MULE: Hybrid Simulator for Testing and Debugging
Wireless Sensor Networks

David Watson and Mikhail Nesterenko*
Computer Science Department
Kent State University
Kent, OH, 44242
dgwatson@kent.edu, mikhail@cs.kent.edu

Abstract

Wireless sensor networks present a number of chal-
lenges to software development. Debugging and test-
ing applications for such networks is especially dif-
ficult. We present MULE: a hybrid simulator that
combines the ease of debugging multiple simulated
motes on a host PC with high fidelity of message
transmission and sensor data acquisition of physical
motes. We describe MULE’s architecture and func-
tionality. We also present experimental results for
several test applications run under MULE.

1 Introduction

Wireless sensors are a promising emergent computing
platform with a lot of applications. The applications
range from monitoring humidity in a redwood for-
est, to detecting the intrusion of enemy combatants
into a protected area, to collecting status informa-
tion about the machines on a factory floor. There is
a number of unique features of sensor networks that
distinguish them from other computer architectures:
(a) each individual sensor node has limited comput-
ing, networking and power resources; (b) the applica-
tions for sensor networks necessitate the deployment
of thousands, even hundreds of thousands of sensor

*This research was supported in part by DARPA contract
OSU-RF#F33615-01-C-1901 and by NSF CAREER Award
0347485

nodes; (c) the sensor networks closely interact with
the physical environment due to the sensing of envi-
ronmental parameters that such networks accomplish
and low-power radios that they use for communica-
tion.

The peculiarities of sensor networks present unique
challenges to software development, in particular to
debugging and testing of the software. Traditional
instruction-level debuggers provide the programmer
detailed access to the program state and a fine de-
gree of control over the code execution. However,
the limited resources of individual sensors, the dis-
tributed nature of sensor applications and tight in-
teraction with the environment limit the usefulness
of such debuggers in producing software for sensor
networks. Field testing is the ultimate trial for a sen-
sor application. Yet the programmers cannot rely on
field testing alone: due to resource constraints and
the distributed nature of the software, obtaining an
adequate picture of the network behavior and con-
trolling the experiment is difficult. In addition, the
logistics of deploying a large number of sensors ren-
der field testing a supplement rather than the main
means of testing. Hence, software designers need to
rely on simulation as a primary testing technique for
the sensor applications.

A simulator is a convenient debugging tool. Tt en-
ables developers to run the code of multiple sensor
nodes on a single host machine. The state of the pro-
gram of the simulated sensors can usually be easily
examined during the run and the execution flow can

be conveniently controlled. A major challenge for a
successful simulator is to faithfully model the interac-
tion of the application with the physical environment.
Usually, the simulator expects the experimenter to
provide the test readings for the sensors and uses a
deterministic or probabilistic mathematical model of
radio signal propagation. Unfortunately, using test
readings denies the designer the interaction with ac-
tual sensors and thus moves the debugging of this
part of the application to field testing. Likewise, the
signal propagation patterns of low-power radios are
rather bizarre [4, 5]. The propagation of radio signals
is influenced by a variety of diverse factors: walls, ob-
stacles, concurrent transmission, time of the day, etc.
Thus, the fidelity of any mathematical model is at
best approximate.

In this paper we present MULE — a simulator that
combines the ease of host-PC debugging with the fi-
delity of actual sensor readings and radio transmis-
sions. As a testing platform we use Berkeley proto-
type sensors [6, 7] called motes. These sensors are
quickly gaining in popularity due to their simplicity,
ease of use and application readiness. The motes run
TinyOS [7]. TinyOS is a lightweight event-based op-
erating system that implements the networking stack,
handles communication with the sensors and provides
a programming environment for this platform.

Related Work. Atmel’s AVR JTAG ICE module
allows real-time instruction-level debugging of soft-
ware on physical motes. JTAG attaches to a mote
and enables developers to debug applications using
a modified version of GDB. This approach has the
distinct advantage that real code is used on actual
hardware. JTAG, however, shares the GDB’s lack of
ability to debug distributed applications.

