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ABSTRACT
We present QUANTAS: a simulator that enables quantitative per-
formance analysis of distributed algorithms. It has a number of
attractive features. QUANTAS is an abstract simulator, therefore,
the obtained results are not affected by the specifics of a particu-
lar network or operating system architecture. QUANTAS allows
distributed algorithms researchers to quickly investigate a poten-
tial solution and collect data about its performance. QUANTAS
programming is relatively straightforward and is accessible to theo-
retical researchers working in this area. To demonstrate QUANTAS
capabilities, we implement and compare the behavior of two rep-
resentative examples from four major classes of distributed algo-
rithms: blockchains, distributed hash tables, consensus, and reliable
data link message transmission.
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1 INTRODUCTION
Theoretical work in distributed algorithms often involves establish-
ing a possibility of solution existence, proving an algorithm correct
or determining its message or computation complexity. If the new
algorithm improves on the existing ones, this improvement is quan-
tified in terms of these complexity metrics. These approaches may
be lacking as they do not provide sufficient insight into the realistic
behavior of the algorithm. Indeed, hidden constants and system
parameters, such as message delay or relative computation power,
influence the performance of most algorithms.

Alternatively, the algorithm is implemented in a real distributed
architecture such as a computer cluster, a collection of virtual ma-
chines, a cloud computing service [13], or using a general purpose
network simulator such as ns-3 [25] or OMNET++ [28]. Although
such efforts demonstrate practical algorithm implementation and
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enable its immediate application, the obtained results make it diffi-
cult to separate the operation of the algorithm from the influence of
the particular network and operating system used in performance
evaluation. For example, it is unclear how the interaction between
virtual machines and network switches at the server farm affects the
results obtained in real network performance evaluation or whether
the selection of a particular physical layer network protocol made
a difference in a network simulator.

Another obstacle for these approaches is difficulty of performing
large-scale performance evaluation. Large scale physical systems
are expensive to procure for experimentation. Moreover, in a phys-
ical system, there is difficulty instrumenting and then ascertaining
conditions of interest for experimenter such as specific network
delay. Network simulators, due to extensive simulation detail, also
have limited scalability.

To demonstrate the behavior of a distributed algorithm and com-
pare it with the alternatives, abstract simulation may be used. Ab-
stract simulation closely follows the communication and computa-
tion model used in distributed algorithms research. The algorithm
is represented as a collection of nodes and communication chan-
nels or shared variables. The computation is modeled as series of
simulation rounds where nodes perform concurrent processing and
exchange messages. Such modelling of algorithms make abstract
simulation attractive to distributed algorithms researchers.

However, we believe there is a lack of general purpose tools for
such abstract simulation. Most papers use ad hoc one-off imple-
mentations built for one paper [3, 7, 12, 16] or, at best, a domain
specific abstract simulation that is reused for a limited number of
papers [4, 5, 22]. The simulation code and obtained data are seldom
made publicly available. This duplicates effort and makes it difficult
to verify obtained results, compare them across several publications,
or make further improvements.

The existing general purpose abstract simulators, that we are
aware of, tend to be used for education rather than research. How-
ever, we think that the focus of an educational simulator differs
from that of a research simulator. Indeed, the major concern of
an educational simulator is to give novices an exposure to the dis-
tributed algorithm operation, and a visual representation of the
algorithm as it executes [2, 10, 19]. Therefore, simplicity and ease
of use are of primary importance. While simplicity certainly does
not harm a distributed algorithm simulator, other important charac-
teristics such as scalability, simulation speed, versatility, and ability
to obtain quantitative measures for metrics of interest come to the
fore. The closest simulation framework we could find is Neko [27].
However, each simulated node implemented as a protocol stack on
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top of a Java Virtual Machine. The scalability of this approach is
questionable.

In this paper, we present QUANTAS: an abstract simulator specif-
ically designed for distributed algorithms research. Our primary
research area is distributed algorithms. The development of QUAN-
TAS arose out of our own need to do performance evaluation. We,
therefore, built QUANTAS to satisfy the needs of researchers sim-
ilar to our own. We used QUANTAS prototype in several stud-
ies [16, 24]. The QUANTAS software is publicly available [1] for
other researchers to download and use.

