
Consensus Through Knot Discovery in
Asynchronous Dynamic Networks

Rachel Bricker, Mikhail Nesterenko, and Gokarna Sharma

Kent State University, Kent, OH, 44242, USA
rbricke2@kent.edu, mikhail@cs.kent.edu, and gsharma2@kent.edu

Abstract. We state the Problem of Knot Identification as a way to
achieve consensus in dynamic networks. The network adversary is asyn-
chronous and not oblivious. The network may be disconnected through-
out the computation. We determine the necessary and sufficient condi-
tions for the existence of a solution to the Knot Identification Problem:
the knots must be observable by all processes and the first observed knot
must be the same for all processes. We present an algorithm KIA that
solves it. We conduct KIA performance evaluation.

1 Introduction

In a dynamic network, the topology changes arbitrarily from one state of the
computation to the next. Thus, it is one of the most general models for mobile
networks. Moreover, these intermittent changes in topology may represent mes-
sage losses. Hence, dynamic networks are a good model for an environment with
low connectivity or high fault rates.

In such a hostile setting, the fundamental question of consensus among net-
work processes is of interest. One approach to consensus is to require that pro-
cesses in the network remain connected and mutually reachable long enough for
them to exchange information and come to an agreement. However, this may be
too restrictive. This is especially problematic if the network is asynchronous and
there is no bound on the communication delay between processes.

The question arises whether it is possible to achieve consensus under less
stringent connectivity requirements. In the extreme case, the network is never
connected at all. Then, the processes may not rely on mutual communication
for agreement.

An interesting approach to consensus is for the processes to use the topologi-
cal features of the dynamic network itself as a basis for agreement. For example,
the process with the smallest identifier or the oldest edge. However, as processes
collect information about the network topology, due to network delays, such
features may not be stable. Indeed, some process may discover another process
with a smaller identifier. Therefore, basing consensus decisions on such unstable
information may not be possible.

A knot is a strongly connected component with no incoming edges. We con-
sider a knot to include edges across some time interval. That is, knot processes

2 Rachel Bricker, Mikhail Nesterenko, and Gokarna Sharma

may never be connected in a single state. In general, the presence of a knot in
a dynamic network is not invariant. For example, a dynamic network may have
more than one knot, or a knot may grow throughout a network computation. In
this paper, we study the conditions under which knots may be used for consensus
in asynchronous dynamic networks.

Related work. The impossibility of consensus in asynchronous systems [12] in
case of a single faulty process has precipitated extensive research on the subject
of consensus. Santoro and Widmayer [19] show that consensus is impossible even
in a synchronous system subject to link failures. The original paper [12] uses knot
determination as a topological feature of a computation to achieve consensus.

There are a number of models related to dynamic networks where consensus
is studied. Charron-Bost and Schiper [9] introduce a heard-of (HO) model and
consider consensus solvability there. In this model, the set of “heard-of” for each
process is analyzed. The consensus is proved to be solvable only if there is an
agreement between processes on these heard-of sets.

There is a related research direction of consensus with unknown partici-
pants [8], where participant detectors perform a similar role to links in dynamic
networks. Rather than place restrictions on the dynamic network to enable a so-
lution, Altisen et al. [4] relax the problem and consider an eventually stabilizing
version of it.

Kuhn et al. [13,14] study consensus under a related model of directed net-
works. In their case, it is assumed that there exists a spanning subgraph of the
network within T rounds. In the case T = 1, the network is always connected.

Afek and Gafni [3] introduce the concept of an adversary as a collection of
allowed network topologies. An oblivious adversary [10] composes an allowed
computation by selecting the topology of each state from a fixed set of allowed
network topologies. There are a number of papers that study consensus under
this adversary [7,11,21].

In the case of a non-oblivious adversary, no restrictions on the potential state
topologies are placed. In this case, the adversary completely controls the con-
nectivity of the network in any state and the changes in connectivity from state
to state. In the work known to us, to solve consensus under such a powerful
adversary, extra connectivity assumptions are assumed. Biely et al. [5] consider
consensus under an eventually stabilizing connected root component. Some pa-
pers study the case where the network stays connected long enough to achieve
consensus [6,20].

