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ABSTRACT
We presentMCFR, a multicasting concurrent face routing algo-

rithm that uses geometric routing to deliver a message from source

to multiple targets. We describe the algorithm’s operation, prove it

correct, estimate its performance bounds and evaluate its perfor-

mance using simulation. Our estimate shows thatMCFR is the

�rst geometric multicast routing algorithm whose message delivery

latency is independent of network size and only proportional to

the distance between the source and the targets. Our simulation in-

dicates thatMCFR has signi�cantly be�er latency and reliability

than existing algorithms.
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1 INTRODUCTION
Geometric routing. Geometric routing is transmi�ing a message

from the sender to the targets on the basis of the geometric locations

of the nodes. Geometric routing o�ers a number of advantages: it

does not require each node to maintain routing information beyond

its immediate neighborhood; it can be stateless if no information is

retained at the node as it forwards the message; its message size can

be kept constant as each message carries limited amount of data,

independent of network size. �ese properties make geometric

routing a�ractive in fast changing networks such as vehicular [17]

or resource poor networks such as wireless sensor [2].

Unicasting face routing. In unicasting, a single source sends a

message to a single target whose coordinates are known to the

source. �e simplest form of unicast geometric routing is greedy. In

greedy routing [12], each intermediate node forwards the message

to its neighbor that is the closest to the target. Pure greedy routing
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fails if the message encounters local minimum: a node that does

not have neighbors closer to the target. A sequential geometric

routing algorithm, such as the classic GFG/GPSR [5, 18], routes

a single message in the greedy mode until a local minimum is en-

countered. �e algorithm then switches to recovery mode, which

involves traversing the faces of a planar subgraph of the original

communication graph. Speci�cally, the algorithm traverses the

faces that intersect the line that connects the source and the target.

�ere are several disadvantages of sequential face traversal of

GFG and similar algorithms. A sequential algorithm cannot predict

which traversal direction results in shorter distance. Hence, in the

worst case, the latency of message delivery of such algorithms is

proportional to the network size. Furthermore, such algorithms

have low reliability: a single transmission fault results in complete

message delivery failure. Last, sequential algorithms are unable to

determine if the target is disconnected from the source, possibly

resulting in the message remaining in the network arbitrarily long.

A concurrent unicast algorithm CFR [8] sends a pair of messages to

traverse the source-target line concurrently. �is naturally selects

the shortest face traversal direction. Moreover, the second message

provides greater robustness in case of message loss. �e meeting of

these messages signi�es the end of face traversal and automatically

determines whether the target is connected to the source. �ese

advantages are o�set by greater message cost.

Multicasting. Geometric multicasting requires the source to trans-

mit the same message to several targets [26]. �e source knows the

coordinates of the targets. Unicasting to each target separately may

be ine�cient if several targets are located near each other since

multiple redundant messages are sent to similar locations. A num-

ber of multicasting algorithms presented in the literature [7, 24, 30]

optimize the routes the messages take so that a single message is

routed to multiple targets as long as possible. Speci�cally, LGS [7]

computes a minimum Euclidean length spanning tree rooted in the

source and containing all the targets. A Euclidean Steiner tree is a

minimum length spanning tree with virtual nodes. �e total length

of a Steiner tree may be half that of the minimum Euclidean length

spanning tree [16]. However, its computation is NP-hard. Sophis-

ticated routing schemes of PBM [24] and GMP [30] compute an

approximation of the Euclidean Steiner tree at every intermediate

node and then unicast the message along this tree. In both GMP

and PBM, the message is geometric unicast towards the node, real

or virtual, that roots the subtree of the target destinations. As the

message approaches a virtual node, it may be advantageous to split
the message and route separate messages towards di�erent destina-

tion groups. GMP is shown to be more e�cient than PBM in route

selection and Steiner tree computation [30]. Overall, all these mul-

ticasting algorithms use sequential face routing to recover from a
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local minimum. Hence, they are prone to ine�cient route selection,

message loss and inability to detect network disconnection.