2 SIMULATOR DESIGN PRINCIPLES,
ARCHITECTURE AND SETUP

Design principles. Let us outline our major design principles and
how QUANTAS achieves them.

Simplicity, ease-of-use: The foremost principle is simplicity, ease
of use, and ability to obtain quantitative results quickly. That
is, a newcomer should be able to implement algorithms, and
get simulation data in a relatively straightforward manner.
To demonstrate the simulator capabilities, with QUANTAS
distribution, we provide a set of representative examples.
The researchers can use these examples as a starting point
for their own algorithms. The simulator core is coded in
C++. No further compilers, libraries, or specialized languages
for distributed algorithm specification are used. Parameter
customization and experiment set up is done through simple
text-based configuration files. QUANTAS has a relatively
compact codebase: it contains about 4, 000 lines of C++ code.

Flexibility: The major simulation goal is to obtain data for anal-
ysis and presentation. QUANTAS is configured to output
simulation data in JSON format for ease of further processing.
One can then use various available interactive or automated
tools to analyze and plot the data.

Scalability: Once the basic behavior of a distributed algorithm
is ascertained, the researchers usually want to observe its
behavior at scale: large system size, extensive simulated
time or resource usage. To support this, we implemented
QUANTAS in C++withminimumoverhead. C++ threading is
used to implement concurrent simulation of multiple nodes.
Potentially, the simulated network size is limited by the host
computer processor and memory resources.

Terms and operation. A simulated distributed algorithm operates
on a list of nodes connected via unicast channels. Each channel
connects a single sender and a single receiver. Every node has a
unique identifier. Each computation of the distributed algorithm is
a sequence of receive-compute-send rounds. Each round has three
phases: receive messages, perform local computation, and send
newly formed messages. A computation length is its number of
rounds. A message takes at least one round to pass between nodes
that are directly connected through a channel. A message can be
delayed. Delay length is configured. The delay is also configured to
be either deterministic, uniformly random, or following a Poisson
distribution. Communication channels are FIFO by default. Other
message propagation delay disciplines may be added by the user. A
transmitted message may be configured to be lost with a certain

probability. A message may be sent to an individual node or broad-
cast to the entire network. A single run of the QUANTAS simulator
executes several algorithm computations with the same parameters.
This allows QUANTAS to execute multiple individual experiments
for a single data point.

Architecture. QUANTAS architecture is shown in Figure 1. The
components represent the larger C++ templates and classes. The
components are in two categories: user-provided and the simula-
tor proper. The user-provided components encode the algorithm
to be simulated. The simulator proper components carry out the
simulation. The run-time operation of the simulator is controlled
by configuration files.

The Simulation Component configures and initializes the simu-
lation run. It then carries out the receive-compute-send computa-
tion rounds of individual computations of the run. The Simulation
Component uses the Configuration Component for processing user-
supplied configuration file containing network topology and size,
parameters of the run, message delay discipline and parameters,
computation length, etc. The network topology is specified as adja-
cency list and can be generated by hand or by a separate tool.

Since the execution of the same round in the separate simulated
nodes is not casually related, this execution is done concurrently
by separate threads. To carry this out, the Simulation Component
maintains a thread pool. By default, the number of threads in this
thread pool is the maximum that the host computer can concur-
rently run.

The Network Component configures distributed algorithm topol-
ogy, sets up communication channels and executes receive- compute-
and send- phases of the round. The Abstract Node Component is a
C++ abstract class that lists the interfaces to be implemented by
a user-provided Concrete Node component. The main part of this
interface is the code to be executed in local computation phase of
the round.

The Node Network Interface Component executes receive and
send phases of the round. In the receive phase, The Node Network
Interface Component examines all the channels, and determines if
any of the messages currently in transit are ready to be received.
The ready-to-receive messages are made available for the compu-
tation phase. If the computation phase generates messages to be
transmitted, the Node Network Interface Component collects them
and puts them in the appropriate destination channels.