In the present work, we assume a non-oblivious adversary and consider the
case where the system may remain disconnected in any state of the computation.

Our contribution. We use the non-oblivious adversary defined and studied
previously [5,6,20]. We focus on knot identification under such adversary. We
define the Knot Identification Problem and study it for directed dynamic net-
works. This problem requires the network processes to agree on a single knot.
The solution to this problem can immediately be used to solve consensus.

Consensus Through Knot Discovery in Asynchronous Dynamic Networks 3

We assume an asynchronous adversary. The asynchrony of the adversary al-
lows it to delay the communication between any pair of processes for arbitrarily
long. If the adversary is asynchronous, each process may not hope to gain addi-
tional information by waiting and must make the output decision on the basis
of what it has observed so far.

We consider a knot observation final adversary. In such adversary, it is pos-
sible that the collection of knots observed by some process may not increase
throughout the rest of the computation. Thus, the processes may not ignore any
of the observed knots hoping to get others later. Instead, each process must make
the decision on the basis of the knots seen so far.

Since the processes must agree on a knot, a process may output the knot only
if it is observed by other processes. Hence, the same knot needs to be observed
by all processes. Once a process observes a knot, it must determine if this knot is
observed by everyone else. We call an adversary knot opaque if it does not allow
a process to determine whether the knot is observed by other processes or not.
We prove that there is no solution to the Knot Identification Problem for such a
knot opaque adversary. We then consider adversaries that are knot transparent
rather than knot opaque.

For an adversary that is asynchronous, knot transparent, and knot observa-
tion final, we prove that it is necessary and sufficient for all processes to observe
the same first knot.

For sufficiency, we present a simple knot identification algorithm KIA that
solves the Knot Identification Problem. We conduct performance evaluation to
study KIA behavior. This evaluation studies the dynamics of knot detection
under various parameters. It demonstrates the practicality of KIA and our ap-
proach to consensus for dynamic networks with little connectivity.

2 Notation and Problem Definitions

We state the notation to be used throughout the paper in this section. To simplify
the exposition, we add further definitions in later sections, closer to place of their
usage.

Links, states, computations. The network consists of N processes. The pro-
cesses have unique identifiers. No process a priori knows N or the identifiers of
the other processes.

A pair of processes may be connected by a unidirectional link. The network
state s is a collection of such links that, together with the processes, form a
state communication graph or just state graph. Thus, processes are nodes in this
graph. One specific state is a non-communicating state whose state graph has
no links. That is, all processes are disconnected in this state.

A computation σ is an infinite sequence of network states. An adversary is a
set of allowed computations. Given an adversary, an algorithm attempts to solve
a particular problem. We use the term computation for both the states allowed
by the adversary and the operation of the algorithm in these states.

4 Rachel Bricker, Mikhail Nesterenko, and Gokarna Sharma

To aid in the solution, processes exchange information across existing links. If
two processes are connected by a link in a particular state, the sender may trans-
mit an unlimited amount of information to the receiver. This communication is
reliable. The sender does not learn the receiver’s identifier.

The processes do not fail. Alternatively, a process failure may be considered
as permanent disconnection of the failed process from the rest of the network.

Causality, asynchrony, computation graphs, and knots. A computation
event is any computation action or topological occurrence that happens in a
computation. Examples of computation events are a process carrying out its
local calculations or an appearance of a link. Given a particular computation,
a communication event e1 causally precedes another event e2 if (i) both events
occur in the same process and e1 occurs before e2; (ii) there is a communication
link between processes p1 and p2 and e1 occurs at p1 before the link and e2
occurs at p2 after the link; (iii) there is another event e3 such that e1 causally
precedes e3 and e3 causally precedes e2. We consider the presence of a link in a
particular state to be a single event. If the same link is present in the subsequent
state, it is considered a separate event. This way, causal precedence is defined for
links. Note that the insertion of a non-communicating state into a computation
preserves all causality relations of the computation.

