a correct
acknowledgment ofm by q.

It remains to describe the generation of the B-receive and
F-receive events:

• Any process q receives at least four copies of the broadcast
message from p. But, q generates aB-receive event only once for
each broadcast message from p: when q switches NStateq[p]
to 3.
• After it starts, p is sure to receive the correct feedback from q

since it receives from q a ⟨PIF,−, F ,−, qNState⟩message such
that qNState = Statep[q] = 3. As previously, to limit the
number of events, p generates a F-receive event only when it
switches Statep[q] from 3 to 4. The next copies are ignored.

4.1.2. Correctness
Below, we prove that Algorithm PIF is a snap-stabilizing PIF

algorithm for fully-connected networks. Note that the principle
of proof is similar to [21]. However, the proof details are quite
different, mainly due to the fact that our communication model
is weaker than the one used in [21]. Remember that in [21],
authors abstract the activity of communication links by assuming
an underline snap-stabilizing ARQ data link algorithm. Here, we
just assume that links are fair-lossy and FIFO.

The proof of snap-stabilization of PIF consists in showing
that, despite the arbitrary initial configuration, any execution of
PIF always satisfies the start and the user-safety properties of
Specification 1.

Considering an arbitrary initial configuration, we state the start
property (Corollary 1) in two steps:

(S1) We first prove that each time a user wants to broadcast a
message from some process p, then it can eventually submit
its request to the process (i.e. it is eventually enabled to
execute Reqp ← Wait).

(S2) We then prove that once a request has been submitted to
some process p, the process starts (i.e., executes action A1) the
corresponding PIF within finite time.

To prevent the aborting of a previous PIF, a user can initiate
a request at some process p only if Reqp = Done. Hence, to
show (S1), we show that from any configuration where Reqp ∈

{Wait, In}, the system eventually reaches a configuration where

Reqp = Done. This latter claim is proven in two stages:
• We first show in Lemma 1 that from any configuration where
Reqp = Wait, in finite time the system reaches a configuration
where Reqp = In.
• We then show in Lemma 3 that from any configuration where
Reqp = In, in finite time the system reaches a configuration
where Reqp = Done.

Lemma 1. Let p be any process. From any configuration where
Reqp = Wait, in finite time the system reaches a configurationwhere
Reqp = In.

Proof. When Reqp = Wait, action A1 is continuously enabled at p
and by executing A1, p sets Reqp to In. �

The next technical lemma is used in the proof of Lemma 3.

Lemma 2. Let p and q be two distinct processes. From any
configuration where (Reqp = In)∧ (Statep[q] < 4), Statep[q] is
incremented in finite time.

Proof. Assume, for the sake of contradiction, that Reqp = In and
Statep[q] = i with i < 4 but Statep[q] is never incremented.
Then, Reqp = In and Statep[q] = i hold forever and by checking
actions A2 and A3, we know that:
• p only sends to q messages of the form ⟨PIF,−,−, i,−⟩.
• p sends such messages infinitely many times.

As a consequence, q eventually only receives from p messages of
the form ⟨PIF,−,−, i,−⟩ and q receives such messages infinitely
often. By action A3, NStateq[p] = i eventually holds forever.
From that point, any message that q sends to p is of the form
⟨PIF,−,−,−, i⟩. Also, as i < 4 and q receives infinitely
many messages from p, q sends infinitely many messages of
the form ⟨PIF,−,−,−, i⟩ to p. Hence, p eventually receives
⟨PIF,−,−,−, i⟩ from q and, as a consequence, increments
Statep[q] (see action A3) — a contradiction. �

Lemma 3. Let p be any process. From any configuration where
Reqp = In, in finite time the system reaches a configuration where
Reqp = Done.

Proof. Assume, for the sake of contradiction, that from some
configuration Reqp ≠ Done forever. Then, Reqp = In eventually
holds forever by Lemma 1. Now, by Lemma 2 and owing the fact
that for every index q, Statep[q] cannot decrease while Reqp =

In, we can deduce that p eventually satisfies ‘‘∀q ∈ [1 . . . n − 1],
Statep[q] = 4’’ forever. In this case, p eventually sets Reqp to
Done by action A2 — a contradiction. �

As explained before, Lemmas 1 and 3 proves (S1). Lemma 1
also implies (S2) because A1 (the starting action) is the only action
where Reqp is set to In. Hence, we have the following corollary:

Corollary 1 (Start). Starting from any configuration, PIF always
satisfies the start property of Specification 1.

Still considering an arbitrary initial configuration, we now state
the user-safety property (Corollary 2), that is, during any PIF of
some message m started by p:
(U1) Every process other than p receivesm.
(U2) p receives acknowledgments form from all other processes.
(U3) p executes the decision event5 in finite time, this decision is

taken following the acknowledgments form.

We first show (U1) and (U2) in Lemma 5.
The next technical lemma is used in the proof of Lemma 5.