Amessage is enclosed in a packet. The packet contains the source,
destination, and the delay for this particular message. The Packet
Component provides this header and the Node Network Interface
Component uses this header for message routing. The actual mes-
sage format and its payload are provided by the User-Defined Mes-
sage Component.

Let us discuss QUANTAS data output capabilities. QUANTAS
provides a global logging facility, so that each component may
output to the log file. All simulator components may output data
about their particular operation. For example, the Node Network
Interface Component may output sender and receiver identifiers for
each individual message. The user-provided components may out-
put arbitrary data, which enables user-specific metrics to be easily
implemented. User-provided components have access to the com-
putation round number maintained by the simulator. This round
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Node Network Interface
channel head/tail, message sending and 
delivery, implementing message delay, 
handles sending and receiving of packets 
(messages) between nodes.

Abstract Node
node computation (command) interface  

Packet
packet header: source, destination, packet 
delay

 

Concrete Node
algorithms-specific commands and variables, 
libraries

User-Defined Message
message payload 

Network
determines network topology: connects 
nodes and channels, sets up channel delays 

Simulation
configures simulation, sets up logs, initializes 
network topology and state, runs simulation

 

Configuration
processing config files: topology, delay, size, 
simulation length, etc. 

«user-provided»

Figure 1: QUANTAS architecture.

struct HelloMessage {

std:: string messageText;

};

...

void performComputation () {

HelloMessage msg;

msg.messageText = "Hello From " + std:: to_string(id()); // send "hello" to all nodes

broadcast(msg);

// service all received messages

while (! inStreamEmpty ()) {

Packet <HelloMessage > newMsg = popInStream ();

// logger is a Singleton , "Greetings" is a tag

// getRound () returns simulated computation round

LogWriter :: instance()->

data["Greetings"]. push_back(newMsg.getMessage (). messageText + "at round: " + getRound ())

}

}

Figure 2: Example QUANTAS code for a local computation phase: each node broadcasts a single message and receives messages
from its neighbors.

number can be included in the output for analysis. To simplify later
processing, logger allows to attach an arbitrary tag to output lines.
QUANTAS example code is shown in Figure 2.

3 EXAMPLES AND TESTS
In this section, we demonstrate how QUANTAS may be adapted
to fit diverse experimentation needs of distributed algorithms re-
searchers. We chose four domains and a pair of previously pub-
lished well-known algorithms in each. We then implemented the
algorithms in QUANTAS and compared their performance. While
the results themselves are not surprising, they demonstrate how
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Figure 3: Blockchain throughput during a computation.

QUANTAS may be used for performance evaluation of a variety of
algorithms.

We also evaluated the speed of QUANTAS simulation execution.
Specifically, we measured the speedup achieved by QUANTAS as
threads are added to the concurrent thread pool allowing greater
concurrency and faster execution.

Blockchains. Blockchain is a secure distributed ledger maintained
by a network of peers that compete to add blocks of transactions to
the tail of the chain.We simulate simplified versions of the twomost
widely used blockchain algorithms: Bitcoin [23] and Ethereum [29].
The peer-to-peer system has 20 peers. Each peer maintains its own
copy of the blockchain. A transaction is submitted to a random
peer with probability 5% per peer per round, i.e. on average, it
is one transaction per round. The peer receiving the transaction,
broadcasts it to the rest of the network. In Bitcoin, each peer mines
one of the received transactions attempting to link it to the longest
chain. The mining probability for each peer is 2.5%. In Ethereum,
each block links to all previously unlinked blocks. The single com-
putation was executed for 100 rounds. Each simulator run had 10
experiments.

The results are shown in Figure 3. We estimate the number of
confirmed blocks by considering the longest chain for each peer
and determining the shortest among those. For each blockchain
algorithm, we executed a computation for 100 rounds and calculated
the average number of blocks per round. Figure 3 shows a moving
average of this value with a window of 5 rounds. The results shown
for message delays 1 through 10. The results indicate that our
implementation of Ethereum has better throughput than Bitcoin
since Ethereum, unlike Bitcoin, may confirm multiple competing
blocks concurrently.