Consider a computation σ1 allowed by some adversary A. Let σ2 be ob-
tained from σ1 by inserting a non-communicating state after an arbitrary state
of σ1. If the adversary A also allows σ2, then A is asynchronous. Intuitively, an
asynchronous adversary may delay process communication for arbitrarily long.

Given a computation σ, a computation graph G(σ, i) is the union of all the
state graphs up to and including state si. To put another way, the computation
graph is formed by the processes and the links present in any state sj , for j ≤ i.

A knot is a strongly connected subgraph with no incoming links. A process
pi is in a knot if for every process pj reachable from pi, pi is reachable from pj .
Given a graph G, this definition suggests a simple knot computation algorithm.
For each process in G, compute a reachability set S. For a process pi with
reachability set Si, if there is a process pj ∈ Si such that pi ∈ Sj then, pi and
pj are in the same knot.

When it is clear from the context, we use the term knot for both the subgraph
and for the set of processes that form this subgraph. Any process that has not
communicated yet is trivially a singleton knot. Therefore, we only consider knots
of size at least two.

Computation σ contains a knot K if there is a state si, i < ∞, such that
G(σ, i) contains K. Note that there is no requirement that the edges of the knot
in a computation are causally related, just that the union of all state graphs up
to some state si contains a knot. As the computation progresses, edges are added
to the computation graph of this computation. In general, a knot in this graph
is not stable. If an incoming edge is added, the knot may disappear. Similarly,
added links may expand the knot by joining mutually reachable processes.

Consensus Through Knot Discovery in Asynchronous Dynamic Networks 5

Observability. A local observation graph LG(p, σ, i) is all the links and adjacent
processes that causally precede the events in p in state si of computation σ.
A local observation graph LG(p, σ, i) is thus a subgraph of the computation
graph G(σ, i). In effect, the local observation graph of p is what p sees of the
computation so far. In the beginning of the computation LG of process p is
empty and LG grows as p receives topological information from incoming links.

Two computations σ1 and σ2 are observation graph identical for process p
up to state si if LG(p, σ1, i) = LG(p, σ2, i).

� �

� �

�

í

î

ó

ò

ð

ñ

ï

� �

� �

�

õ

íì

íí

ô

õ

ô

Fig. 1. Knot formation example. Edge labels denote states when the edges are present.
Process e observes knot K1 = {b, c, d}; process d is the first to observe knot K2 =
{a, b, c, d}.

Let us illustrate these concepts with an example shown in Figure 1. In state
4, a knot K1 = {b, c, d} is formed due to the links d → c, c → b and b → d.
In state 5, due to the link d → e, process e observes K1. In state 6, K1 is
destroyed because of an incoming link: a → b. In state 7, link c → a creates knot
K2 = {a, b, c, d}. In state 8, process d observes K2. In the remaining states, all
processes observe K2.

In general, a knot may exist in the computation graph but may not be visible
to any of the processes that belong to this knot or even any of the processes in
the network at all. Indeed, processes that belong to a knot may not see said
knot because it does not belong to their local observation graphs. For example,
in Figure 1, if no more links appear after state 7 in the computation, none of the
processes in knot K2, or even in the entire network, observe K2, yet it exists in
the computation graph.

A knot K is observable in computation σ by process p if there is a state si
such that K ⊂ LG(p, σ, i). A knot is globally observable in a computation if it is
observable by every process in the network. That is, a knot is globally observable
if every process eventually sees it.

Consider the earliest state in the computation σ where p observes knot K.
This state contains an incoming link (or links) to p that brings additional topo-
logical information to LG(p, σ, i) to complete the knot K. This link is the obser-
vation event at process p for this knot. For example, in Figure 1, link d → e is
the observation event for K1 at process e.

6 Rachel Bricker, Mikhail Nesterenko, and Gokarna Sharma

We consider algorithms that are deterministic in the following way. If two com-
putations σ1 and σ2 are observation graph identical for process p up to state si,
then all the outputs of p up to state si for algorithm S in the two computations
are identical. Put another way, in such an algorithm, each process makes its
decisions only on the basis of its local observation graph.

