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Abstract. We study distributed linearization or topological sorting in
peer-to-peer networks. We define strict and eventual variants of the prob-
lem. We consider these problems restricted to existing peer identifiers or
without this restriction. None of these variants are solvable in the asyn-
chronous message-passing system model. We define a collection of oracles
and prove which oracle combination is necessary to enable a solution for
each variant of the linearization problem. We then present a linearization
algorithm. We prove that this algorithm and a specific combination of
the oracles solves each stated variant of the linearization problem.

1 Introduction

Oracles and Limits of Solvability in peer-to-peer Systems. Mohd Nor
et al [17] showed that construction of structured peer-to-peer systems in asyn-
chronous systems have fundamental limits such as inability to connect a dis-
connected network or discard peer identifiers that are not present in the system.
These limits do not appear to be reducible to just the properties of asynchronous
systems alone, such as lack of consensus [10]. That is, the limits are specific to
peer-to-peer problems.

In this paper we endeavor to systematically study these limits. We inten-
tionally pattern our work on the classic proof of impossibility of crash-robust
consensus [10] and its resolution with failure detector oracles [4, 5]. That is, we
identify peer-to-peer system specific oracles and isolate the source of impossibil-
ity in them, we then show the minimality of oracles by proving their necessity
for solution existence and then solve the problem by providing an oracle-based
algorithm.

We focus on the problem of linearization (topological sort). Let us motivate
our choice of the problem. Linearization requires each process p to determine two
peers whose identifiers are consequent, i.e. next to one another in topological or-
der, with this p’s identifier. This problem underlies most popular peer-to-peer
systems [1, 2, 14–16, 19, 20] as more sophisticated constructions start by topo-
logically sorting the peer-to-peer network. While being foundational for many
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peer-to-peer systems, linearization is similar to consensus in the following sense.
Linearization is simple enough so that one can observe how the results estab-
lished for this problem pertain to all peer-to-peer systems.

Our Contribution. Similar to consensus, we define two variants of the prob-
lem: strict linearization, where each process has to output its consequent identi-
fiers exactly once; and eventual linearization where a process may make a finite
number of mistakes in its output. We introduce a restriction that is specific to
peer-to-peer systems: the initial input may contain only process identifiers that
exist in the system. We study the linearization problems with and without this
restriction, i.e. we consider four different linearization problem variants.

In present work, we show that none of the four variants of the linearization
problem are solvable in the asynchronous message-passing systems. We use the
concept of oracles to encapsulate the impossible. We define the weak connectivity
oracle that detects the system to be disconnected and restores its connectivity.
We show that this oracle is necessary to solve all four variants of the problem. We
define the participant detector oracle that removes non-existent identifiers from
the system. We then show that this oracle is necessary to solve the linearization
problem that allows non-existent identifier input. We define the oracle property
of subset splittability. Intuitively, a subset splittable oracle does not provide
information about the state of the outside system to a particular subset of pro-
cesses. We then prove that a non-subset splittable oracle is necessary to solve
strict linearization.

On the constructive side, we use a simple linearization algorithm [17] and show
that it solves each variant of the linearization problem with a particular combi-
nation of oracles. Specifically, this algorithm solves eventual linearization prob-
lem with existent identifiers using only weak connectivity oracle; the addition
of participant detector oracle enables solution to the problem with non-existent
identifiers. Taken together with the necessary results, this demonstrates that
the particular combinations of oracles are necessary and sufficient to solve the
variants of the linearization problem with existing identifiers. We define the con-
sequent detector oracle, a specific non-subset splittable oracle that can output
consequent identifier once the process stores it in its memory. We then show that
using the consequent detector oracle, our algorithm solves the strict linearization
problem. These results are summarized in Figure 4.

Related Literature. Mohd Nor et al [17] provided impetus for this work. As a
part of the work presented in their paper, they showed that there are limitations
of achievable results in peer-to-peer systems. However, the applicability of their
negative results is limited, as Mohd Nor et al considered only self-stabilizing algo-
rithms [7, 21]. To prove impossibility of stabilization, it is sufficient to show that
there exists a global state from which no program can possibly recover. How-
ever, such results may not be applicable to regular, non-stabilizing programs,
as non-stabilizing programs are only required to solve the problem from a par-
ticular non-faulty initial state. Therefore, such programs may never reach the
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degenerate states that self-stabilizing programs have to address. Hence, proving
the limits for regular programs is significantly more involved.