5 Remember that the decision event corresponds to the statementReqp ← Done.

Author's personal copy

S. Delaët et al. / J. Parallel Distrib. Comput. 70 (2010) 1220–1230 1225

Algorithm 1 Protocol PIF for any process p
Constant: n: integer

Variables:
Reqp ∈ {Wait, In, Done} : input/output
BMesp , FMesp[1 . . . n− 1] : inputs
Statep[1 . . . n− 1] ∈ {0, 1, 2, 3, 4}n−1 , NStatep[1 . . . n− 1] ∈ {0, 1, 2, 3, 4}n−1 : internals

Actions:
A1 :: (Reqp = Wait) → Reqp ← In /∗ Start ∗/

for all q ∈ [1 . . . n− 1] do Statep[q] ← 0

A2 :: (Reqp = In) → if (∀q ∈ [1 . . . n− 1], Statep[q] = 4) then
Reqp ← Done /∗ Termination ∗/

else
for all q ∈ [1 . . . n− 1] do

if (Statep[q] < 4) then
send⟨PIF, BMesp , FMesp[q], Statep[q], NStatep[q]⟩ to q

A3 :: receive⟨PIF, B, F , qState, pState⟩ → if (NStatep[q] ≠ 3) ∧ (qState = 3) then
from channel q generate a ‘‘B-receive⟨B⟩ from channel q’’ event

NStatep[q] ← qState
if (Statep[q] = pState) ∧ (Statep[q] < 4) then

Statep[q] ← Statep[q] + 1
if (Statep[q] = 4) then

generate a ‘‘F-receive⟨F⟩ from channel q’’ event
if (qState < 4) then

send⟨PIF, BMesp , FMesp[q], Statep[q], NStatep[q]⟩ to q

Lemma 4. Let p and q be two distinct processes. After p starts a
PIF (action A1), p switches Statep[q] from 2 to 3 only if the three
following conditions hold:
1. Any message in the channel from p to q is of the form ⟨PIF,−,
−, i,−⟩ with i ≠ 3.

2. NStateq[p] ≠ 3.
3. Any message in the channel from q to p is of the form ⟨PIF,−,
−,−, j⟩ with j ≠ 3.

Proof. p starts a PIF with action A1. By executing A1, p sets
Statep[q] to 0. From that point, Statep[q] can only be incre-
mented one by one until reaching value 4. Let us study the three
first increments of Statep[q]:

• From 0 to 1. Statep[q] switches from 0 to 1 only after p
receives a message ⟨PIF,−,−,−, 0⟩ from q. As the link {p, q}
always contains at most one message in the channel from q to
p, the next message that pwill receive from qwill be a message
sent by q.
• From 1 to 2. From the previous case, we know that Statep[q]

switches from 1 to 2 only when p receives ⟨PIF,−,−,−, 1⟩
from q and this message was sent by q. From actions A2 and A3,
we can then deduce that NStateq[p] = 1 held when q sent
⟨PIF,−,−,−, 1⟩ to p. From that point, NStateq[p] = 1 holds
until q receives from p a message of the form ⟨PIF,−,−, i,−⟩
with i ≠ 1.
• From 2 to 3. The switching of Statep[q] from 2 to 3 can occurs

only after p receives a messagemes1 = ⟨PIF,−,−,−, 2⟩ from
q. Now, from the previous case, we can deduce that p receives
mes1 consequently to the reception by q of a message mes0 =
⟨PIF,−,−, 2,−⟩ from p. Now:
(a) As the link {p, q} always contains at most one message

in the channel from p to q, after receiving mes0 and
until Statep[q] switches from 2 to 3, every message in
transit from p to q is of the form ⟨PIF,−,−, i,−⟩ with
i ≠ 3 (Condition 1 of the lemma) because after p starts
to broadcast a message, p sends messages of the form
⟨PIF,−,−, 3,−⟩ to q only when Statep[q] = 3.

(b) After receiving mes0, NStateq[p] ≠ 3 until q receives
⟨PIF,−,−, 3,−⟩. Hence, by (a), after receiving mes0
and until (at least) Statep[q] switches from 2 to 3,
NStateq[p] ≠ 3 (Condition 2 of the lemma).

(c) After receiving mes1, Statep[q] ≠ 3 until p receives
⟨PIF,−,−,−, 3⟩ from q. As p receives mes1 after q
receives mes0, by (b) we can deduce that after receiving
mes1 and until (at least) Statep[q] switches from 2 to
3, every message in transit from q to p is of the form
⟨PIF,−,−,−, j⟩with j ≠ 3 (Condition 3 of the lemma).

Hence, when p switches Statep[q] from 2 to 3, the three
conditions (1), (2) and (3) are satisfied, which proves the
lemma. �

Lemma 5. Starting from any configuration, if p starts a PIF of some
message m (action A1), then:

• All other process eventually receive m.
• p eventually receives acknowledgments for m from all other

processes.

Proof. p starts a PIF of m by executing action A1: p switches Reqp
from Wait to In and sets Statep[q] to 0, for every index q. Then,
Reqp remains equal to In until p decides by setting Reqp to Done.
Now, p decides in finite time by Lemma 3 and when p decides, we
have Statep[q] = 4, ∀q ∈ [1 . . . 0] (action A2). From the code
of Algorithm 1, this means that for every index q, Statep[q] is
incremented one by one from 0 to 4. By Lemma 4, for every index
q, Statep[q] is incremented from 3 to 4 only after:

• q receives a message sent by p of the form ⟨PIF,m,−, 3,−⟩,
and then
• p receives a message sent by q of the form ⟨PIF,−,−, 3,−⟩.