The Knot Identification and Consensus Problems.

Definition 1 (Consensus). Given that every process is input a binary value v,
a consensus algorithm requires each process to output a decision value following
the three properties.

Consensus Validity: if all processes are input the same value v, then output
decision is v;

Consensus Agreement: if one process outputs v, then every output decision
is v;

Consensus Termination: every process decides.

Definition 2 (Knot Identification). A solution to the Knot Identification
Problem requires that given a computation, each process outputs the set of pro-
cesses K that form a knot in this computation. The output is subject to the
following properties.

KI Agreement: if one process outputs a knot K, then every output knot is
also K;

KI Termination: every process outputs a knot.

An adversary is consensual if there exists an algorithm that solves Consensus
on every computation allowed by this adversary. Similarly, a knot-identification
adversary admits an algorithm that solves this problem on every allowed com-
putation.

Once the Knot Identification Problem is solved, consensus follows. Indeed, if
all processes agree on a knot, they may use it to determine the consensus value
to be output. For example, the consensus value may be the input to the knot
process with the highest identifier, or the process incident to the oldest link, etc.
We state this observation in the below proposition.

Proposition 1. A knot-identification adversary is also a consensual adversary.

In the remainder of the paper, we focus on the Knot Identification Problem.

3 Necessary and Sufficient Conditions for
Knot Identification

Knot opacity. The KI Agreement property requires that every process outputs
the same knot. A process may output only a knot that it observes. Hence, the
following proposition.

Consensus Through Knot Discovery in Asynchronous Dynamic Networks 7

Proposition 2. In a solution to the Knot Identification Problem, every process
outputs only a globally observable knot.

However, even if an adversary has a globally observable knot in every compu-
tation, it does not guarantee that this adversary admits a solution to the Knot
Identification Problem. A process observing a particular knot must also know
whether or not this specific knot is globally observable. Let us discuss this in
detail.

An adversary A is knot opaque if there is a process p and a computation
σ1 ∈ A such that for every state si of σ1 and every knot K observed by p in
states up to si, there is another computation σ2 that is local observation graph
identical to σ1 for p up to si, yet K is not globally observable in σ2. Intuitively, a
knot opaque adversary does not allow a process p to distinguish whether or not
any knot K that p observes is also observed by all other processes, i.e. this knot
is globally observable. An adversary is knot transparent if it is not knot opaque.

Lemma 1. There does not exist a solution to the Knot Identification Problem
for a knot opaque adversary.

Proof. Assume the opposite. Suppose there exists a knot opaque adversary A.
Also, let S be the algorithm that solves the Knot Identification Problem in A.
Since A is knot opaque, there exists a computation σ1 and a process p1 such
that for every knot that p1 observes, it is unclear to p1 whether or not this knot
is globally observable.

Algorithm S is assumed to be a solution to the Knot Identification Problem.
According to the KI Termination property, p1 in σ1 must output one of its
observed knots. Let p1 output knot K in some state si of σ1. Since A is knot
opaque, it contains a computation σ2 that is observation graph identical to σ1 for
p1 up to state si, yet knot K is not globally observable in σ2. If σ2 is observation
graph identical to σ1 for p1 up to state si, then process p1 in algorithm S outputs
K in σ2 just like it does in σ1.

If knot K is not globally observable in σ2, then there is a process p2 that
does not observe K in σ2. If so, p2 in σ2 either outputs a knot different from
K or none at all. In the first case, S violates the KI Agreement property that
requires that every process outputs the same knot. In the second case, if p2 does
not output a knot in σ2, S violates KI Termination Property requiring every
process to output a knot.

In either case S does not comply with the properties of the Knot Identification
Problem. This means that, contrary to our initial assumption, S may not be a
solution to this problem. Hence the lemma.

Knot finality. Lemma 1 restricts the adversary from hiding whether a particular
knot a process observes is globally observable or not. However, even if each
process knows if the knot is globally observable, it may still be insufficient to
ensure the existence of a solution.