Geocasting. A problem closely related to multicasting is geocast-

ing. In geocasting, the source needs to deliver a message to every

node in a particular geographic region. �e source is unaware of

the individual target coordinates. �ere are geocasting algorithms

based on sequential face traversal [5, 22, 22, 27]. �ere is also a

concurrent geocasting algorithm [1]. Despite problem similarity,

the geocasting algorithms do not know target coordinates, and to

reach them all, they �ood the geocast area with messages. Hence,

geocast algorithms cannot be used for e�cient multicasting.

Abstract and concrete simulation. In abstract simulation, mes-

sage transmission is executed as an atomic step while physical

details of radio communication are not considered. �is simulation

focuses on the performance of the algorithm itself. One of the

major performance characteristics of abstract simulation of geo-

metric routing algorithms is their performance at various network

densities. �e message delivery latency of all existing algorithms

declines in mid-range density called critical density. Alternatively,

in concrete simulation, many details of message transmission are

modeled: physical and link level operation, radio interference, mes-

sage loss, signal strength, etc. Both simulation approaches, abstract

and concrete, have merits as abstract simulation focuses on the

properties of algorithm itself regardless of the particular wireless

technology, which may potentially change in the future. Concrete

simulation studies the impact of the engineering details needed

to implement the algorithm. Arguably, one of the most popular

geometric routing algorithms GPSR [18] is a concrete implementa-

tion of GFG [5]. In this paper, we use both abstract and concrete

simulation to evaluate the performance of multicasting algorithms.

Our contribution. We presentMCFR: the �rst concurrent mul-

ticasting face routing algorithm. �e algorithm computes an ap-

proximation of Steiner tree of the targets and then concurrently

routes the message around all the faces that intersect this Steiner

tree. We prove it correct, provide asymptotic measures of its la-

tency and message complexity and then evaluate its performance

through simulation. We show thatMCFR is the �rst known mul-

ticasting algorithm whose latency does not depend on the network

size. It only depends on the distance between the source and the

targets. We evaluate the performance ofMCFR using abstract

and concrete simulation. �e abstract simulation shows that, un-

like existing algorithms, MCFR delivery latency is insensitive

to network density. MCFR outperforms existing algorithms at

all densities; however, its advantage is particularly pronounced in

critical density range where the other algorithms perform poorly.

�e concrete simulation indicates that the delivery ratio ofMCFR
is only minimally a�ected by network density. Again,MCFR is al-

ways more reliable than other algorithms and this advantage widens

where existing algorithms falter, for example at higher densities or

lower signal strengths.

2 NOTATION AND DEFINITIONS
Wireless network, message and node limitations. A wireless
network G = (N ,E) is represented as a graph where N is a set of

nodes that are devices capable of exchanging messages wirelessly,

while E is a set of edges connecting the nodes if the two adjacent

nodes can send messages directly. Two such nodes are neighbors.
�e communication is bi-directional and the graph is undirected.

Every node has unique planar coordinates that embed the graph

into the geometric plane. When it is clear from the context, we

refer to a graph’s embedding as just graph.

Planarity, face traversal, Steiner tree. A graph embedding is

planar if the graph edges intersect only at vertices. For short, we call

this planar embedding of a graph, a planar graph. A connected planar
subgraph is a subset of vertices and their induced edges such that

the resultant graph is planar and connected. Finding a maximum

planar subgraph of a general graph is NP-hard [23]. However, for

certain graphs, the task may be solved e�ciently. A graph is unit-
disk if a pair of its vertices u and v are neighbors if and only if the

Euclidean distance between them is no more than 1. Such a graph

approximates a wireless network. In such a graph, a connected

planar subgraph may be found by local computation at every node

using Relative Neighborhood or Gabriel Graph [5, 14, 18, 28]. Face
is a region of the plane such that any two points of the region may

be connected by a continuous curve that that does not intersect the

edges of the graph. A planar embedding of a �nite graph divides

the plane into a �nite set of faces. �e areas of all but one of the

faces are �nite. �e �nite area faces are internal. �e in�nite face

is external. For example, in Figure 2, the graph has three internal

faces: F , G and H and the external face.