Onus et al [18] recognize the importance of linearization as a fundamental
problem in peer-to-peer system construction and study it in the context of self-
stabilization. Gall et al [11] consider linearization performance bounds. Emek et
al [9] study various definitions of connectivity for overlay networks. There are
several studies on participant detectors [3, 13] for consensus.

2 Notation and Execution Model

Peer-to-peer Systems. A peer-to-peer overlay system consists of a set of N
processes with unique identifiers. When it is clear from the context, we refer
to a process and its identifier interchangeably. A process stores other process
identifiers in its local memory. Once the peer identifier is stored, the process is
able to communicate with its peer by sending messages to it. Message routing is
handled by the underlying network. We thus assume that the peers are connected
by a communication channel. Processes may store identifiers of peers that do
not exist in the system. If a message is sent to such non-existent identifier, the
message is discarded. A process a forwards identifier b to process c, if a sends a
message containing identifier b to process c and erases b from its memory.

The peer identifiers are assumed to be totally ordered, i.e. for any two distinct
identifiers a and b, either a < b or a > b. Two processes a and b of set N are
consequent, denoted cnsq(a, b) if any other process that belongs to N is either
less than a or greater than b. Negative infinity is consequent with the smallest
process of N and positive infinity is consequent with the largest process. Note
that the total order of identifiers implies that if two non-identical sets are merged,
the consequent process changes for at least one process in each set.

Graph terminology helps in reasoning about peer-to-peer systems. A link,
denoted (a, b), between a pair of identifiers a and b is defined as follows: either
message message(b) carrying identifier b is in the incoming channel of process a,
or process a stores identifier b in its local memory. Thus defined, link is directed.
When referring to link (a, b), we always state the predecessor process first and
the successor process second.

A channel connectivity multigraph CC includes both locally stored and
message-based links. Self-loop links are not considered. Links to non-existent
identifiers are not considered either. Note that besides the processes, CC may
contain two nodes +∞ and −∞ and the corresponding links to them. Graph
CC reflects the connectivity data that is stored in the process memory and,
implicitly, in communication channels messages.

Computation Model. Each process contains a set of variables and actions. A
channel is a special variable type whose values are sets of messages. That is, we
consider non-FIFO channels. The channels may contain an arbitrary number of
messages, i.e. the channels are unbounded. We assume that the only information
any message can carry is process identifiers. We further assume that each message
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carries only one identifier. Message loss is not considered. Since message order is
unimportant, we consider all messages sent to a particular process as belonging
to the single incoming channel of this process.

An action has the form 〈guard〉 −→ 〈command〉. guard is either a predicate
over the process variables or the incoming channel or true. In the latter case,
the predicate and its action are timeout. command is a sequence of statements
assigning new values to the variables of the process or sending messages to other
processes.

Program state is an assignment of a value to every variable of each process
and messages to each channel. An action is enabled in some program state if its
guard is true in this state. The action is disabled otherwise. A timeout action
is always enabled.

A computation on a set N of processes is a fair sequence of states such that
for each state si, the next state si+1 is obtained by executing the command of
an action of the processes of N that is enabled in si. This disallows the overlap
in action execution. That is, the action execution is atomic. The computation is
either infinite or it ends in a state where no actions are enabled. This execution
semantics is called interleaving semantics or central daemon [8]. We assume
two kinds of fairness: weak fairness of action execution and fairness of message
receipt.Weak fairness of action execution means that if an action is enabled in all
but finitely many states of the computation, then this action is executed infinitely
often. Fair message receipt means that if the computation contains a state where
there is a message in the channel, this computation contains a later state where
this message is no longer in the channel, i.e. the message is received. Besides
the fairness, our computation model places no bounds on message propagation
delay or relative process execution speed, i.e. we consider fully asynchronous
computations.

Computation suffix is the sequence of computation states past a particular
state of this computation. In other words, the suffix of the computation is ob-
tained by removing the initial state and finitely many subsequent states. Note
that a computation suffix is also a computation.