8 Rachel Bricker, Mikhail Nesterenko, and Gokarna Sharma

Consider an arbitrary computation σ1 and an arbitrary process p of some ad-
versary A. An adversary A is knot observation final if it contains a computation
σ1 where there is a process p such that, for every state si of σ1, there is a com-
putation σ2 which is observation graph identical to σ1 for p up to state si such
that, after state si, it does not contain any more knot observations by p. Intu-
itively, in such an adversary, a process may not gain additional knot information
by delaying its decision.

A knot is primary for some process p in computation σ if it is the first
observed knot by p in σ.

Fig. 2. Illustration for the proof of Lemma 2. In figure a), in computation σi, process
p1 observes knot K1 with event e1 in state si. In figure b), in computation σij , process
p1 outputs knot K1 in state sij . In figure c), in the same computation σij , process p2
observes knot K2 in state sk with event e2. In figure d), in computation σijkl, process
p2 outputs K2 in state sl.

Lemma 2. Consider an observation final, asynchronous, knot transparent ad-
versary A. If A contains a computation σ such that a pair of processes observe
two different primary knots, then this adversary does not have a knot identifica-
tion solution even though this adversary is knot transparent.

Proof. Consider the adversary A that conforms to the conditions of the lemma.
Yet, there is an algorithm S that solves the Knot Identification Problem on A.
According to the lemma conditions, A allows some computation σ with a pair of
processes p1 and p2 that observe different primary knotsK1 andK2, respectively.
Since A is knot transparent, K1 and K2 may be globally observable. Refer to
Figure 2 for illustration.

Let e1 and e2 be the corresponding knot observation events in σ. The two
events may be either concurrent or causally dependent. In the latter case, we
assume, without loss of generality, that e1 causally precedes e2. Let event e1
occur in state si.

Consensus Through Knot Discovery in Asynchronous Dynamic Networks 9

Since A is knot observation final, it allows a computation σ′
i that is obser-

vation graph identical for p1 to σ up to state si, yet p1 does not observe any
knots after state si in σ′

i. That is, the only knot p1 observes is K1. (We denote
computations where a process does not observe any more knots with the prime
symbol.)

Since S is assumed to be a solution to the Knot Identification Problem, each
process, including p1, must output a knot in σ′

i. The only knot that p1 observes
in σ′

i is K1. Hence, p1 outputs K1. It may output it in state si, or in some later
state. We consider the case where p1 outputs K1 later.

Since K1 is primary for p1, the observation event e1 for K1 at p1 in σ causally
precedes observation events of other knots at p1 if such observations ever happen.
We construct a computation σi1 from σ by adding a non-communication state
after state si. Since A is an asynchronous adversary, A allows σi1. Note that
A also allows a computation σ′

i1 which is observation identical to σi1 for p1 for
states up to si+1 but where p1 observes no other knots besides K1. Similarly, S
must have p1 output K1 in σ′

i1. This output occurs in state si+1 or later.
Note that the purported solution to the Knot Identification Problem S has

to comply with its Termination Property. This means that each process must
eventually output a knot. Therefore, as we continue this process of adding non-
communication states past si, we find computation σij ∈ A where p1 outputs
K1 in state sj following state si.

Let us examine σij . In this computation, p2 observes its primary knotK2 with
observation event e2. By construction, e2 happens in some state sk following sj .
Similar to the above procedure, we continue adding non-communication states
past sk until we obtain computation σijkl where p2 outputs knot K2 in state sl
following state sk.

Let us now examine σijkl. In this computation, in algorithm S, process p1
outputs knot K1 while process p2 outputs knot K2. However, these two knots
are different. Therefore, S violates the Agreement Property of the Knot Iden-
tification Problem requiring every process to output the same knot. Yet, this
means that S may not be a solution to this problem and our initial assumption
is incorrect. This proves the lemma.

An adversary A is primary uniform if the following conditions hold for every
computation σ ∈ A : (i) each process observes at least one knot; (ii) if some
process p1 observes its primary knotK1 and another process observes its primary
knot K2, then K1 = K2. To put another way, in a single computation of a
primary uniform adversary, all processes observe the same primary knot.