Consider node u and its neighbors v andw . Nodew is next-right
a�er v if it is the next neighbor of u a�er v clockwise; it is next-le�
a�er v if it is next to it counter-clockwise. For example, in Figure 2,

f is next-right neighbor of i a�er s . Observe that if w is next-le�

a�erv , thenv is next-right a�erw . Nodeu, its two neighborsv and

w and the two incident edges form angle ∠vuw . An angle intersects
a segment of a line if at least one of its edges lies on or intersects

this segment. For example, ∠sif intersects segment sx . Note that

we limit angle intersection to the �xed-size graph edges, not the

in�nite half-rays of a classic geometric angle. In a planar graph, to

traverse a face, messages are routed using right- or le�-hand-rule.

In the right-hand-rule, if a node receives a message, it forwards the

message to the neighbor that is next-right a�er the sender. In the

le�-hand-rule, the message is forwarded to the next-le� neighbor.

For example, in Figure 2, if i receives a right-hand-rule traversal

message from s , then it forwards it to f . Two messages are mates if

they are traversing the same face in the opposite directions. A single

node is able to detect mates if the sender of each message is the

receiver of the other and the traversal direction of the two messages

is opposite. A Euclidean minimum Steiner tree connects a selected

set of nodes on a plane, possibly with added virtual nodes, by a

graph of minimum total length. �e problem of computing such

tree is NP-hard [15]. GeoSteiner is the most successful algorithm

that computes the exact solution in reasonable time [29]. E�cient

polynomial approximations are also available [3, 25]. For the rest
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of the paper, we refer to the Euclidean minimum Steiner tree as

just Steiner tree and ignore the fact that it is being approximated.

Message and node memory constraints. To help with routing,

a message carries routing information. Only constant size messages
are allowed. �is means that the message may carry only a �xed

number of node coordinates and related information. �is �xed

number is independent of the network size. �is limitation, for ex-

ample, precludes a routing algorithm from requesting the message

to carry its entire route. Each message always carries the immediate

sender, the node transmi�ing this message, the immediate receiver

and the node the message is being sent to. Each node stores the co-

ordinates of its neighbors. No other information, either temporarily

or permanently, can be stored by the node. �is limitation precludes

nodes from maintaining extensive routing tables of the network or

storing state information between message transmissions.

Steps, computations, fairness, multicasting. Every node has

a send queue SQ that collects messages to be sent. A message is

transmi�ed by taking it from the sender’s send queue, transferring it

to the receiver and processing it according to the routing algorithm.

In the theoretical discussion about the algorithm, we assume that

this transferal and processing is done in a single atomic step. �e

atomicity of the step means that it may not overlap with the steps

of this or any other nodes. In the concrete simulation section, this

assumption is li�ed. Computation is a sequence of atomic steps that

starts in an initial state of the algorithm. A computation is fair if

each message, in the send queue of every node, is either transmi�ed

or removed from this queue. �at is, a message may not “get

stuck” in a send queue forever. We consider only fair computations.

A computation with a �nite number of steps is itself �nite. A

routing algorithm is terminating if its every computation is �nite. A

terminating routing algorithm never leaves messages circulating in

the network inde�nitely. A multicasting routing algorithm ensures

a message is delivered from the source to the set of targets. �e

source knows the coordinates of the targets and these coordinates

�t in a single message. For example, in Figure 2, source s may need

to send a message to targets b, d and k . To aid in navigation, a

multicasting algorithm may compute a Steiner tree that includes

source, targets and virtual nodes x and y.

3 ALGORITHM DESCRIPTION
�e pseudocode of algorithm MCFR is shown in Figure 1. It

operates as follows. �e sender computes the Steiner tree T of

targets and itself. For each angle that intersectsT , it sends a pair of

mates with right R and le� L traversal directions. Every message

carries the encoding of T . For simplicity, we assume that source

itself is never a target.

Once some node n receives a message, it checks if its mate is in

the send queue SQ . If the mate is found, both messages are removed

and further processing stops as this completes the traversal of a

face. If there is no mate, n checks if it is the target and delivers

the message. A�er the delivery, message processing continues.

Speci�cally, the message is forwarded along the face that it traverses.