We consider algorithms that do not manipulate the internals of process iden-
tifiers which we call copy-store-forward algorithms. An algorithm is copy-store-
forward if the only operations that it does with process identifiers is comparing
them, storing them in local process memory and sending them in a message.
That is, operations on identifiers such as addition, radix computation, hashing,
etc. are not used. In a copy-store-forward algorithm, if a process does not store
an identifier in its local memory, the process may learn this identifier only by
receiving it in a message. A copy-store-forward algorithm can not introduce new
identifiers to the system, it can only operate on the ids that are already there.
Hence, if a computation of a copy-store-forward algorithm starts from a state
where every identifier is existing, each state of this computation contains only
existing identifiers.

Oracles. An oracle is a specialized set of actions used to abstract a problem in
distributed computing. The actions of a single oracle may be defined in multiple
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processes. An oracle action of a process may mention the state of variables of
other processes and even the global state of the whole system.

An oracle is subset splittable for a linearization algorithm A, if there exist two
non-intersecting sets of processes S1 and S2 as well as a computation σ1 on S1 of
A and state s2 of processes in S2 with the following property. For every state s1
of σ1 where this oracle is enabled, this oracle is also enabled in s1 ∪ s2. In other
words, if the processes of S2 in state s2 are added to any such state s1, the oracle
still remains enabled. An oracle is just subset splittable, if it is subset splittable
for any linearization algorithm. Intuitively, subset splittability prevents a subset
of processes from learning about the state of the rest of the system on the basis
of an oracle. Subset splittable and not-subset splittable oracles are respectively
denoted as SS and NSS.

A linearization algorithm is proper if it satisfies the following requirements.

– If a process a has identifiers b and c, such that a < b < c then process a
forwards c to b. The requirement is similar in the opposite direction. That
is, a process forwards each identifier closer to its destination.

– A process that does not contain identifiers to its right or left is orphan. A
process does not orphan itself. That is, the process does not discard its only
single left, or single right, identifier. Note that oracle actions may still orphan
the process.

3 The Linearization Problem and Solution Oracles

Linearization Problem Statement. The linearization problem is stated as
follows. Each process p of a given set N of processes, is input a left l and a right
r neighbor such that l < p and r > p. These values may be −∞ and +∞ re-
spectively. The communication channels are empty. In the solution, each process
should output two identifiers: cl and cr such that each identifier is consequent
with p. The smallest process should output negative infinity as its left neighbor
while the largest process should output positive infinity as it right neighbor.

Depending on the certainty of the output, the problem has two variants. The
strict linearization problem SL requires each process to output its neighbors ex-
actly once and allows only correct output. The eventual linearization problem EL
states that each computation contains a suffix where the output of each process
is correct. That is, each process is allowed to make a finite number of mistakes.
The problem statement also depends on whether non-existent identifiers may
be present in the initial state. Non-existing identifier variant NID allows such
identifiers while existing-only identifiers variant EID prohibits them.

The combination of these conditions defines four different linearization prob-
lem statements. When we refer to the specific linearization problem, we state the
particular conditions. For example, strict linearization problem with non-existing
identifiers is referred to as SL+NID.

Oracles. The oracle actions are shown in Figure 1. An oracle may have one or
two actions. The two actions operate on the right and left variable of the process
and are respectively distinguished by letters r and l.
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process p

constants and global variables
N, // set of processes in the system
CC // system channel connectivity graph

shortcuts
cnsq(a, b) ≡ (∀c : c ∈ N : (c < a) ∨ (b < c))

local variables
r, l, // input, right (> p) and left (< p) neighbors
cl, cr // output, right and left consequent process,

initially ⊥

oracle actions
WC: CC contains disconnected components

C1 and C2 such that (p ∈ C1) ∧ (q ∈ C2) −→
send message(q) to p

PDl: l 	∈ N −→ l := −∞
PDr: r 	∈ N −→ r := +∞

NOl: cl 	= l −→ cl := l
NOr: cr 	= r −→ cr := r

CDl: (cl 	= l) ∧ cnsq(l, p) −→ cl := l
CDr: (cr 	= r) ∧ cnsq(p, r) −→ cr := r

Fig. 1. Linearization algorithm oracles

We define the following oracles to be used in solving the linearization problem.
Weak connectivity oracleWC has a single action that selects a pair of processes p
and q such that they are disconnected in the channel connectivity graph CC and
adds q to the incoming channel of p creating a link (p, q) in CC thus connect-
ing the graph. Participant detector PD oracle removes a non-existent identifier
stored in p. The actions of neighbor output oracle NO just output identifiers
stored in left and right variables of p. In fact, NO is not a true oracle. It is triv-
ially built from scratch as it uses only local variables of p. However, for ease of
exposition, NO actions are described among oracles. The actions of consequent
process detector CD are similar to the actions of NO in effect. However, each
action of CD outputs the stored identifier only if it is consequent with p. That
is, unlike NO, the guard of CD mentions all the identifiers of the system.