Theorem 1. For a knot observation final asynchronous knot transparent adver-
sary A to allow a solution to the Knot Identification Problem, it is necessary and
sufficient for A to be primary uniform.

Proof. The necessity part of the theorem follows from Lemma 2. We prove the
sufficiency by presenting the algorithm KIA below that solves the Knot Identi-
fication Problem under A.

10 Rachel Bricker, Mikhail Nesterenko, and Gokarna Sharma

4 Knot Identification Algorithm KIA

Description. The knot identification algorithm KIA operates as follows. See
Algorithm 1. Across every available outgoing link, each process p relays all the
connectivity data that it has observed so far. That is, if process p communicates
with process q at state si of computation σ, then p transmits its entire local
observation graph, LG(p, σ, i), to q.

Once a process p detects a knot in LG(p, σ, i), it outputs it. Since the ad-
versary is primary uniform, each process is guaranteed to eventually observe a
primary knot and this knot is the same for every process. That is, KIA solves
the Knot Identification Problem.

Algorithm 1: Knot Identification Algorithm KIA

1 Constants:
2 p ▷ process identifier

3 Variables:
4 LG(p, σ, i) ▷ local observation graph of process p

5 Actions:
6 if exist outgoing links then
7 send LG(p, σ, i) to every outgoing link

8 if receive LG(q, σ, i) from process q then
9 LG(p, σ, i) = LG(p, σ, i) ∪ LG(q, σ, i) ▷ merge graphs

10 if ∃ knot K: K ⊂ LG(p, σ, i) then
11 output K ▷ report knot

Complexity estimation. Let us estimate the number of states it takes for
each process of KIA to output its decision. This estimate is tricky since the
algorithm may not do anything productive if no edges appear. Hence, we only
count states where information spreads. To put another way, we compute the
worst case number of causally related links before every process outputs a knot.

Let n be the number of processes in the network. The algorithm operation
can be divided into two parts: (i) knot formation and (ii) knot data propagation.
In the worst case, these two parts run consecutively. Suppose the last process, p,
that participates in the knot is the first to observe it. Then, p is the only process
that informs the other processes of the knot. To put another way, the knot
observations at the other processes are causally preceded by the knot observation
at p.

The knot with the longest causally related links is a cycle of n edges. The
knot data propagation part requires n − 1 edges if all processes are informed
sequentially. Hence, the worst case KIA complexity is 2n− 1, which is in O(n).

Consensus Through Knot Discovery in Asynchronous Dynamic Networks 11

5 KIA Performance Evaluation

a
c

b

Fig. 3. Intermittent Connectivity Topology Example. The underlying topology con-
tains a single knot: the cycle.

We studied the performance of our Knot Identification Algorithm KIA using
an abstract algorithm simulator QUANTAS [16]. The QUANTAS code for KIA
as well as our performance evaluation data is available online [1,2]. The com-
putations were selected as follows. First, we generated the underlying backbone
topology. In the backbone, a certain number of nodes are jointed in a cycle. Each
remaining node is randomly attached with a single edge to an already selected
connected node. See Figure 3 for an example of such a topology. In each round
of a computation, a fixed number of backbone edges appear. The edges to ap-
pear are selected uniformly at random. Thus, each computation contains a single
knot—the backbone cycle—while the whole network is unlikely to be connected
in a single round. Moreover, the information about this cycle is eventually prop-
agated to all nodes in the network. That is, all generated computations contain
exactly one globally observable knot.

We implemented KIA and measured its performance. We measured the speed
of knot detection expressed as the longest number of rounds it takes for any
process in the network to output the knot.

In the first experiment, we fixed the number of random edges appearing per
round and varied the knot (cycle) size. The results are shown in Figure 4. We
set the network size to 100 nodes. The cycle size varies from 2 to 100. That is,
the largest cycle comprises the whole network. The computation length is set
at 6, 000 rounds. The knot output time is averaged across 10 computations. We
plot KIA performance for the case of 1, 5 and 10 backbone edges appearing per
round. The data shows that smaller knots are detected quicker by all the nodes
in the network.