A node is juncture if at least one of its angles intersects T . If n is a

juncture node then n splits the message by injecting a pair of mates

node s
compute T /* T is Steiner tree */

foreach ∠asb that intersects T do
add L(s,T ,a) to SQ
add R(s,T ,b) to SQ

node n
if receive L(s,T ,a) then

if R(s,T ,a) ∈ SQ then
/* found mate */

discard R(s,T ,a) from SQ
else

if n ∈ T then
deliver L(s,T ,a) to n

/* let b be the next le� a�er a */

add L(s,T ,b) to SQ
if ∠anb intersects T then

/* split message */

foreach ∠cnd , ∠anb that intersects T do
/* let d be the next le� a�er c */

add R(s,T , c) to SQ
add L(s,T ,d) to SQ

if receive R(s,T ,a) then
/* handle similar to L(s,T ,a) */

Figure 1:MCFR pseudocode.
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Figure 2:MCFR operation example.

in every angle that intersects T . Observe that the source node is

always a juncture.

Let us consider an example ofMCFR operation shown in Fig-

ure 2. Source node s computes the Steiner tree T , determines that

∠isa intersects T and sends a le�-hand-rule L traversing message

to a, while sending R to i . �is injects a pair of mates into face F .

When a receives a message, it forwards it to its next-le� le� a�er

s neighbor b. When i receives a message, it determines that i is a

juncture node and the angle that intersects T is ∠�j. Node i injects

a pair of mates by sending an L to f and an R to j. Meanwhile, i
also forwards the originally received message to f . Node f injects

mates into faces H and G and forwards the original message to b.
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Node b injects messages into face G and forwards the message to

a. However, then b receives a message from a. Once b receives a

message from a, it inspects its SQ , �nds its mate and destroys both

messages. �is completes the traversal of face F . �e operation of

MCFR continues until all faces that intersect T are traversed.

4 CORRECTNESS PROOF AND EFFICIENCY
BOUNDS

Correctness proof. Let us introduce some notation to aid in the

correctness discussion. A node is segment-visited, or just visited,

with respect to a particular face if it was visited during the traversal

of this face. It is unvisited otherwise. A visited segment of a face is a

sequence of neighbor nodes that are visited. A segment-border of a

visited segment, with respect to a particular face, is a visited node

with a neighbor that is either (i) unvisited or (ii) carrying a message

for the border node. A non-border visited node is segment-internal.
Note that an edge in a planar graph is adjacent to two faces. �us, a

node may be visited in one face but unvisited in another. Two faces

are adjacent if they share a common juncture node. Two faces F
and G are juncture connected if there exists a sequence of adjacent

faces that starts in F and ends in G. Observe that by the design of

the algorithm, once the juncture is visited, it splits the message in

every angle that intersects T . �at is, a juncture is visited in every

adjacent face at once.

Lemma 4.1. InMCFR, for every face F with a visited segment,
the segment border node has a message to send across to the unvisited
neighbor. A segment-internal node never holds such a message.

Proof: �e proof is by induction on the nodes of a particular face

F . A visited segment is created in F when a juncture node is visited.

�is juncture may be the source or another node spli�ing the mes-

sage when it is visited in an adjacent face. Once the visited segment

is created, it contains a single border node with two messages sent

in the opposite directions. �is is our base case.

Let us consider a computation ofMCFR where every visited

segment of every face is as stated in the conditions of the lemma.

First, let us consider a message transmission by node u adjacent to

face F . By the induction hypothesis, u may only be a border node.

�e message recipientv may be an unvisited node or a visited node

that has a message for u. Let us consider the unvisited case �rst.

Once unvisited nodev receives a message from u, v becomes a new

border node with this message while v becomes segment internal

without a message. Hence the conditions of the lemma hold. If v
is visited, then by de�nition of the border node, it holds a mate

for the message that v transmits. Moreover, by the condition of

the lemma, v is also a border node of an adjacent segment. Once

v receives the message from u, both mates are destroyed and both

u and v become segment-internal nodes. �is also preservers the

condition of the lemma.

Let us now discuss the transmission of a message by a node u
that is not adjacent to F . �e only way that it may a�ect F is ifv is a

juncture adjacent to F . However, by the design of the algorithm, the

juncture is instantly visited in every adjacent face. �at is, when v
receives a message transmission, it is not visited. Once it receives a

message, it creates a new visited segment in F with a single border

node v and appropriate outgoing messages.