Lemma 1. Oracles NO, PD and WC are subset splittable while CD is not.

Proof: To prove subset splittability of an oracle, by definition, we need to
identify two non-intersecting sets of processes S1 and S2, a computation σ1 on
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S1 of an arbitrary linearization algorithm A and a state s2 of S2, such that if
this oracle is enabled in some state of s1 of σ1, it remains enabled in s1 ∪ s2.

Indeed, NO is trivially subset splittable since its guards only mention local
variables. To see why PD is subset splittable, consider a set of processes S1

and a computation σ1 of some algorithm A on this set. We form another set
of processes S2 such that it does not intersect with S1 and does not contain
any of the non-existing identifiers appearing in σ1. Let s2 be an arbitrary state
of processes of S2. If some identifier nid is non-existent in a state s1 of σ1, it
remains non-existent in state s1 ∩ s2. Hence, if an action of PD is enabled in s1,
it is enabled in s1 ∪ s2 as well.

Let us now consider WC. Again, let S1 be a set of processes and σ1 be a
computation of some algorithm A on it. Let S2 be a set of processes that does
not intersect with S1. Let state s2 of processes of S2 be such that none of these
processes stores identifiers of S1. Let us consider a state that is formed by merging
some state s1 of σ1 and s2. If channel connectivity graph CC is disconnected in
s1, it remains disconnected in s1 ∪ s2. Hence, if an action of WC is enabled in
s1, it is also enabled in s1 ∪ s2. That is, WC is subset splittable.

Let us discuss CD. Consider an arbitrary set of processes S1 and a computa-
tion σ1 of some linearization algorithm A on it. Each process of a linearization
algorithm has to output process identifiers consequent with itself. If a process
stores consequent identifiers, its CD actions are enabled. However, since the iden-
tifier space is totally ordered, regardless of the composition of S2, if S2 is added
to S1, at least one process in S1 changes its consequent process. This disables
an action of CD. Hence, CD is not subset splittable. �

4 Necessary Conditions

Lemma 2. If the channel connectivity graph CC is disconnected in the ini-
tial state of copy-store-forward algorithm computation, then either CC is dis-
connected in every state of the computation or this computation contains an
execution of a weak connectivity oracle action.

Proof: Let us consider the computation σ of an arbitrary copy-store-forward
algorithm such that σ contains states where CC is at least weakly connected yet
CC is disconnected in the initial state of σ. Let s2 be the first state of σ where
CC is connected. Assume, without loss of generality, that in s2 process a has a
link to process b in CC while in all previous states, including the state s1 that
directly precedes s2, the two processes are disconnected. The link may be due
to the action of the algorithm or an oracle.

Let us consider the possibility of algorithm action first. Refer to Figure 2 for
illustration. Since processes in the message passing system model do not share
local memory, an algorithm action may create link (a, b) in CC only by adding
process b to the incoming channel of a. That is, some process c sends a message
carrying b to a. This message transmission moves the system from s1 to s2. Since
the algorithm is copy-store-forward, to send a message to a, process c needs to
store the identifier of a in its local memory in the preceding state s1. That is,
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a b
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a b

c

s1 s2�

Fig. 2. Illustration to the proof of Lemma 2. Transition from state s1 where processes a
and b are disconnected to s2 where they are connected via a link (a, b) in the incoming
channel of process a, requires initial overall system connectivity, i.e. CC needs to be
connected.

c has to be connected to a in CC of s1. Also, c sends identifier b to a. That is,
c is connected to b in s1. This means that for this message transmission, a and
b need to be weakly connected in s1. However, we assumed that s2 is the first
state where a and b are connected.