12 Rachel Bricker, Mikhail Nesterenko, and Gokarna Sharma

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 10 20 30 40 50 60 70 80 90 100

W
or

st
 K

no
t

O
ut

pu
t

Ti
m

e,
 r

ou
nd

s

Knot Size

Edge(s) per State

1 Edge
5 Edges

10 Edges

Fig. 4. Longest knot output time as a function of the knot size.

In the second experiment, we fixed the knot, i.e. cycle, size and varied the
number of random edges per round. The results are shown in Figure 5. Intu-
itively, it shows that a greater number of edges appearing in one round, even
if the network remains disconnected, provides greater overall connectivity and
accelerates knot detection.

Our experiments demonstrate the practicality of our knot identification approach
to agreement in dynamic networks.

6 Extensions of Knot-Based Consensus

Distinguished knots. In this paper, we treated the problem of knot-based
consensus as generally as possible. However, it may be adapted to particular
systems: certain topologies may be significant to the system and the processes
could be programmed to distinguish such knots. For example, the processes
would reject all cycles with fewer than 10 nodes or accept only knots which are
completely connected subgraphs.

Expiring links. In the communication model, it is assumed that the sender pro-
cess transfers its entire communication history to the receiver process across the
communication link. This may require extensive communication and resources.

Our algorithm may be adapted to limit resource usage. For example, the
algorithm may discard the links older than some pre-determined period, say
P . To put another way, the links and topological information expire after P
states. This model would nicely represent the network with moving topology or
changing membership. In this case, the necessary conditions of Theorem 1 must
apply for the links within this period P .

Consensus Through Knot Discovery in Asynchronous Dynamic Networks 13

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 1 2 4 8 16 32 64 128

W
or

st
 K

no
t

O
ut

pu
t

Ti
m

e,
 r

ou
nd

s

Maximum Number of Edges per State

Knot Size

50 Nodes
25 Nodes
10 Nodes

Fig. 5. Longest knot output time as a function of the maximum number of edges per
state.

Future research. In this paper, we apply knot identification to the problem
of agreement in dynamic networks. In the future, it would be interesting to
study what other topological features can be effectively used for consensus and
related tasks. Alternatively, it would be interesting to determine communication
environments that naturally yield the dynamic graphs that comply with the
adversary conditions allowing the solution the Knot Identification Problem.

Another promising research direction is implementing our knot identifica-
tion algorithm in a complete system and testing its performance in practical
environments such as Internet-of-Things networks.

The computation model we consider can address message loss and process
failure as special topologies. However, these faults are benign. It is interesting to
address solvability of Knot Identification and similar problems in the presence
of Byzantine faults where faulty processes may behave arbitrarily [15,17,18].

References

1. Kia implementation in QUANTAS. https://github.com/QuantasSupport/

Quantas/tree/master/quantas/CycleOfTreesPeer, June 2024.
2. Knot perfromance evaluation data. http://www.cs.kent.edu/~mikhail/

Research/knot.zip, June 2024.
3. Yehuda Afek and Eli Gafni. Asynchrony from synchrony. In Distributed Comput-

ing and Networking: 14th International Conference, ICDCN 2013, Mumbai, India,
January 3-6, 2013. Proceedings 14, pages 225–239. Springer, 2013.

4. Karine Altisen, Stéphane Devismes, Anäıs Durand, Colette Johnen, and Franck
Petit. On implementing stabilizing leader election with weak assumptions on net-
work dynamics. In Proceedings of the 2021 ACM Symposium on Principles of
Distributed Computing, pages 21–31, 2021.

https://github.com/QuantasSupport/Quantas/tree/master/quantas/CycleOfTreesPeer
https://github.com/QuantasSupport/Quantas/tree/master/quantas/CycleOfTreesPeer
http://www.cs.kent.edu/~mikhail/Research/knot.zip
http://www.cs.kent.edu/~mikhail/Research/knot.zip

14 Rachel Bricker, Mikhail Nesterenko, and Gokarna Sharma

5. Martin Biely, Peter Robinson, and Ulrich Schmid. Agreement in directed dynamic
networks. In International Colloquium on Structural Information and Communi-
cation Complexity, pages 73–84. Springer, 2012.