When q receives ⟨PIF,m,−, 3,−⟩ from p for the first time, it
generates the event ‘‘B-receive ⟨m⟩ from channel p’’ and then
starts to send ⟨PIF,−, F ,−, 3⟩ messages to p.6 From that point
and until p decides, q only receives ⟨PIF,m,−, 3,−⟩ message
from p. So, from that point and until p decides, any message that
q sends to p acknowledges the reception ofm. Since, p receives the
first ⟨PIF,−, F ,−, 3⟩message from q, p generates a ‘‘F-receive ⟨F⟩
from channel q’’ event and then sets Statep[q] to 4.

6 q sends a ⟨PIF,−, F ,−, 3⟩ message to p (at least) each time it receives a
⟨PIF,m,−, 3,−⟩message from p.

Author's personal copy

1226 S. Delaët et al. / J. Parallel Distrib. Comput. 70 (2010) 1220–1230

Hence, for every process q, the broadcast of m generates a
‘‘B-receive ⟨m⟩ from channel p’’ event at q and the associated
‘‘F-receive ⟨F⟩ from channel q’’ event at p, which proves the
lemma. �

The next lemma proves (U3).

Lemma 6. Starting from any configuration, during any PIF of some
message m started by p, (1) p executes a decision event (i.e., Reqp ←

Done) in finite time and (2) this decision is taken following the
acknowledgments for m.

Proof. First, during any PIF of some message m started by p, p
decides in finite time by Lemma 3.

Let q be a process such that q ≠ p. We now show the second
part of the lemma by proving that between the start of the PIF of m
and the corresponding decision, p generates exactly one ‘‘F-receive
⟨F⟩ from channel q’’ event where F is an acknowledgment sent by q
for m.

First p starts a PIF of m by executing action A1: p switches Reqp
from Wait to In and sets Statep[q] to 0. Then, Reqp remains equal
to In until p decides by setting Reqp to Done. When p decides, we
have Statep[q] = 4, for every index q. From the code of Algorithm
1, we know that exactly one ‘‘F-receive ⟨F⟩ from channel q’’ event
occurs at p before p decides: when p switches Statep[q] from 3 to
4. Lemma 4 implies that F is an acknowledgment for m sent by q
and the lemma is proven. �

By Lemmas 5 and 6, follows:

Corollary 2 (User-Safety). Starting from any configuration, PIF
always satisfies the User-Safety property of Specification 1.

By Corollaries 1 and 2, follows:

Theorem 2. PIF is snap-stabilizing to Specification 1.

Below, we give an additional property of PIF , this property
will be used in the snap-stabilization proof of ME (Section 4.2).

Property 1. If p starts a PIF in the configuration γ0 and the PIF
terminates at p in the configuration γk, then any message that was
in a channel from and to p in γ0 is no longer in the channel in γk.

Proof. Assume that a process p starts a PIF in the configuration
γ0. Then, as PIF is snap-stabilizing to Specification 1, we have
the guarantee that for every p’neighbor q, at least one broadcast
message crosses the channel from p to q and at least one
acknowledgment message crosses the channel from q to p during
the PIF-computation. Now, we assumed that each channel has
a single-message capacity. Hence, every message that was in a
channel from and to p in the configuration γ0 has been received
or lost when the PIF terminates at p in configuration γk. �

4.2. Mutual exclusion for fully-connected networks

4.2.1. Specification
We now consider the problem of mutual exclusion. The mutual

exclusion specification requires that a special section of code,
called the critical section, is executed by at most one process
at any time. A snap-stabilizing mutual exclusion protocol (only)
guarantees its safety property when the process requests the
critical section after the faults stop [11]. The safety property is
not otherwise guaranteed. Hence, we specify the mutual exclusion
protocol as follows:

Specification 2 (ME-Exec). An execution e satisfies Predicate ME-
Exec if and only if e satisfies the following two properties:
1. Start. Upon a request, a process enters the critical section in finite

time.
2. User-Safety. If a requested process enters the critical section, then

it executes the critical section alone.

In order to simplify the design of our mutual exclusion
algorithm, we propose below an identifier-discovery algorithm,
IDL, that is a straightforward extension of PIF .

4.2.2. Identifier-discovery
IDL assumes that each process has a unique identifier (IDp

denotes the identifier of the process p) and uses three variables at
each process p:

• Reqp ∈ {Wait, In, Done}. The purpose of this variable is the
same as in PIF .
• minIDp. After a complete computation of IDL, minIDp

contains the minimal identifier of the system.
• IDTabp[1 . . . n]. After a complete computation ofIDL,IDTabp
[q] = IDq.

When requested at p, IDL evaluates the identifiers of all other
processes and theminimal identifier of the systemusingPIF . The
results of the computation are available for p since p decides. Based
on the specification of PIF , it is easy to see that IDL is snap-
stabilizing to the following specification:

Specification 3 (ID-Discovery-Exec). An execution e satisfies Predi-
cate ID-Discovery-Exec if and only if e satisfies the following two prop-
erties:
1. Start.When requested, a process p starts in finite time to discover

the identifiers of the processes.
2. User-Safety. Any identifier-discovery started by p terminates in

finite time by a decision event at p and when the decision occurs,
we have:
• ∀q ∈ [1 . . . n− 1], IDTabp[q] = IDq.
• minIDp = min({IDq, q ∈ [1 . . . n− 1]} ∪ {IDp}).