Hence, the action that moves the system from s1 to s2 can only be an oracle
action. This action connects two disconnected processes. That is, it has to be the
action of the weak connectivity oracle. Therefore, if a computation of a copy-
store-forward algorithm starts from a state where CC is disconnected, the only
way this computation produces a state with connected CC is through the action
of a weak connectivity oracle. �

Theorem 1. Every solution to the linearization problem requires a weak con-
nectivity oracle.

Proof: Let A be a linearization algorithm. Let us consider the set of processes
to be linearized. Let us further consider a computation of A that starts in a
state where this set is separated into two arbitrary subsets S1 and S2 such that
if process a ∈ S1 stores identifier b then b 	∈ S2. Similarly if process c ∈ S2 stores
identifier d then d 	∈ S1. Note that in thus formed initial state, the sets S1 and
S2 are disconnected in the channel connectivity graph CC.

Since process identifiers are totally ordered, there has to be at least two con-
sequent processes p1 ∈ S1 and p2 ∈ S2. Since A is a linearization algorithm, p1
has to eventually output p2. According to Lemma 2, this may only happen if the
computation contains the actions of the weak connectivity oracle. �

Theorem 2. A solution to the strict linearization problem requires a non-subset
splittable oracle.

Proof: Assume the opposite. Let there be an algorithmA that solves the strict
linearization problem with only subset splittable oracle O. Since O is subset
splittable, there are two non-intersecting sets of processes S1 and S2 as well as
a computation σ1 of A on S1 and a state s2 of S2 such that the addition of s2
to every state of σ1 keeps the actions of O in processes of S1 enabled.

We construct a computation σ3 of A on S1 ∪ S2 as follows. The computation
starts with the initial state of σ1 merged with s2. We then consider the first
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action of σ1. If the action is non-oracle, since processes of S1 in σ3 have the
same initial state as in σ1, the action is enabled and can be executed. If the first
action is an oracle O action, since the oracle is subset splittable, this action is
enabled and can be executed. We continue building σ3 by sequentially executing
the actions of σ1. Computation σ1 is produced by A which, by assumption, is
a solution to the strict linearization problem. By the statement of the problem,
during σ1, every process has to output the identifier of its consequent process
exactly once. We stop adding the actions of σ1 to σ3 once every process of S1

does so. We conclude the construction of σ3 by executing the actions of A and
O in an arbitrary fair manner. Thus constructed, σ3 is a computation of A.

Let us examine σ3. By construction, every process p1 in S1 outputs an iden-
tifier that p1 is consequent with in S1. Since the identifier state space is totally
ordered, the consequent identifiers of at least one process of S1 differ if S2 is
added to S1. This means that this process outputs incorrect identifier in σ3 that
is executed on S1 ∪ S2. However, this violates the requirements of the strict
linearization problem. This means that, contrary to our initial assumption, A
is not a solution to SL and the strict linearization problem indeed requires a
non-subset splittable oracle. �

Theorem 3. A proper solution to the linearization problem that allows non-
existing identifiers requires a participant detector oracle.

Proof: Assume the opposite. Let A be a proper algorithm that solves a lin-
earization problem with non-existing identifiers and does not use PD. That is,
oracles used by the algorithm do not remove non-existing identifiers.

p1 p2np2np1 id2id1 np3

Fig. 3. Illustration to the proof of Theorem 3. In the initial state of constructed com-
putation, two consequent processes p1 and p2 hold non-existent identifiers np1 and np2.
An oracle action at p1 adds identifiers id1 and id2 to process p1. Process p1 forwards
id2 to id1.

Let us construct a computation σ on some set of processes. We select the
initial state of σ as follows. Refer to Figure 3 for illustration. Processes do not
have links to existing identifiers. That is, each process is disconnected from all
other processes. Each process stores exactly two non-existing identifiers. For any
two neighbor processes p1 and p2 such that p1 < p2, the non-existing identifier
np1 stored at p1 is such that p1 < np1 < p2, the non-existing identifier np2 stored
at p2 is p1 < np2 < p2. That is, the non-existing ids are between neighbors. If
the process has the largest, or smallest identifier in the set, this process contains
respectively lower and higher non-existing identifier.

Since A is proper, a process cannot orphan itself. Hence, the actions of
the algorithm cannot remove the non-existent identifiers from this initial state
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either. Since A is copy-store-forward, its actions cannot add new identifiers to
the system. That is, there are no enabled actions of A that change its topology
in the initial state of σ.