There is a number of simulators and related tools
that can be used to simplify software development
for sensor networks. There are a few high-level sim-
ulators such as ns-2 [3], GloMoSim [13], and Prowler
[11] which can be used to prototype algorithms for
sensor applications at an abstract level. These tools
are useful for the initial phase of application devel-
opment. Yet, they do not let the designers debug the
code for the target platform.

There are a number of simulators capable of run-
ning TinyOS code. TOSSIM [8] and TOSSF [10] and
SENS [12] allow the designer to compile the TinyOS
program for Intel architecture and run the program
on a PC. ATEMU [1] emulates the instruction set of
the mote’s processor on a PC which provides an in-
teresting debugging option. The four above tools are
capable of simulating thousands of motes on a single
PC. However, the mote hardware is simulated, hence
simulation fidelity is an issue.

We are aware of two simulators that allow running
of the code on physical sensor nodes. SensorSim [9] is
a modification of ns-2 which allows simulated sensor
nodes to communicate with real sensor nodes through
gateway machines. This capability extends the use-
fulness of a high-level simulator as a debugging tool.
Yet the limitations of high-level simulators outlined
above apply to SensorSim as well. EmStar [9] has a
range of tools that can be used for software develop-
ment in sensor networks. EmStar uses a Linux PC as
a host machine. EmStar maintains Unix device files
and uses them to connect Unix processes. EmStar
uses this connection to simulate radio communica-
tion. This simulation can be either purely software
or hybrid. In case of hybrid simulation EmStar uses
physical motes to transmit the messages. Each Unix
process connected to the EmStar device file can run
a simulated mote. Since each simulated mote runs as
a separate process, the examination of mote’s state
and control of its execution flow has to be done indi-
vidually. Hence, coordinated debugging and testing
of a distributed application comprising many motes
is difficult with EmStar.

Our Contribution. We developed a hybrid simula-
tor — MULE. It simulates multiple motes on a host
PC. This makes it possible to inspect the state of the
simulated motes as well as suspend and restart the
execution of the entire application. The radio trans-
mission and sensor readings are carried out by the
physical motes which improves the fidelity of the sim-
ulation. MULE handles the coordination between the
simulated time of the motes running on the host PC
and the real time of transmission and data sensing.
The hardware configuration for MULE allows it to
be run on a laptop in the field where communication

Host PC

\ MuleApp

i

‘Scnsms‘

Figure 1: Components involved in hybrid simulation

and sensing characteristic resemble those of actual
deployment. MULE is based on TOSSIM. MULE is
freely available online [2].

Outline. The rest of the paper is organized as fol-
lows. In Section 2 we describe the architecture, func-
tionality and operation of MULE. In Section 3 we
present experiments showcasing MULE’s capabilities.
We cover extensions and future work for our simula-
tor in Section 4.

2 Architecture,
and Operation

Functionality,

Overview. The configuration requirements for
MULE include a PC and a set of physical motes.
Each mote is attached to either a serial port of the
PC or a Crossbow MIB 600 ethernet interface board.

We describe the architecture of MULE with an ex-
ample of a standard TinyOS application — Surge.
Surge takes readings from the photosensor and re-
ports them over the radio to the base station. Figure
1 shows MULE running Surge.

A TinyOS program consists of a hierarchy of com-
ponents with well-defined interfaces. A component
encapsulates either a hardware module (e.g. pho-

tosensor or a clock) or a software module (e.g. a
network layer protocol). MULE allows TOSSIM to
run the application on the host PC but relays the
communication and sensing requests to the physi-
cal motes connected to the PC. This is done by re-
placing the components that simulate communication
and sensing in TOSSIM with components that han-
dle the interaction with the motes. There are three
MULE communication components: MulePhotoM,
MulePacketM and MuleApp.

Surge uses the Bcast and MultiHopRouter
components to handle broadcast and multi-hop
radio communication. These components em-
ploy the standard TinyOS networking stack:
GenericCommPromiscuous, AMPromiscuous and
RadioCRCPacket. On physical motes, a bit-level ra-
dio driver is below RadioCRCPacket. In TOSSIM it
is replaced by a bit-level radio simulator. In MULE,
MulePacketM implements RadioCRCPacket interface
and communicates with physical motes to transmit
or receive a radio message. Similarly, MulePhotoM
replaces a photosensor hardware component on real
motes and a photosensor emulator in TOSSIM.