�at is, regardless of the message transmissions, the conditions

of the lemma are preserved. �

Lemma 4.2. InMCFR, if a face has a visited segment, every node
adjacent to this face is eventually visited and none holds messages.

Proof: If a face with a visited segment contains an unvisited

node, then, at least one such unvisited node is adjacent to a border

of a visited segment. Due to Lemma 4.1, this border node has a

message to be sent to the unvisited adjacent node. Since we only

consider fair computations of the routing algorithm, this message

is eventually transmi�ed. Once the message is sent, the adjacent

node becomes visited. �is process continues until all nodes of the

face are visited. Once all nodes are visited they become internal

and, according Lemma 4.1, do not hold message. Hence the lemma.

�

Lemma 4.3. InMCFR, if a face intersects the Steiner treeT , then
every node adjacent to this face is eventually visited.

Proof: Consider the face that contains the source node s . �e

algorithm starts by creating a single-node visited segment there.

According to Lemma 4.2, every node in this face is eventually vis-

ited. �is includes all junctures adjacent to this face. Repeated

application of Lemma 4.2 proves this lemma. �

Proposition 4.4. If a target node is connected to the source node,
then this node lies on a face that is juncture connected to the source
node face.

�e below theorem follows from Proposition 4.4 and Lemma 4.3.

Theorem 4.5. AlgorithmMCFR guarantees termination and
delivery of the message from the source to all targets connected to the
source.

x

s

b

k

d

y

Figure 3: Covering the source-target Steiner hull with unit
circles. Illustration for the proof of �eorem 4.7.

E�ciency bounds. Latency of an algorithm is the shortest path

that the message may take to reach the target. In multicasting,

the latency is the longest such path among all targets. For latency
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estimation, following Kuhn et al [19], we assume that the network

graph G is bounded degree since such graph can be e�ciently

obtained in a unit-disk graph by computing a connected-dominating

set ofG . �e latency of a unicast concurrent face routing algorithm

is established to beO(t2)where t is the distance between the source

and the target [8, �eorem 2].

Theorem 4.6. MCFR latency is in O(d2) where d is the Steiner
tree diameter.

Proof: Let d be the diameter of the Steiner tree and m is the

number of multicast targets. A Euclidean Steiner tree has at most

m − 2 virtual nodes [16]. In the worst case, the multicast message

inMCFR has to sequentially reach all nodes in the Steiner tree.

�at is, the total latency is in O((2m − 2)d2), which is O(md2). �e

theorem’s claim follows if the number of targets is constant. �

Message cost of an algorithm is the total number of messages

expended in delivering it to the targets. In the worst case,MCFR
traverses every face of the graph. An edge is adjacent to two faces,

henceMCFR may send up to 2|E |messages where E is the number

of edges in the graph. However, for most graphs,MCFR is a lot

more e�cient. To give a more realistic message cost estimate of

MCFR we make several assumptions about the network graphs.

�e graph is face smooth if there are two constants c1 and c2

that are independent of network parameters such that (i) for each

face p2 < c1a where p is the perimeter of the face, and a its area,

and (ii) for any two points in the graph, as < c2

πd2

4
where as is

the area of all internal faces that intersect the line between these

two points, and d is the Euclidean distance between them. For

an internal face, the area computation is straightforward; for the

external face, an area of an arbitrary �gure enclosing the graph, for

example a convex hull, is considered. �e �rst assumption places

limits on how “ragged” the perimeter of the face may be, while the

second limits how “uneven” the faces may be in size by assuming

that the area of all intersecting faces is included in a certain disk

whose diameter is related to the distance between two nodes. �ese

assumptions hold for most realistic wireless communication graphs

such as unit-disk graphs. Steiner hull is the convex hull that contains

the nodes of the Steiner tree. It is known that virtual nodes are

internal to the Steiner hull [16].

Theorem 4.7. For face smooth graphs, themessage cost forMCFR
is in O(|H | +

√
|G |), where |H | is the area of the Steiner hull and |G |

is the area of the complete graph G.