Theorem 3. IDL is snap-stabilizing for Specification 3.

4.2.3. Principle
We now describe a snap-stabilizing mutual exclusion protocol

called ME (Algorithm 3). ME also uses the variable Req with
the same meaning as previously: ME .Reqp is to Wait when the
process p is requested to execute the critical section. Process p is
then called a requestor andwe assume thatME .Reqp cannot be set
to Wait again untilME .Reqp = Done, i.e., until its current request
is done.

The main idea behind the protocol is the following: we assume
identifiers onprocesses and theprocesswith the smallest identifier
– called the leader – bounces a single token to every process using a
variable called Val, this variable ranges over {0 . . . n−1}. The Val
variable of the leader L designates which process holds the token:
process p holds the token if and only if either p = L and ValL = 0
or p ≠ L and ValL is equal to the number of its channel incoming
from p. A process can access the critical section only if it holds the
token. Thus, the processes continuously ask the leader to know if
they hold the token.

When a process learns that it holds the token:

(1) It first ensures that no other process can execute the critical
section (due to the arbitrary initial configuration, some other
processes may wrongly believe that they also hold the token).

(2) It then executes the critical section if it wishes to (it may refuse
if it is not a requestor).

(3) Finally, it notifies to the leader that it has terminated Step (2)
so that the leader passes the token to another process.

To apply this scheme, ME is executed in phases from Phase 0
to 4 in such way that each process goes through Phase 0 infinitely
often. After a request, a process p can access the critical section only
after executing Phase 0: indeed p can access the critical section only
ifME .Reqp = In and p switchesME .Reqp fromWait toIn only in
Phase 0. Hence, our protocol just ensures that after executing Phase

Author's personal copy

S. Delaët et al. / J. Parallel Distrib. Comput. 70 (2010) 1220–1230 1227

Algorithm 2 Protocol IDL for any process p
Constants: n, IDp: integers

Variables:
Reqp ∈ {Wait, In, Done} : input/output
minIDp ∈ N, IDTabp[1 . . . n− 1] ∈ Nn−1 : outputs

Actions:
A1 :: (Reqp = Wait) → Reqp ← In /∗ Start ∗/

minIDp ← IDp; PIF .BMesp ← IDL
PIF .Reqp ← Wait

A2 :: (Reqp = In) ∧ (PIF .Reqp = Done) → Reqp ← Done /∗ Termination ∗/

A3 :: B-receive⟨IDL⟩ from channel q → PIF .FMesp[q] ← IDp

A4 :: F-receive⟨ID⟩ from channel q → IDTabp[q] ← ID; minIDp ← min(minIDp , ID)

0, a process always executes the critical section alone. Below, we
describe the five phases of our protocol:
Phase 0.When a process p is in Phase 0, it requests a computation
of IDL to collect the identifiers of all processes and to evaluate
which one is the leader. It also sets ME .Reqp to In if ME .Reqp =

Wait. It then switches to Phase 1.
Phase 1.When a process p is in Phase 1, pwaits for the termination
of IDL. Then, p requests a PIF of the message ASK to know if
it is the token holder and switches to Phase 2. Upon receiving a
message ASK from the channel p, any process q answers YES if
Valq = p, NO otherwise. Of course, p will only take the answer
of the leader into account.
Phase 2.When a process p is in Phase 2, it waits for the termination
of the PIF requested in Phase 1. After the PIF terminates, p knows
if it is the token holder. If p holds the token, it requests a PIF
of the message EXIT and switches to Phase 3. The goal of this
message is to force all other processes to restart to Phase 0. This
ensures that no other process believes to be the token holder when
p accesses the critical section. Indeed, due to the arbitrary initial
configuration, some process q ≠ p may believe to be the token
holder, if q never starts Phase 0. On the contrary, after restarting to
0, q cannot receive positive answer from the leader until p notifies
to the leader that it releases the critical section.
Phase 3.When a process p is in Phase 3, it waits for the termination
of the current PIF. After the PIF terminates, if p is the token holder,
then:
1) p executes the critical section and switches ME .Reqp from In

to Done if ME .Reqp = In, and then
2) (a) Either, p is the leader and switches Valp from 0 to 1.

(b) Or, p is not the leader and requests a PIF of the message
EXITCS to notify to the leader that it releases the
critical section. Upon receiving such a message, the leader
increments its variable Valmodulus n+1 to pass the token
to another process.

In any case, p terminates Phase 3 by switching to Phase 4.
Phase 4.When a process p is in Phase 4, it waits for the termination
of the last PIF and then switches to Phase 0.

4.2.4. Correctness
Webegin the proof of snap-stabilization ofME by showing that,

despite the arbitrary initial configuration, any execution of ME
always satisfies the user-safety property of Specification 2.

Assume that a process p is a requestor, i.e., ME .Reqp = Wait.
Then, p cannot enters the critical section before executing action
A0. Indeed:
• p enters the critical section only if ME .Reqp = In, and
• action A0 is the only action of ME allowing p to set ME .Reqp

to In.