Communication with MulePacketM and
MulePhotoM on the mote side is handled by the
other major component of MULE - MuleApp.
MuleApp receives requests for sensing and data
transmission from the host PC, carries them out and
replies with measurements and received messages.

Synchronization of real and simulated time.
Reconciling the timing of real and simulated events
is one of the trickiest tasks of a hybrid simulator.
Even in a pure simulator, the problem of simulating
the execution of multiple concurrently running motes
is far from straightforward. A pure simulator has to
overlay the execution of the code of multiple motes on
the processor of the host PC. Thus, the duration of
the simulated events is distorted. To preserve the fi-
delity, advanced simulators, such as TOSSIM, divorce
the simulated execution from the real time. TOSSIM
maintains simulated time to measure the duration of
the events. TOSSIM advances the simulated time as
the motes make progress in their execution. A hybrid
simulator has to coordinate both real and simulated
events. Thus, the problem of reconciling the real and

simulated time arises.

When the simulation requires a real event, MULE
executes the following sequence. First, MULE
records the simulated timing parameters of this
event. Then MULE freezes the simulation, translates
the parameters into real time, and executes the event
in real time gathering the timing parameters. After
the real event ends, MULE translates the timing in-
formation back into simulated time and resumes the
simulation.

Concurrent message transmission coordina-
tion. Message transmission is particularly sensitive
to concurrent execution due to potential collision be-
tween messages transmitted concurrently. If a sim-
ulator freezes the simulation after the first message
transmission request, then the message transmission
is serialized and the messages do not interact. We
illustrate MULE’s handling of message transmission
in Figure 2.

MULE manipulates the following TOSSIM events:
send(m) — request for transmission of message m;
sendDone(m) — successful message transmission no-
tification; and receive(m) — message receipt no-
tification. When a simulated mote M; generates
send(m;), MULE delays processing this request and
continues the simulation for the approximate simu-
lated time it takes to transmit a message. During
this time, MULE records other requests for message
transmission. In our case this is message mo from
mote M,. MULE notes the simulated time difference
between transmission requests of m; and my. After
this delay, the simulation is frozen and MulePacketM
forwards the messages to MuleApp at the physical
motes that correspond to the simulated ones. Mes-
sage my is delayed so that the real time difference
between sending requests of m; and ms matches the
simulated time difference.

At each of the physical motes MuleApp uses the
radio stack of TinyOS to transmit the messages.
Since the motes share the radio channel, only one
mote at a time is able to proceed. MuleApp reports
to MulePacketM successful transmission of the mes-
sages as well as messages received. In our exam-
ple, MuleApp at M; reports that it finishes sending
myq, later it reports that M; receives mo. Likewise,

receive(m2)

simulation reality

M, M, M,
send(m,) L

g

=)

g

=

simulation 3

» freeze =
E|l) 1
sendDone(m,) 8

=

&

=

=

2

)
4‘ receiving m,
i~

Figure 2: Interaction of radio messages sent by two
motes

MuleApp at M reports the end of transmission of ms
and the receipt of m;. MulePacketM notes the tim-
ing of arrival of these events, translates the real into
simulated time, restarts the simulation and generates
corresponding sendDone () and receive() events at
appropriate times in the simulation.

Note that the picture in Figure 2 is simplified.
Observe that due to message contention in the ra-
dio channel, transmission of m, was delayed. Con-
sequently, transmission of my can potentially inter-
fere with with another message mg that is requested
to be sent after the simulation freeze. MULE notes
such requests and executes the subsequent simulation
freezes similarly to the simulation freeze described
above. Observe also that if the transmission of ms
overlaps with later messages, it will be resubmitted
for transmission by physical motes at the next simu-
lation freeze so that message interference is properly
modeled.

In our example M; and M, can communicate with
each other. If they are placed outside the transmis-
sion range, then they can send messages concurrently.
MULE accommodates this possibility. Hence, a com-
plicated message propagation patterns are properly
modeled.