Proof: We completely cover the Steiner hull H with unit-disks.

See Figure 3 for illustration. In this arrangement, each unit disk

covers a square with side length of

√
2. Since k is the maximum

node degree, the number of nodes in each unit disk is no more than

k . Hence, the number of nodes inside H is:

k
|H |
√

2

2
=

k |H |
2

.

Since there are at most k neighbors, each node may be adjacent

to at most k edges. A message may be sent across each edge at

most twice. Hence, the number messages to be sent inside |H | is
k2 |H |, which is in O(|H |).

Let us now estimate the number of messages it takes to tra-

verse all the faces that intersect H . Any convex polygon can be

inscribed into a rectangle whose area at most twice the size of the

polygon [21]. �is means that H can be inscribed into a rectan-

gle whose area is at most 2|H |. �e perimeter of this rectangle

is 4

√
2|H |. We assume that the graph is face-smooth. Combining

the two face smoothness conditions we obtain that the sum of the

perimeters of all the internal faces that intersect H has this relation:

p2

s = c1c2

π (4
√

2|H |)2

4

= 8πc1c2 |H |,

which means that ps is in O(
√
|H |). Similarly, the perimeter of the

external face is in O(
√
|G |). Since each face is traversed at most

once, the total number of messages used to traverse internal faces

that intersect H as well as the external face is in O(
√
|H | +

√
|G |).

Combined with the number of messages needed to traverse faces

inside the Steiner hull we getO(|H |+
√
|H |+

√
|G |) = O(|H |+

√
|G |).

�

To summarize, �eorem 4.6 shows that the latency of message

delivery ofMCFR does not depend on the overall network size,

just on the distance between the source and the targets; �eorem 4.7

shows that the total number of messages sent byMCFR depends

on the locations of the targets with respect to the source and the

length of the external face of the graph.

5 ABSTRACT SIMULATION
Critical region. Geometric routing is shown to be sensitive to

network density [19]. If the network is sparse, then, when the

source and destination are connected at all, they are likely to be

so close that simple greedy routing is su�cient. If the network

is dense, then the presence of a local minimum is unlikely and,

again, greedy routing is su�cient. Critical region [20] is the range

of densities where strategies other than greedy routing are likely

to make an impact and determine the e�ciency of a geometric

routing algorithm. In this range of densities, the route selected by

a geometric routing algorithm may signi�cantly deviate from the

optimal. Depending on the particular algorithm, the critical region

is between 3 and 7 nodes per single node communication area.

Setup. In their classic study of unicast geometric routing algo-

rithms, Kuhn et al [19] use a particular simulation setup to thor-

oughly evaluate the performance of their algorithms. We extend

their setup to use in our simulation.

Speci�cally, we populate a 10 × 10 unit square �eld with nodes

placed uniformly at random to achieve a speci�c network density.

�e total number n of nodes is equal to the area of the �eld divided

by area of the unit circle and multiplied by the required density d .

�at is n = d 100

π
Experiment is a single delivery of a message from a particular

source to a particular set of multicast targets. In other words, it is a

single complete computation of an algorithm. For each experiment,

we generate a new random graph with a randomly selected source

and targets. We then calculate each node’s neighbors as follows.

We �rst construct a unit-disk graph. For the planar geocasting
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Figure 4: Abstract Simulation: Arrival latency normalized
to optimal path (path stretch).

algorithms, we also compute Gabriel subgraph and connected dom-

inating set on it. For each speci�c data point, we conduct 1000

experiments.

We select the number of destination nodes that achieves a speci�c

target rate: the percentage of non-source nodes in the network

randomly marked as destinations. For example, target rate of 5%

on a density of 7 results in 12 nodes being randomly marked as

multicast destinations, rounding up.

We evaluate the message cost and latency of the algorithms.

Message cost is the number of messages it takes to deliver to all des-

tination nodes. Latency is the shortest path taken by the algorithm

to reach the destination furthest away from the source normalized

to the optimal path to this node.

We estimate both metrics by varying two parameters: network

density and target rate. In one experiment, density is varied while

the target rate is constant at 5%. In another, density is 7 nodes per

unit square while target rate is varied.
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Figure 5: Abstract Simulation: Message cost normalized to
number of destinations.