Since A does not use the participant detector oracle, the oracles that it does
use cannot remove the non-existing identifiers either. That is, the only oracle
actions that are enabled in the initial state of σ add process identifiers.

We construct σ as follows. Let p1 be the process that has an enabled oracle
action. We execute this action and consider the identifiers that the oracle action
adds to p1. The identifiers may be greater or smaller than p1. Moreover, they
may be existent or non-existent.

We consider the added identifiers that are greater than p1. The case of smaller
identifiers is similar. Process p1 already holds np1 > p1. SinceA is proper, process
p1 has to select two identifiers id1 and id2 such that p1 < id1 < id2 and forward
id2 to id1. Thus, p1 eliminates id2 from its memory. We add this forwarding
action to σ. We continue this process of identifier elimination until p1 holds only
a single identifier greater than its own.

If p1 ever forwards non-existing np1 to some process id1, then p1 < id1 < np1.
That is, the remaining identifier id1 is non-existing. Therefore, once p1 is left
with a single identifier, this identifier is non-existing and p1 remains disconnected
from the higher-id processes.

Let us now consider what happens with the identifiers that p1 forwards. The
recipient identifier id1 may be existing or non-existing. If id1 is non-existing, the
forwarded identifier id2 is lost. Let us address the situation when id1 is existing.
Note that id2 is greater than than id1. Once id2 is received by id1, its operation
depends on the value of its right non-existent identifier np3. There may be two
cases. In the first case, id2 is greater than np3. Since A is proper, id2 is forwarded
to np3. Since np3 is non-existing, id2 is lost and the system remains disconnected.
If id2 is less than np3, id2 is definitely non-existing. Since A is proper, id1 keeps
id2 and forwards np3 to id2. That is, np3 is discarded. The system, however,
remains disconnected. We construct the computation σ by thus processing all
identifiers forwarded by p1.

The resultant state resembles the initial state of σ in the sense that all pro-
cesses are disconnected and the only actions that may be enabled are the actions
of an id-adding oracle. We continue constructing σ by executing an enabled or-
acle action in a fair manner and then letting the algorithm handle the added
identifiers. We proceed with this construction either indefinitely or until there
are no more enabled oracle actions.

Thus constructed σ is a computation of A. However, no process outputs the
identifiers of its consequent processes. That is, contrary to our assumption, A is
not a solution to the linearization problem with non-existing identifiers. �

The theorems of this section specify the oracles that are necessary to solve
each variant of the linearization problem. These requirements are summarized
in Figure 4(a).
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EL SL
EID WC WC+NSS
NID WC+PD WC+PD+NSS

(a) Necessary oracles.

EL SL
EID L+WC+NO L+WC+CD
NID L+WC+NO+PD L+WC+CD+PD
(b) Solution algorithm and oracles sufficient
for solution.

Fig. 4. Necessary and sufficient conditions for a linearization problem solution

5 Linearization Solutions

Algorithm Description. The linearization algorithm L is adapted from [17].
The algorithm contains two actions: REC and T O. The actions are shown in
Figure 5. The first is a message receipt action REC. This action is enabled if
the incoming channel of process p contains a message bearing some identifier
id. If the received id is greater than the right neighbor r of p, p forwards this
identifier to r to process. If id is between p and r, then p, selects id to be its
new right neighbor and forwards the old neighbor for id to handle. Process p
handles received id smaller than its own in a similar manner. If p receives its own
identifier, p discards it. The second action is a timeout action T O. It is always
enabled. This means that the correctness of the algorithm does not depend on
the timing of the action execution, which is left up to the implementer. The
action sends identifier p to its right and left neighbor provided they exist. Note
that the linearization algorithm L is proper.

Lemma 3. If channel connectivity graph contains only existing identifiers, the
operation of the linearization algorithm L in combination with any of the oracles
does not disconnect any pair of processes in the channel connectivity graph CC.

Proof: Let us consider the actions of the oracles first. The actions of WC
may only add identifiers to CC. Hence it does not disconnect the processes in
CC. Since there are no non-existent identifiers, the actions of PD are disabled.
Oracles NO and CD only copy the identifiers in the same process. Hence, they
do not affect CC either.