Robust Consensus. In robust consensus, a network of nodes at-
tempts to agree on a single input value. We simulated two resilient
consensus algorithms: PBFT [11] and Raft [17]. Both algorithms pro-
cess a sequence of consensus requests. PBFT is resilient to Byzantine
faults [20]. In our implementation of PBFT, there is a fixed leader
node 𝑙 . The leader 𝑙 has a sequence of values to commit. For the

Figure 4: Consensus. Latency of achieving a single decision
vs message delay.

Figure 5: Reliable Data Link. Message utility depending on
message loss.

confirmation, 𝑙 consults the rest of the nodes. For each individual
value, 𝑙 executes PBFT. Specifically, 𝑙 broadcasts pre-prepare mes-
sage to all nodes with the value to be committed. Once a node
receives pre-prepare, it broadcasts prepare message. When a node
receives sufficiently many prepares with the same value, it commits
the value and broadcasts commit message informing everyone of
this. After receiving sufficiently many commits, 𝑙 considers this
PBFT instance terminated and moves on to committing the next
value. The leader change is not implemented.

Raft [17] is resilient to crashes and churn but not to Byzantine
faults. In Raft, the leader 𝑙 broadcasts requests to all nodes in the
system and waits for majority of responses. After receiving this
majority, 𝑙 moves to the next value to be committed.

The commitment latency is the number of rounds it takes the
algorithm from the moment the initial message is transmitted by
the leader until the last required commit message is received by
the leader. We used 20 nodes, we executed a computation for 1, 000
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Figure 6: Distributed Hash Table query speed.

rounds. Each simulator run had 10 computations. We average com-
mitment latency across the run. We varied message delay and
recorded the latency of RAFT and PBFT. The results are shown
in Figure 4. RAFT has significantly lower commitment latency than
PBFT as there are fewer rounds of message exchanges. This speed
is obtained at the expense of resiliency to Byzantine faults.

Reliable Data Link. In a data link algorithm, the sender node
attempts to transmit data to the receiver node despite message loss
in the communication channel. A self-stabilizing algorithm [14]
is resilient to global state corruption. We implemented two self-
stabilizing data link algorithms: alternating-bit protocol (ABP) [18]
and stabilizing-data link algorithm (SDL) [15]. ABP requires FIFO
channels. SDL operates correctly even in non-FIFO channels. In
ABP, the sender transmits a single data message and waits for
acknowledgement from the receiver. If either the data message or
the acknowledgement is lost, the sender times out and retransmits
the message. In SDL, to enable the receiver to get messages in
correct order in a non-FIFO channel, the sender transmits the same
message multiple times. The number of transmissions is determined
by maximum channel size.

To compare the two algorithms, we used channels of size one.
For SDL, this channel size means that the sender sends the same
message 5 times. In our simulation, we used 2 nodes: the sender
and the receiver. We executed the computation for 100 rounds.
Each simulator run was 10 computations. We computed message
utility — the ratio of successfully received message over transmitted.
We varied message loss rate and recorded the utility of the two
algorithms.

The results are shown in Figure 5. In our simulation, as message
loss increased, both algorithms had to submit more messages to
get the data across. This means that the utility decreased for both
algorithms. However, SDL effectively submitted about five times as
many messages as ABP. This is the overhead needed by the SDL to
enforce sequential message delivery in a non-FIFO channel.

DistributedHashTables. In a distributed hash table (DHT), a peer-
to-peer system provides query service for key to data items spread

Figure 7: Distributed Hash Table simulation speedup.

throughout the network. The algorithm is optimized to minimize
the number of lookups per query. Some of the most widely used
DHTs are Chord [26] and Kademlia [21].

In our Chord implementation, the peer identifiers form a ring.
Shortcut links are not implemented. A query for an identifier chosen
uniformly at random is generated by another random node. The
query is routed to the destination node in the shortest direction.