Hence, to show the user-safety property of Specification 2
(Corollary 3), we have to prove that, despite the initial configura-
tion, after p executes action A0, if p enters the critical section, then
it executes the critical section alone (Lemma 9).

Lemma 7. Let p be a process. Starting from any configuration, after
p executes A0, if p enters the critical section, then all other processes
have switched to Phase 0 at least once.

Proof. After p executes A0, to enter the critical section (in A3) p
must execute the three actions A1, A2, and A3 successively. Also, to
execute the critical section in actionA3, pmust satisfy the predicate
Winner(p). The value of the predicate Winner(p) depends on
(1) the IDL computation requested in A0 and (2) the PIF of the
message ASK requested in A1. Now, these two computations are
done when p executes A2. So, the fact that p satisfies Winner(p)
when executing A3 implies that p also satisfies Winner(p) when
executing A2. As a consequence, p requests a PIF of the message
EXIT in A2. Now, p executes A3 only after this PIF terminates.
Hence, p executes A3 only after every other process executes A6
(i.e., the feedback of themessage EXIT): by this action, every other
process switches to Phase 0. �

Definition 6 (Leader).Wecall Leader the processwith the smallest
identifier. In the following, this process will be denoted by L.

Definition 7 (Favour). We say that the process p favours the
process q if and only if (p = q∧ Valp = 0)∨ (p ≠ q∧ Valp = q).

Lemma 8. Let p be a process. Starting from any configuration, after
p executes A0, p enters the critical section only if L favours p until p
releases the critical section.

Proof. By checking all the actions of Algorithm 3, we can observe
that after p executes A0, to enter the critical section p must
execute the four actions A0, A1, A2, and A3 successively. Moreover,
p executes a complete IDL-computation between A0 and A1.
Thus:

(1) IDL.minIDp = IDL when p executes A3.
(2) Also, from the configuration where p executes A1, all messages

in the channels from and to p have been sent after p requests
IDL in action A0 (Property 1, page 17).

Let us now study the following two cases:

• p = L. In this case, when p executes A3, to enter the critical
section pmust satisfy Valp = ValL = 0 by (1). Thismeans that
L favours p (actually itself) when p enters the critical section.
Moreover, as the execution of A3 is atomic, L favours p until p
releases the critical section and this closes the case.

Author's personal copy

1228 S. Delaët et al. / J. Parallel Distrib. Comput. 70 (2010) 1220–1230

Algorithm 3 Protocol ME for any process p
Constants: n, IDp: integers

Variables:
Reqp ∈ {Wait, In, Done} : input/output
Php ∈ {0, 1, 2, 3, 4}, Valp ∈ {0 . . . n− 1}, Answersp[1 . . . n− 1] ∈ {true, false}n−1 : internals

Predicate:
Winner(p)≡(IDL.minIDp=IDp∧Valp=0)∨(∃q∈[1 . . . n− 1], Answersp[q]∧IDL.IDTabp[q]=IDL.minIDp)

Actions:
A0 :: (Php = 0) → IDL.Reqp ← Wait

if Reqp = Wait then Reqp ← In /∗ Start ∗/
Php ← Php + 1

A1 :: (Php = 1) ∧ (IDL.Reqp = Done) → PIF .BMesp ← ASK; PIF .Reqp ← Wait
Php ← Php + 1

A2 :: (Php = 2) ∧ (PIF .Reqp = Done) → if Winner(p) then
PIF .BMesp ← EXIT; PIF .Reqp ← Wait

Php ← Php + 1

A3 :: (Php = 3) ∧ (PIF .Reqp = Done) → if Winner(p) then
if Reqp = In then

critical section; Reqp ← Done /∗ Termination ∗/
if IDL.minIDp = IDp then

Valp ← 1
else

PIF .BMesp ← EXITCS; PIF .Reqp ← Wait
Php ← Php + 1

A4 :: (Php = 4) ∧ (PIF .Reqp = Done) → Php ← 0

A5 :: B-receive⟨ASK⟩ from channel q → if Valp = q then
PIF .FMesp[q] ← YES

else
PIF .FMesp[q] ← NO

A6 :: B-receive⟨EXIT⟩ from channel q → Php ← 0; PIF .FMesp[q] ← OK

A7 :: B-receive⟨EXITCS⟩ from channel q → if Valp = q then Valp←(Valp+1)mod(n+1)
PIF .FMesp[q] ← OK

A8 :: F-receive⟨YES⟩ from channel q → Answersp[q] ← true

A9 :: F-receive⟨NO⟩ from channel q → Answersp[q] ← false

A10 :: F-receive⟨OK⟩ from channel q → /∗ do nothing ∗/

• p ≠ L. In this case, when p executes A3, p satisfies
IDL.minIDp = IDL by (1). So, p executes the critical section
only if ∃q ∈ [1 . . . n − 1] such that IDL.IDTabp[q] =
IDL ∧ Answersp[q] = true (see Predicate Winner(p)). For
that, p must receive a feedback message YES from L during
the PIF of the message ASK requested in action A1. Now, L
sends such a feedback to p only if ValL = p when the
‘‘B-receive⟨ASK⟩ from p’’ event occurs atL (see action A5). Also,
sinceL satisfies ValL = p,L updates Valp only after receiving
an EXITCSmessage from p (see action A7). Now, by (2), after L
feedbacks YES to p, L receives an EXITCSmessage from p only
if p broadcasts EXITCS to L after releasing the critical section
(see action A3). Hence, L favours p until p releases the critical
section and this closes the case. �

Lemma 9. Let p be a process. Starting from any configuration, if p
enters the critical section after executing A0, then it executes the
critical section alone.
Proof. Assume, for the sake of contradiction, that p enters the
critical section after executing A0 but executes the critical section
concurrently with another process q. Then, q also executes action
A0 before executing the critical section by Lemma 7. By Lemma 8,
we have the following two property:
• L favours p during the whole period where p executes the

critical section.