Let us now consider the actions of L. The operation of receive action REC
depends on the value of the received identifier id. If id is the same as p, it is
discarded. However, since self-loops are not considered in CC, this discarding of
the identifier does not change CC. Let us consider the case p > id. If id > r,
then p forwards id to r to deal with. That is, the link (p, id) in CC is replaced by
the path (p, r), (r, id). If p > id ≥ r, process p replaced its right neighbor with
p and forwards its old right neighbor to id. That is, the link (p, id) is preserved
in CC while (p, r) is replaced by (p, id), (id, r). In either case no path in CC is
disconnected. The case of p < id is similar. The timeout action T O only adds
links to CC so it does not disconnect it. �

Lemma 4. Starting from an arbitrary state that contains only existing identi-
fiers, the linearization algorithm L in combination with the weak connectivity
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process p

local variables
r, l // input, right (> p) and left (< p) neighbors

algorithm action
REC:message(id) is in the coming channel of p −→

receive message(id)
if id > p then

if id < r then
if r < +∞ then

send message(r) to id
r := id

else
send message(id) to r

if id < p then
if id > l then

if l > −∞ then
send message(l) to id

l := id
else

send message(id) to l

T O: true −→
if l > −∞ then

send message(p) to l
if r < +∞ then

send message(p) to r

Fig. 5. Linearization algorithm actions

oracle WC and any other oracles, arrives at a state where the channel connec-
tivity graph CC is connected.

Proof: Indeed, if CC is disconnected, actions of WC are enabled in the pro-
cesses of the disconnected components. Once such action is executed, the two
components are connected. According to Lemma 3, the components are not dis-
connected again regardless of used oracles. Hence, CC is eventually connected
in every computation of the linearization algorithm where WC is used. �

Lemma 5. Any computation of the linearization algorithm L in combination
with participant detector oracle PD and any other oracles has a suffix with only
existing identifiers.

Proof: Observe that none of the oracles introduce new non-existing identifiers.
Since L is copy-store-send, it does not create new identifiers either. Hence, to
prove the lemma we need to show that all non-existent identifiers present in the
initial state are removed.



Linearizing Peer-to-Peer Systems with Oracles 233

Note that each process of the linearization algorithm either keeps an identifier
or forwards it to its neighbors. That is, processes of L do not duplicate non-
existent identifiers. Moreover, the identifier is forwarded only in one direction:
either to the left or to the right. This means that during the computation each
identifier will be forwarded a finite number of times. Let us consider process
p that holds non-existent identifier nid and does not forward it. Since nid is
non-existent, an action of participant detector PD is enabled at p. Since nid is
not forwarded, the action remains enabled until executed. Once executed, the
action removes the non-existent identifier. That is, every non-existent identifier
is eventually removed. �

Lemma 6. Starting from an arbitrary state where CC is connected and only
existing identifiers are present, the linearization algorithm combined with the
timeout oracle and regardless of the operation of other oracles contains a suffix
where the variables r and l of each process p hold identifiers consequent with p.

The proof of Lemma 6 is in [17].

Theorem 4. The linearization algorithm combined with neighbor output, and
weak connectivity oracles solves eventual linearization with existing identifiers
problem. The linearization algorithm combined with consequent process detector
and weak connectivity oracles solves strict linearization with existing identifiers
problem.

The addition of participant detector enables the solution to the non-existent
identifier variants of these problems.

The specific oracles sufficient for each problem solution as stated in Theorem 4
are summarized in Figure 4(b).

Proof: Let us first address the case of existing identifiers only. According to
Lemma 6, if a computation starts in an arbitrary state where CC is connected,
this computation contains a suffix where each process p stores its consequent
identifiers in r and l. The argument differs depending on whether NO or CD is
being used.

In case NO is used, if p stores different identifiers in r and cr, then NOr is
enabled. Once executed, the identifier stored in r is output. That is, if there is
a suffix of a computation containing consequent right identifier in r of p, there
is a suffix that contains this identifier cr. Similar argument applies to the left
identifier of p. That is, every computation of L+NO+WC contains a suffix where
consequent left and right neighbors are output. In other words, this combination
of the linearization algorithm and oracles solves EL+EID.

Let us consider the case of CD. Note that consequent process detector oracle
outputs the identifier if and only if it is consequent. However, every compu-
tation of the algorithm contains a suffix where each process stores its conse-
quent identifiers. If the process holds its consequent identifier, CD is enabled.
Once CD is executed, the correct identifier is output. That is, every computa-
tion of L+CD+WC every process outputs its consequent identifiers exactly once.
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In other words, this combination of the linearization algorithm and oracles solves
SL+EID.