6. Martin Biely, Peter Robinson, Ulrich Schmid, Manfred Schwarz, and Kyrill Win-
kler. Gracefully degrading consensus and k-set agreement in directed dynamic
networks. Theoretical Computer Science, 726:41–77, 2018.

7. Armando Castañeda, Pierre Fraigniaud, Ami Paz, Sergio Rajsbaum, Matthieu Roy,
and Corentin Travers. A topological perspective on distributed network algorithms.
Theoretical Computer Science, 849:121–137, 2021.

8. David Cavin, Yoav Sasson, and André Schiper. Consensus with unknown partic-
ipants or fundamental self-organization. In International Conference on Ad-Hoc
Networks and Wireless, pages 135–148. Springer, 2004.

9. Bernadette Charron-Bost and André Schiper. The heard-of model: computing in
distributed systems with benign faults. Distributed Computing, 22:49–71, 2009.

10. Étienne Coulouma, Emmanuel Godard, and Joseph Peters. A characterization of
oblivious message adversaries for which consensus is solvable. Theoretical Computer
Science, 584:80–90, 2015.

11. Tristan Fevat and Emmanuel Godard. Minimal obstructions for the coordinated
attack problem and beyond. In 2011 IEEE International Parallel & Distributed
Processing Symposium, pages 1001–1011. IEEE, 2011.

12. Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility of
distributed consensus with one faulty process. Journal of the ACM (JACM),
32(2):374–382, 1985.

13. Fabian Kuhn, Nancy Lynch, and Rotem Oshman. Distributed computation in
dynamic networks. In Proceedings of the forty-second ACM symposium on Theory
of computing, pages 513–522, 2010.

14. Fabian Kuhn, Yoram Moses, and Rotem Oshman. Coordinated consensus in dy-
namic networks. In Proceedings of the 30th annual ACM SIGACT-SIGOPS sym-
posium on Principles of distributed computing, pages 1–10, 2011.

15. LESLIE LAMPORT, ROBERT SHOSTAK, and MARSHALL PEASE. The byzan-
tine generals problem. ACM Transactions on Programming Languages and Sys-
tems, 4(3):382–401, 1982.

16. Joseph Oglio, Kendric Hood, Mikhail Nesterenko, and Sébastien Tixeuil. Quan-
tas: quantitative user-friendly adaptable networked things abstract simulator. In
Proceedings of the 2022 Workshop on Advanced tools, programming languages, and
PLatforms for Implementing and Evaluating algorithms for Distributed systems,
pages 40–46, 2022.

17. Joseph Oglio, Kendric Hood, Gokarna Sharma, and Mikhail Nesterenko. Consensus
on an unknown torus with dense byzantine faults. In International Conference on
Networked Systems, pages 105–121. Springer, 2023.

18. Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching agreement in the
presence of faults. Journal of the ACM (JACM), 27(2):228–234, 1980.

19. Nicola Santoro and Peter Widmayer. Time is not a healer: Preliminary version.
In STACS 89: 6th Annual Symposium on Theoretical Aspects of Computer Science
Paderborn, FRG, February 16–18, 1989 Proceedings 6, pages 304–313. Springer,
1989.

20. Manfred Schwarz, Kyrill Winkler, and Ulrich Schmid. Fast consensus under even-
tually stabilizing message adversaries. In Proceedings of the 17th International
Conference on Distributed Computing and Networking, pages 1–10, 2016.

Consensus Through Knot Discovery in Asynchronous Dynamic Networks 15

21. Kyrill Winkler, Ami Paz, Hugo Rincon Galeana, Stefan Schmid, and Ulrich Schmid.
The time complexity of consensus under oblivious message adversaries. In 14th
Innovations in Theoretical Computer Science Conference (ITCS 2023). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2023.

	Consensus Through Knot Discovery in Asynchronous Dynamic Networks