• L favours q during the whole period where q executes the
critical section.

This contradicts the fact that p and q executes the critical section
concurrently because L always favours exactly one process at a
time. �

Corollary 3 (User-Safety). Starting from any configuration, ME
always satisfies the user-safety property of Specification 2.

We now show that, despite the arbitrary initial configuration,
any execution of ME always satisfies the start property of
Specification 2 (Lemma 4). As previously, this proof is made in two
steps:

(S1) We first prove that each time a user want to execute the
critical section at some process p, then it is eventually able to
submit its request to the process (i.e. it is eventually enabled
to execute ME .Reqp ← Wait).

(S2) We then prove that once a request has been submitted to
some process p, the process enters the critical section in finite
time.

To prevent the aborting of the previous request, a user can
submit a request at some process p only if ME .Reqp = Done.
Hence, to show (S1), we show that from any configuration
where ME .Reqp ∈ {Wait, In}, the system eventually reaches a

Author's personal copy

S. Delaët et al. / J. Parallel Distrib. Comput. 70 (2010) 1220–1230 1229

configuration where ME .Reqp = Done. This latter claim is proven
in two stages:
• We first show in Lemma 11 that from any configuration where

ME .Reqp = Wait, in finite time the system reaches a
configuration where ME .Reqp = In.
• We then show in Lemma 13 that from any configuration

where ME .Reqp = In, in finite time the system reaches a
configuration where Reqp = Done.

The next technical lemma is used in the proof of Lemma 11.

Lemma 10. Starting fromany configuration, every process p switches
to Phase 0 infinitely often.
Proof. Consider the following two cases:
• ‘‘B-receive⟨EXIT⟩’’ events occur at p infinitely often. Then, each

time such an event occurs at p, p switches to Phase 0 (seeA6) and
this closes the case.
• Only a finite number of ‘‘B-receive⟨EXIT⟩’’ events occurs at p. In

this case, p eventually reaches a configuration from which it no
longer executes action A6. From this configuration, Php can only
be incremented modulus 5 and depending of the value of Php,
we have the following possibilities:
– Php = 0. In this case, A0 is continuously enabled at p. Hence,

p eventually sets Php to 1 (see action A0).
– Php = i with 0 < i ≤ 4. In this case, action Ai is eventually

continuously enabled due to the termination property
of IDL and PIF . By executing Ai, p increments Php
modulus 5.

Hence, if only a finite number of ‘‘B-receive⟨EXIT⟩’’ events
occurs at p, then Php is incremented modulus 5 infinitely often
and this closes the case. �

Lemma 11. Let p be any process. From any configuration where
ME .Reqp = Wait, in finite time the system reaches a configuration
where ME .Reqp = In.
Proof. Assume that ME .Reqp = Wait. Lemma 10 implies that
p eventually executes action A0. By action A0, ME .Reqp is set
to In. �

The next technical lemma is used in the proof of Lemma 13.

Lemma 12. Starting from any configuration, ValL is incremented
modulus n+ 1 infinitely often.
Proof. Assume, for the sake of contradiction, that there are a finite
number of increments of ValL (modulus n + 1). We can then
deduce that L eventually favours some process p forever.

In order to prove the contradiction, we first show that
(*) assuming that L favours p forever, only a finite number
of ‘‘B-receive⟨EXIT⟩’’ events occurs at p. Towards this end,
assume, for the sake of contradiction, that an infinite number of
‘‘B-receive⟨EXIT⟩’’ events occurs at p. Then, as the number of
processes is finite, there is a process q ≠ p that broadcasts EXIT
messages infinitely often. Now, every PIF terminates in finite time.
So, q performs infinitely many PIF of the message EXIT. In order
to start another PIF of the message EXIT, qmust then successively
execute actions A0, A1, A2. Now, when q executes A2 after A0 and A1,
IDL.minIDq = IDL and either (1) q = L and, as q ≠ p,ValL ≠ 0,
or (2) L has feedback NO to the PIF of the message ASK started by q
because ValL = p ≠ q. In both cases, q satisfies ¬Winner(q) and,
as a consequence, does not broadcast EXIT (see action A3). Hence,
q eventually stops to broadcast EXIT — a contradiction.