Algorithms. We implement both sequential and concurrent multi-

casting algorithms. For sequential algorithms, we implement: the

trivial algorithm that uses a unicast GFG to separately deliver the

message to each individual target, LGS [7], GMP as presented in

the original paper [30] and a variant of GMP where the Steiner tree

is computed once at the source and is not recomputed by every

intermediate node. For concurrent multicasting, we implement

MCFR, which navigates over Steiner tree. �e trees are computed

by the source. We also implement a version of GMP where the

sequential CFR is replaced with concurrent CFR [8] for message

with only a single remaining destination.

Results and analysis. Figures 5 and 4 present the simulation

results. Let us discuss the latency results �rst. �e sequential algo-

rithms show a notable peak at the critical region (see Figure 4a).

However, the concurrent algorithms show no such peak, and are

remarkably close to the optimal path. Target rate has li�le e�ect
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on latency for any of the algorithms other than the unicast mecha-

nism (see Figure 4b). A slight increase is visible for the sequential

algorithms, but none is apparent for the concurrent algorithms.

�ese results show that these algorithms are able to group message

delivery without signi�cant increase to any single path within the

group.

Let us mow discuss message cost evaluation. �e majority of

the algorithms show a peak at a critical density of about 6 (see

Figure 5a). As expected, the GFG unicast algorithm is least e�cient

of these. MCFR performs the same as the others up until the critical

region, a�er which the cost remains constant rather than dropping

as the graph becomes dense. �is is due to the lack of any greedy

mechanism in MCFR. Target rate does not seemingly a�ect the

GFG unicast algorithm; this is expected. However, it has a notable

e�ect on the other algorithms (see Figure 5b). As the target rate

increases, the message cost decreases. We normalize the message

cost according to the total number of destinations chosen. Hence,

these results show the increase in e�ciency of the algorithms as

they more e�ectively bundle messages to groups of destinations.
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Figure 6: Concrete simulation: Time to live evaluation for
MCFR, Steiner Tree, 15 dBm.

6 CONCRETE SIMULATION
Setup. To evaluate the performance of our algorithms, we im-

plement them in WSNet [4, 10, 11, 13] wireless sensor network

simulator. �e simulated MAC layer is IEEE 802.15.4 with 866 MHz

frequency band and BPSK modulation. �e radio model is freespace

propagation with constant path loss and rayleigh fading [4]. We

simulate 1000 × 1000 meters �eld. �e unit is 100 meters. �e �eld

is populated by nodes placed uniformly at random to achieve a

speci�c network density. To compute the network topology we

use a unit-disk graph, then compute a Gabriel subgraph over it.

�e topology is calculated o�ine. We evaluate our algorithms’

performance at three power levels: 15 dBm, 7 dBm and 0 dBm. �e

weaker the signal, the less reliable message transmissions are.

As in the abstact simulation, the number of targets is kept at 5%

of the total number of nodes and we conduct 1000 experiments for

each data point.
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Figure 7: Concrete simulation: Delivery ratio.
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Figure 8: Concrete simulation: Latency.

 0

 100

 200

 300

 400

 500

 600

 2  4  6  8  10  12  14  16  18  20

m
e
s
s
a
g
e
 c

o
s
t,
 n

u
m

b
e
r 

o
f 
p
a
c
k
e
ts

 p
e
r 

ta
rg

e
t

graph density, number of nodes per unit circle

MCFR, Steiner tree
MCFR, spanning tree

GMP
GMP, static tree

LGS
GFG, unicast

(a) 15 dBm

 0

 50

 100

 150

 200

 250

 300

 350

 400

 2  4  6  8  10  12  14  16  18  20

m
e
s
s
a
g
e
 c

o
s
t,
 n

u
m

b
e
r 

o
f 
p
a
c
k
e
ts

 p
e
r 

ta
rg

e
t

graph density, number of nodes per unit circle

MCFR, Steiner tree
MCFR, spanning tree

GMP
GMP, static tree

LGS
GFG, unicast

(b) 7 dBm

 0

 50

 100

 150

 200

 250

 2  4  6  8  10  12  14  16  18  20

m
e
s
s
a
g
e
 c

o
s
t,
 n

u
m

b
e
r 

o
f 
p
a
c
k
e
ts

 p
e
r 

ta
rg

e
t

graph density, number of nodes per unit circle

MCFR, Steiner tree
MCFR, spanning tree

GMP
GMP, static tree

LGS
GFG, unicast

(c) 0 dBm

Figure 9: Concrete simulation: Message cost.
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We evaluate the performance of our algorithms according to