Let us address the case of non-existing identifiers. According to Lemma 5,
participant process detector oracle PD eventually removes non-existent identi-
fiers from the system. That is, every computation contains a suffix with only
existing identifiers. In this case NO eventually outputs correct identifiers that
satisfies the conditions of eventual linearization problem. By its specification,
consequent process detector oracle CD never outputs non-existent identifiers.
That is, the presence of non-existent identifiers does not compromise the solu-
tion to the strict linearization problem if CD is used. Hence, the addition of PD
enables the solution of the non-existing identifier variants of the linearization
problems. �

6 Oracle Implementation and Optimality

Oracle Nature and Implementation. The three oracles required to solve
the linearization problem variants described in this paper are weak connectivity,
participant process detector and consequent process detector. None of them are
implementable in the computation model we consider. Nonetheless, let us discuss
possible approaches to their construction.

Oracle WC, that repairs the network disconnections, is an encapsulation of
bootstrap service [6] commonly found in peer-to-peer systems. One possible im-
plementation of such oracle is as follows. One bootstrap process b is always
present in the system. This identifier may be part of the oracle implementation
and, as such, not visible to the application program using the oracle. The respon-
sibility of this process is to maintain the greatest and smallest identifier of the
system. All other processes are supplied with b’s identifier. If a regular system
process p does not have a left or right neighbor, it assumes that its own identifier
is the greatest or, respectively, smallest. Process p then sends its identifier to b.
Process b then either confirms this assumption or sends p, its current smallest or
greatest identifier. This way, if the system is disconnected, the weak connectivity
is restored.

Oracle PD encapsulates the limits between relative process speeds and maxi-
mum message propagation delay. This oracle may be implemented using a heart-
beat protocol [12]. For example, if process p contains an identifier q, p sends q
a heartbeat message requesting a reply. If p does not receive this reply after
the time above the maximum network delay, p considers q non-existent and
discards it.

Oracle CD may be the most difficult to implement. We believe that to im-
plement CD one has to solve the strict linearization problem itself. That is, CD
serves to illustrate the difficulty of the strict linearization problem rather than
encode any particular oracle implementation.

Oracle Optimality. This paper states the necessary and sufficient conditions
for both strict and eventual linearization problem. The conditions for the
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eventual linearization are sharp as we use the necessary oracles to provide the
algorithmic solution for the problem. For the strict linearization, there is a gap
between these conditions. Specifically, our algorithmic solution relies on CD,
which is a specific kind of the necessary non-subset splittable detector. Narrow-
ing the gap between necessary and sufficient conditions for the solution to the
strict linearizability problem remains to be addressed in future research.
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In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 294–305. Springer,
Heidelberg (2010)

12. Gouda, M.G., McGuire, T.M.: Accelerated heartbeat protocols. In: 18th Interna-
tional Conference on Distributed Computing Systems (ICDCS), pp. 202–209 (May
1998)

13. Greve, F., Tixeuil, S.: Knowledge connectivity vs. synchrony requirements for fault-
tolerant agreement in unknown networks. In: Proceedings of IEEE International
Conference on Dependable Systems and networks (DSN), pp. 82–91. IEEE (June
2007)

14. Harvey, N.J.A., Ian Munro, J.: Deterministic skipnet. Inf. Process. Lett. 90(4),
205–208 (2004)

15. Malkhi, D., Naor, M., Ratajczak, D.: Viceroy: a scalable and dynamic emulation of
the butterfly. In: PODC 2002: Proceedings of the Twenty-first Annual Symposium
on Principles of Distributed Computing, pp. 183–192. ACM, New York (2002)



236 R.M. Nor, M. Nesterenko, and S. Tixeuil

16. Munro, J.I., Papadakis, T., Sedgewick, R.: Deterministic skip lists. In: SODA 1992:
Proceedings of the Third Annual ACM-SIAM Symposium on Discrete Algogrithms,
pp. 367–375. Society for Industrial and Applied Mathematics, Philadelphia (1992)

17. Nor, R.M., Nesterenko, M., Scheideler, C.: Corona: A stabilizing deterministic
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