Sensor operation. MULE handles sensor simula-
tion similarly to radio transmission simulation. Each
of the sensor types has a module that communicates
with MuleApp. Sensor setting (such as adjusting the
input gain or selecting a particular channel) are for-
warded to the instance of MuleApp running on the
real mote. MuleApp issues the appropriate command
to the sensor hardware. Some of the sensors can use
an asynchronous analog-to-digital converter (ADC)
embedded in the motes. If the sensor reading needs
to be digitized, MuleApp is so notified. In this case
MuleApp uses the ADC to process the input and sends
only the resultant digital reading back to the host PC.

3 Experiments

We describe a few experiments to showcase the capa-
bilities of MULE. MULE’s user interface is the same
as TOSSIM. Hence, the experiments are demonstrat-
ing the hybrid capabilities of MULE. In particular,
MULE’s ability to operate with physical motes.

Experimental Setup. The equipment used for the
experiments is as follows. The simulation host was
a 1.70 GHz Pentium 4 with 512 MB RAM running
Red Hat Linux 9.0 and using TinyOS v. 1.1.4. We
use up to five Mica 2 motes with Mica sensor boards.
Two motes were connected to the host PC using se-
rial ports; the others — Crossbow MIB 600 ethernet
interface board. In all experiments involving radio
transmissions, the radio transmission power was set
to the TinyOS default value. The motes did not have
external antennas.

Radio transmission with changing mote posi-
tions. This experiment used two motes to illustrate
how hybrid simulation with MULE supports chang-
ing radio channel conditions. The first mote trans-
mitted at a rate of 20 messages per second (5 mes-
sages per 250ms) while the second one received the
incoming messages. The results of the experiment
are summarized in Figure 3. Initially, the sender was
placed outside the receiver’s radio range. During the
first second of the experiment, the sender was grad-

~
T
|

w
T
|

©
T
|

Packets received per 250ms

1(W
0 | | | |

0 1 2 3 4 5
Time (seconds)

Figure 3: Radio messages received with changing
sender position.

ually moved into the reception range of the receiver.
The sender remained in range for two seconds and
then moved back out of range in the last two seconds
of the test. The results in Figure 3 indicate gradual
improvement of message reception followed by fading.

Radio transmission among five motes. This ex-
periment demonstrates the operation of MULE with
a modest scale. It uses five motes. These motes
were arranged in a line, with five inch spacing be-
tween adjacent motes. Thus, motes 1 and 5 were
approximately twenty inches apart, whereas 2 and 5
were fifteen inches apart. All motes run the same
program. Each mote transmitted packets at 50 ms
intervals, and listened for incoming packets from the
others. The number of packets was recorded, and any
lost packets were noted. The experiment was run for
6 seconds, and each mote transmitted between 105
and 115 packets. Figure 4 shows the results of the
experiment.

Photosensor Operation. This experiment shows
sensor operation under MULE. For this we used an
array of three motes. These motes were arranged in
a line with approximately three inches between adja-
cent motes. Initially, the lab was dark. Then a flash-
light shined back and forth across the motes three

Transmitted by Mote 1
Transmitted by Mote 2
Transmitted by Mote 3
Transmitted by Mote 4
Transmitted by Mote 5

T
DERENS

Packet Reception Ratio

3
Receiving Mote

Figure 4: Radio transmissions between five motes

times. The motes reported the values given by their
photo sensors. The results are shown in Figure 5. No
scaling or calibrating of the sensor readings is done.
The values shown are the output of the motes’ ADCs.
The three peaks correspond to the three intervals in
which the photosensors were illuminated.

4 Future Work

In this paper we presented MULE: a tool for hy-
brid debugging and testing of applications for dis-
tributed sensor networks. MULE simplifies the ar-
duous process of developing such applications. This
paper presents the first version of the tool. In the
future, we plan to work on extending the capabilities
of MULE in order to increase its effectiveness. Be-
low are the some of features we consider adding to
MULE.

Component Migration. MULE makes it possi-
ble to divide the component stack into two parts.
The lower part runs on the physical mote, the upper
part runs under TOSSIM. The two parts are joined
by MulePacketM/MuleApp pair (see Section 2 for de-
tails). Currently, the size and the architecture of the
lower part is fixed. We are planning to extend MULE
so it is possible to insert a MulePacketM/MuleApp

1400 |~ —
o—o Mote 1
a8 Mote 2
-0 Mote 3 —

1200 —

1000 —

Intensity
o®©
S
S
T
PSR

=N

1)

S
T

IS
S
S
T

W

=3

S
T

Snssssmseea
o A

3

Time (seconds)

Figure 5: Light sensing in a 3-mote array

pair in an arbitrary place in the component stack.
This would give the programmer greater flexibility
as to what portion of the TinyOS application they
would like to test. The programmer would be able to
develop his application incrementally “bottom-up”.
The physical motes would execute already tested
components.