three metrics. Delivery ratio is the number of targets that receive

the message divided by the total number of targets. Delivery ratio

determines the reliability of the algorithm. Latency is the the time

it takes the algorithm to deliver the message to the target that is

geometrically furthest away from the source divided by the time it

takes to unicast this message to this target using an optimum route.

Latency determines the algorithm’s speed of message delivery. Mes-
sage cost is the number of message transmissions divided by the

number of targets. Since a message transmission is a radio broad-

cast, message broadcast to several neighbors is counted as a single

transmission. �e message cost counts all message transmissions

regardless of delivery success. Raw latency and message cost do

not take into account delivery success. For example, an algorithm

that delivers only to the nearest target may have low latency and

message cost. To o�set that, we divide the latency and message

cost by the delivery ratio.

Algorithms. We simulate LGS, GMP with both source computation

and per-node re-computation of the Steiner tree. We simulate two

versions of MCFR. In the �rst version, MCFR navigates over Steiner

tree; in the second, it routes over minimum Euclidean spanning

tree. �e trees are computed by the source.

In realistic environments, both concurrent and sequential algo-

rithms have termination issues. If messages are lost, MCFR packets

may not �nd mates. In this case, the messages may traverse graph

faces inde�nitely. On the other hand, a sequential algorithm does

not detect if a target is disconnected. Again, a message for such

disconnected target never reaches its destination. To force termina-

tion, we introduce time to live (TTL) for each message. A message

is discarded a�er its TTL expires. To determine optimal TTL, we

vary TTL then compute message cost and delivery ratio for MCFR

with Steiner Tree and 15 dBm signal strength. �e results are shown

in Figure 6. �e TTL of 55 hops seems to produce the best perfor-

mance. For the rest of the experiments all algorithms have the TTL

of 55.

Results and analysis. �e simulation results for delivery ratio,

latency and message cost of the simulated algorithms are shown

in Figures 7, 8 and 9 respectively. Let us discuss the results. �e

reliability of MCFR exceeds that of sequential multicasting algo-

rithms. �e gap widens as signal strength lowers and message loss

increases. For 0 dBm, the delivery ratio of MCFR Steiner Tree never

drops below 90% while the delivery ratio of most of the sequential

algorithms goes below 40%. Interestingly, the reliability of simple

unicasting to all targets exceeds that of GMP and LGS. �is is due

to the di�erence in their operation. To optimize message cost, GMP

and LGS combine the messages to multiple targets as long as pos-

sible. However, a loss of such combined message results in failed

delivery to all targets.

�e latency of concurrent algorithms is higher than that of se-

quential algorithms. �is is due to the greater number of messages

contending for radio channel access. However, with lower signal

strength and greater message loss, the gap narrows. For 0 dBm,

latency of concurrent and sequential algorithms is similar. �e

higher delivery ratio of concurrent algorithms match relative speed

of delivery of the sequential algorithms. �e only exception is the

unicast GFG whose latency continues to be high.

Concurrent and sequential algorithms exhibit di�erent message

cost dynamics. At lower densities greater number of targets is

disconnected. �is forces sequential algorithms to send aimless

messages to wander around the network until their TTL expires.

Concurrent algorithms do not have this issue. As the network

density grows, the relative frugality of the sequential algorithms

gives them message cost advantage over concurrent algorithms.

7 CONCLUSION
Algorithm MCFR presented in this paper has low theoretical

latency and good practical reliability. As future work, we suggest

the following. To further improve latency, apply this algorithm to

minimum diameter Steiner trees [9]; evaluate �ne-grained energy

consumption of the algorihtms, for example using the approach

of Bramas et al [6], as it may impact the survivability of strategic

parts of the network.
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