Using Property (∗), we now show the contradiction. By
Lemma 10, p switches to Phase 0 infinitely often. By (∗), we know
that p eventually stops executing action A6. So, from the code of
Algorithm3,we candeduce that p eventually successively executes
actions A0, A1, A2, A3, and A4 infinitely often. Consider the first
time p successively executes A0, A1, A2, A3, and A4 and study the
following two cases:
• p = L. Then, Valp = 0 and IDL.minIDp = IDp when p

executes A3 because p executes a complete IDL-computation

between A0 and A1 and IDL is snap-stabilizing to Specifica-
tion 3. Hence, p updates Valp to 1 when executing A3 — a
contradiction.
• p ≠ L. Then, IDL.minIDp = IDL when p executes A3

because p executes a complete IDL-computation between A0
and A1 and IDL is snap-stabilizing to Specification 3. Also, p
receives YES from L because p executes a complete PIF of the
message ASK between A1 and A2 and PIF is snap-stabilizing
to Specification 1. Hence, p satisfies the predicate Winner(p)
when executing A3 and, as a consequence, requests a PIF of
the message EXITCS in action A3. This PIF terminates when p
executes A4: from this point on, we have the guarantee that L
has executed action A7. Now, by A7, L increments ValL — a
contradiction. �

Lemma 13. Let p be any process. From any configuration where
ME .Reqp = In, in finite time the system reaches a configuration
where ME .Reqp = Done.
Proof. Assume, for the sake of contradiction, that from a
configuration where Reqp = In the system never reaches a
configuration where Reqp = Done. From the code of Algorithm
3, we can then deduce that Reqp = In holds forever. In this case
there are two possibilities:
• p no longer executes A3, or
• p satisfies¬Winner(p) each time it executes A3.
Consider then the following two cases:
• p = L. Then, Valp ≠ 0 eventually holds forever — a

contradiction to Lemma 12.
• p ≠ L. In this case, p no longer starts any PIF of the

message EXITCS. Now, every PIF terminates in finite time.
Hence, eventually there is no more ‘‘B-receive⟨EXITCS⟩ from
p’’ event at L. As a consequence, ValL eventually no longer
switches from value p to (p + 1) mod (n + 1) — which
contradicts Lemma 12. �
As explained before, Lemmas 11 and 13 proves (S1). Lemma 13

also implies (S2) because a process switches ME .Reqp from In to
Done only after executing the critical section. Hence, we have the
following corollary:

Corollary 4 (Start). Starting from any configuration, ME always
satisfies the start property of Specification 2.
By Corollaries 3 and 4, follows:

Theorem 4. ME is snap-stabilizing to Specification 2.

5. Conclusion

We addressed the problem of snap-stabilization in one-hop
message-passing systems and presented matching negative and
positive results. On the negative side, we showed that snap-
stabilization is impossible for a wide class of specifications –
namely, the safety-distributed specifications – in message-passing
systemswhere the channel capacity is finite yet unbounded. On the
positive side, we showed that snap-stabilization is possible (even
for safety-distributed specifications) in message-passing systems
if we assume a bound on the channel capacity. The proof is
constructive, as we presented the first three snap-stabilizing
protocols for message-passing systems with a bounded channel
capacity. These protocols respectively solve the PIF and mutual
exclusion problem in a fully-connected network.

On the theoretical side, it is worth observing that the results
presented in this paper can be extended to general topologies using
the approach presented in [21], and then to general specifications
that admit a Katz and Perry transformer [26]. Yet, the possible
extension to networks where nodes are subject to permanent, i.e.,
crash faults, remains open. On the practical side, our results imply
the possibility of implementing snap-stabilizing protocols on real
networks. Actually implementing them is a future challenge.

Author's personal copy

1230 S. Delaët et al. / J. Parallel Distrib. Comput. 70 (2010) 1220–1230

References

[1] Y. Afek, A. Bremler-Barr, Self-stabilizing unidirectional network algorithms by
power supply, Chicago J. Theor. Comput. Sci. (1998).

[2] Y. Afek, G.M. Brown, Self-stabilization over unreliable communication media,
Distributed Computing 7 (1) (1993) 27–34.

[3] B. Alpern, F.B. Schneider, Recognizing safety and liveness, Distributed
Computing 2 (3) (1987) 117–126.

[4] A. Arora (Ed.), 1999 ICDCS Workshop on Self-stabilizing Systems, Austin,
Texas, June 5, 1999, Proceedings, IEEE Computer Society, 1999.

[5] A. Arora, M. Nesterenko, Unifying stabilization and termination in
message-passing systems, Distributed Computing 17 (3) (2005) 279–290.
http://dx.doi.org/10.1007/s00446-004-0111-6.

[6] B. Awerbuch, S. Kutten, Y. Mansour, B. Patt-Shamir, G. Varghese, A time-
optimal self-stabilizing synchronizer using a phase clock, IEEE Trans.
Dependable Sec. Comput. 4 (3) (2007) 180–190.

[7] B. Awerbuch, B. Patt-Shamir, G. Varghese, Self-stabilization by local checking
and correction (extended abstract), in: FOCS, IEEE, 1991, pp. 268–277.

[8] D. Bein, A.K. Datta, V. Villain, Snap-stabilizing optimal binary search tree, in:
Herman and Tixeuil [24], pp. 1–17.

[9] A. Bui, A.K. Datta, F. Petit, V. Villain, State-optimal snap-stabilizing pif in tree
networks, in: Arora [4], pp. 78–85.