Tiling. Currently, there is a one-to-one mapping be-
tween simulated and physical motes in MULE. Thus,
the number of motes MULE can simulate is limited
by the number of physical motes attached to the host
PC. The scale of the simulation can be significantly
increased if MULE allowed to map multiple simulated
motes on one physical mote. This amounts to tiling
the physical motes segment into an arbitrary virtual
topology.

Time Synchronization. Even though MULE im-
proves the fidelity of simulation over pure simulators,
the fidelity can be further enhanced. Since actual
message transmission and sensing is separated from
the simulated code execution, their interaction may
not be properly represented. For example, a mote
running a cryptographic signature computation and
receiving a message at the same time will be able to
accomplish both tasks simultaneously. Yet in reality,
the two tasks will be competing for scant processor
resources. Similarly, the time overhead of transmit-

ting messages between the simulation and the physi-
cal motes is not perfectly accounted for. The proper
solution for these problems is to implement tighter
time synchronization between simulated and physical
motes across the application. We contemplate imple-
menting global clock ticks that advance the simula-
tion in lock-step.

References

[1] ATEMU - sensor network emulator/simulator/
debugger. http://www.isr.umd.edu/CSHCN/
research/atemu.

[2]

MULE. http://deneb.cs.kent.edu/mule.

Josh Broch, David A. Maltz, David B. Johnson,
Yih-Chun Hu, and Jorjeta Jetcheva. A perfor-
mance comparison of multi-hop wireless ad hoc
network routing protocols. In Mobile Computing
and Networking, pages 85-97, 1998.

D. Ganesan, B. Krishnamachari, A. Woo,
D. Culler, D. Estrin, and S. Wicker. Complex
behavior at scale: An experimental study of low-
power wireless sensor networks. Technical Re-
port CSD-TR 02-0013, UCLA, 2002.

D. Ganesan, B. Krishnamachari, A. Woo,
D. Culler, D. Estrin, and S. Wicker. An empir-
ical study of epidemic algorithms in large scale
multihop wireless networks. Technical Report
IRB-TR-02-003, Intel Research, 2002.

J. Hill, R. Szewczyk, A. Woo, D. Culler, S. Hol-
lar, and K. Pister. System architecture direc-
tions for networked sensors. ACM SIGPLAN
Notices, 35(11):93-104, November 2000.

J.L. Hill and D.E. Culler. Mica: A wireless plat-
form for deeply embedded networks. IEEE Mi-
cro, 22(6):12—24, November /December 2002.

Philip Levis, Nelson Lee, Matt Welsh, and David
Culler. TOSSIM: accurate and scalable simula-
tion of entire tinyos applications. In Proceedings
of the first international conference on Embedded

[10]

[11]

[12]

[13]

networked sensor systems, pages 126-137. ACM
Press, 2003.

Sung Park, Andreas Savvides, and Mani B. Sri-
vastava. SensorSim: A simulation framework
for sensor networks. In Proceedings of MSWiM,
2000.

Luiz Felipe Perrone and David M. Nicol. A scal-
able simulator for TinyOS applications. In WSC,
2002.

Gyula Simon, Péter Volgyesi, Miklés Mar6ti,
and Akos Lédeczi. Simulation-based optimiza-
tion of communication protocols for large-scale
wireless sensor networks. In IEEFE Aerospace
Conference, 2003.

Sameer Sundresh, WooYoung Kim, and Gul
Agha. SENS: A sensor, environment, and net-
work simulator. In The 37th Annual Simulation
Symposium (ANSS37), 2004.

Xiang Zeng, Rajive Bagrodia, and Mario Gerla.
GloMoSim: A library for parallel simulation of
large-scale wireless networks. In Workshop on
Parallel and Distributed Simulation, pages 154—
161, 1998.