In Kademlia, on top of this basic Chord implementation, we also
build shortcut links as follows. Peer identifiers are treated as bit
fields. A prefix peer group for a particular peer 𝑝 is a set of peers
whose identifiers share a prefix of particular length 𝑙 with 𝑝 and
differ from 𝑝 at length 𝑙 + 1. For example, if the prefix is one bit less
than the complete id length, then, there is a single member in this
peer group. A peer group for a prefix that is two bits shorter than
id length, contains two members. A peer group three bit shorter
than id length contains 4 members and so on. For each group, a
peer selects a random member and creates a shortcut link to it. The
query routing is as follows. The peer selects a member with the
closest prefix to the destination and routes the query there.

The results are shown in Figure 6. The results indicate that our
implementation of Kademlia outperforms Chord because Kademlia
query routes are logarithmic with respect to the network size.

Parallellization speedup.Debugging runs for small network sizes
in QUANTAS are relatively fast: it takes one to two minutes to
complete the experiment of 10 runs of 100-round computations on
a network on 100 simulated notes on a laptop with 8 cores and 16
GB of RAM. This makes the QUANTAS compile-test cycle short.

To test QUANTAS parallel performance at scale, we varied the
number of threads in the simulator thread pool and measured the
runtime speedup of the simulation. We used Kademlia implementa-
tion. We simulated 500 peers. Each computation was 100 rounds.
We run 10 computations per data point. The simulator used ap-
proximately 40 GB of RAM and ran on a virtual machine with a
host machine having 2 Intel Xeon Gold 6132 CPUs running at 2.60
GHz. The virtual machine had 12 cores. The results are shown in
Figure 7. The results indicate that the simulation speed increases
as more threads are added to the simulator thread pool. This speed
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increase ends as all available host processor cores are used for the
concurrent simulation.

4 FUTUREWORK AND CONCLUSIONS
We anticipate further enhancements of QUANTAS capabilities. Be-
sides already implemented message loss, we would like to add
more sophisticated fault injection. In particular, we plan to add
support for self-stabilizing algorithms evaluation. Even though a
self-stabilizing algorithm is proven to recover from an arbitrary
global state, evaluating the algorithm’s performance starting from
a state generated uniformly at random is not realistic as not all
such states are equally likely to appear. A more sophisticated ap-
proach was developed by Adamek et al [6]: an achievable state of a
self-stabilizing algorithm is selectively perturbed. We would like to
implement this kind of fault-injection in QUANTAS. Adding crash
faults would be a simple and useful addition. A more challenging
task is adding Byzantine faults since Byzantine nodes are expected
to behave so as to inflict the most damage to the algorithm. Hence,
despite extensive studies of Byzantine fault tolerance, few of them
have performance evaluation. We believe adding Byzantine fault
injection [8] would be helpful to the research community.

We would like to add random topology generation that QUAN-
TAS so that the nodes and channels are configured randomly accord-
ing to the topology graph parameters provided in the configuration
file, for example a random graph with the specified node number
and edge probability. As a further enhancement, we would like to
add the ability to change the network parameters and even network
topology during a single computation. This would allow researchers
to model mobile or dynamic networks.

Another feature we find useful is facilitation of application level
separation. This would allow the simulator to evaluate levels of
multi-level algorithms separately, for example, evaluate the same
consensus algorithm over different broadcast algorithms.

Another important issue is scalability increase, be it related to
the number of simulated nodes [9] or the number of simulations
per data point to obtain quantitative results. To improve the per-
formance of QUANTAS at scale, we plan to pursue multithreading
inside the simulator more aggressively. For example, by using par-
allel algorithms in the Standard Template Library of C++. In the
future, we would like to explore distributed multi-computer simu-
lation.

In this paper, we presented QUANTAS, a general abstract simulator
dedicated to distributed algorithms quantitative evaluation. While
we provided a number of case studies, we welcome contributions
from the Distributed Computing community, to build a library
of ready-to-use templates for most algorithmic paradigms, that
enables fair comparison with previous work when designing new
solutions. We believe that QUANTAS fulfils the need for an abstract
simulator among researchers of distributed algorithms and we hope
it proves to be useful and convenient.
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