[10] A. Bui, A.K. Datta, F. Petit, V. Villain, Snap-stabilization and pif in tree networks,
Distributed Computing 20 (1) (2007) 3–19. http://dx.doi.org/10.1007/s00446-
007-0030-4.

[11] A. Cournier, A.K. Datta, F. Petit, V. Villain, Enabling snap-stabilization,
in: ICDCS, IEEE Computer Society, 2003, pp. 12–19.

[12] A. Cournier, S. Devismes, F. Petit, V. Villain, Snap-stabilizing depth-first search
on arbitrary networks, Comput. J. 49 (3) (2006) 268–280.

[13] A. Cournier, S. Devismes, V. Villain, Snap-stabilizing pif and useless
computations, in: ICPADS (1), IEEE Computer Society, 2006, pp. 39–48.

[14] A. Cournier, S. Devismes, V. Villain, A snap-stabilizing dfs with a lower space
requirement, in: Herman and Tixeuil [24], pp. 33–47.

[15] A. Cournier, S. Devismes, V. Villain, Snap-stabilizing detection of cutsets,
in: D.A. Bader, M. Parashar, S. Varadarajan, V.K. Prasanna (Eds.), HiPC,
in: Lecture Notes in Computer Science, vol. 3769, Springer, 2005, pp. 488–497.

[16] S. Delaët, S. Devismes,M.Nesterenko, S. Tixeuil, Snap-stabilization inmessage-
passing systems, in: International Conference on Distributed Systems
and Networks, ICDCN 2009, in: LNCS, No. 5404, 2009, pp. 281–286.
https://hal.inria.fr/inria-00248465.

[17] S. Delaët, B. Ducourthial, S. Tixeuil, Self-stabilization with r-operators
revisited, Journal of Aerospace Computing, Information, and Communication
(2006).

[18] E.W. Dijkstra, Self-stabilizing systems in spite of distributed control, Commun.
ACM 17 (11) (1974) 643–644.

[19] S. Dolev, Self-stabilization, MIT Press, 2000.
[20] S. Dolev, T. Herman, Superstabilizing protocols for dynamic distributed

systems, Chicago J. Theor. Comput. Sci. (1997).
[21] S. Dolev, N. Tzachar, Empire of colonies: self-stabilizing and self-organizing

distributed algorithms, in: A.A. Shvartsman (Ed.), OPODIS, in: Lecture Notes in
Computer Science, vol. 4305, Springer, 2006, pp. 230–243.

[22] S. Ghosh, A. Bejan, A framework of safe stabilization, in: S.-T. Huang, T. Herman
(Eds.), Self-Stabilizing Systems, in: Lecture Notes in Computer Science,
vol. 2704, Springer, 2003, pp. 129–140.

[23] M.G. Gouda, N.J. Multari, Stabilizing communication protocols, IEEE Trans.
Computers 40 (4) (1991) 448–458.

[24] T. Herman, S. Tixeuil (Eds.), Self-stabilizing systems, in: 7th International
Symposium, SSS 2005, Barcelona, Spain, October 26–27, 2005, Proceedings,
in: Lecture Notes in Computer Science, vol. 3764, Springer, 2005.

[25] R.R. Howell, M. Nesterenko, M. Mizuno, Finite-state self-stabilizing protocols
in message-passing systems, in: Arora [4], pp. 62–69.

[26] S. Katz, K.J. Perry, Self-stabilizing extensions for message-passing systems.,
Distributed Computing 7 (1) (1993) 17–26.

[27] G. Tel, Introduction to Distributed Algorithms, second ed., Cambridge
University Press, Cambridge, UK, 2001.

[28] S. Tixeuil, Self-stabilizing algorithms, in: Algorithms and Theory of Compu-
tation Handbook, second ed., in: Chapman & Hall/CRC Applied Algorithms
and Data Structures, CRC Press, 2009, pp. 26.1–26.45. Taylor & Francis Group.
http://www.crcpress.com/product/isbn/9781584888185.

[29] G. Varghese, Self-stabilization by counter flushing, SIAM J. Comput. 30 (2)
(2000) 486–510.

[30] G. Varghese, M. Jayaram, The fault span of crash failures, J. ACM 47 (2) (2000)
244–293.

Sylvie Delaët is an associate professor at the University
of Paris Sud-XI (France). She received her Ph.D. in 1995
from the University of Paris Sud-XI for her pioneering
work on Self-stabilization. Her research interests include
dynamic networks and systems with an emphasis on
formal treatment.

Stéphane Devismes is an associate professor at the
University Joseph Fourier of Grenoble (France). He is
a member of the Synchronous Team of the VERIMAG
Laboratory. He received his Ph.D. in 2006 from the
University of Picardie Jules Verne (Amiens, France). He
has carried out broad research in theoretical issues of
distributed fault-tolerant computing, especially relating to
self-stabilization.

Mikhail Nesterenko got his Ph.D. in 1998 from Kansas
State University. Presently he is an associate professor
at Kent State University. He is interested in wireless
networking, distributed algorithms and fault-tolerance.

Sébastien Tixeuil is a full professor at theUniversity Pierre
& Marie Curie - Paris 6 (France), where he leads the NPA
research group. He received his Ph.D. from University of
Paris Sud-XI in 2000. His research interests include fault
and attack tolerance in dynamic networks and systems.

