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We generalize the classic dining philosophers problem to separate the conflict and communication

neighbors of each process. Communication neighbors may directly exchange information while
conflict neighbors compete for the access to the exclusive critical section of code. This general-

ization is motivated by a number of practical problems in distributed systems including problems

in wireless sensor networks. We present a self-stabilizing deterministic algorithm — GDP that
solves this generalized problem. Our algorithm is terminating. We formally prove GDP correct

and evaluate its performance. We extend the algorithm to handle a similarly generalized drinking

philosophers and the committee coordination problem. We describe how GDP can be imple-
mented in wireless sensor networks and demonstrate that this implementation does not jeopardize

its correctness or termination properties.
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Systems; D.4.5 [Operating Systems]: Reliablity; D.4.7 [Operating Systems]: Organization
and Design
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1. INTRODUCTION

Self-stabilization (or just stabilization) [Dolev 2000; Hoover 1995] is an elegant
approach to forward recovery from transient faults as well as initializing a large-
scale system. Regardless of the initial state, a stabilizing system converges to the
legitimate set of states and remains there afterwards. In this paper we present a
stabilizing solution to our generalization of the dining philosophers problem.

The dining philosophers problem [Dijkstra 1968; Chandy and Misra 1984; Lynch
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1980] is a fundamental resource allocation problem. The name of the problem is
frequently shortened to diners [Chandy and Misra 1984; Sivilotti et al. 2000]. The
diners, as well as its generalization — the drinking philosophers problem (drinkers)
[Chandy and Misra 1984] and committee coordination problem [Chandy and Misra
1988], has a variety of applications. In diners, a set of processes (philosophers)
request access to the critical section (CS) of code. For each process there is a set of
neighbor processes. Each process has a conflict with its neighbors: it cannot share
the CS with any of them. In spite of the conflicts, each requesting process should
eventually execute the CS. To coordinate CS execution, the processes communicate.
In classic diners it is assumed that each process can directly communicate with its
conflict neighbors. In other words, for every process, the conflict neighbor set is a
subset of the communication neighbor set.

However, there are applications where this assumption does not hold. Consider,
for example, wireless sensor networks. A number of problems in this area, such
as time division multiple access (TDMA) slot assignment, can be considered as re-
source allocation problems. Yet, due to radio propagation peculiarities, the signal’s
interference range may exceed its effective communication range. Moreover, radio
networks have the so called hidden terminal effect. The problem is as follows. Let
two transmitters t1 and t2 be mutually out of reception range and let receiver r be
in range of them both. If t1 and t2 broadcast simultaneously, due to mutual ra-
dio interference, r is unable to receive either broadcast. The potential interference
pattern is especially intricate if the antennas used by the wireless sensor nodes are
directional (see for example [Malhotra et al. 2005]). Such transmitters can be mod-
eled as conflict neighbors that are not communication neighbors. To accommodate
such applications, we propose the following extension. Instead of one, each process
has two sets of neighbors: the conflict neighbors and the communication neighbors.
These two sets are not necessarily related. To make the problem solvable we re-
quire that each conflict-neighbor has to be reachable through the communication
neighbors.

Some solutions to classic diners can potentially be extended to this problem. In-
deed, if a separate communication channel is established to each conflict neighbor
the classic diners program can be applied to the generalized case. However, such a
solution may not be efficient. The channels to conflict neighbors go over the com-
munication topology of the system. The channels to multiple neighbors of the same
process may overlap. Moreover, the sparser the topology, the greater the potential
overlap. Yet, in a diners program, the communication between conflict neighbors is
only of two kinds: a process either requests the permission to execute the CS from
the neighbors, or releases this permission. Due to channel overlap, separately com-
municating the same message to each conflict neighbor leads to excessive overhead.
This motivates our search for a solution to generic diners that effectively combines
communication to separate conflict neighbors.

Related work. There exist a number of deterministic self-stabilizing solutions to
classic diners [G and Srimani 1999; Beauquier et al. 2000; Boulinier et al. 2004;
Gouda and Haddix 1999; Huang 2000; Johnen et al. 2002; Mizuno and Nesterenko
1998; Nesterenko and Arora 2002b] and their weakenings [Gradinariu and Tixeuil
ACM Journal Name, Vol. V, No. N, Month 20YY.
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2007]. [Cantarell et al. 2003] solve the drinking philosophers problem. [Datta et al.
2005] solve a specific extension of the diners. None of these solutions separate
conflict and communication neighbors.

Meanwhile, researchers working in the area of self-stabilization studied specific
problems that require such separation. A few studies [Arumugam and Kulkarni
2005; Herman and Tixeuil 2004; Kulkarni and Arumugam 2003] address the afore-
mentioned problem of TDMA slot assignment in the presence of the hidden terminal
effect. This problem requires the processes to agree on a fixed schedule of time in-
tervals (slots) such that each slot is allocated exclusively to a single process in the
conflict neighborhood. Herman and Tixeuil [Herman and Tixeuil 2004] present a
self-stabilizing probabilistic TDMA slot assignment algorithm for wireless sensor
networks. They deal with channel conflicts that may arise between nodes that
cannot communicate directly by assuming an underlying probabilistic carrier sense
multiple access (CSMA) mechanism that provides expected constant time trans-
mission. The authors assume that the network is tightly synchronized so that the
phases that use the mechanism are clearly distinguished from the phases that use
TDMA mechanism. [Arumugam and Kulkarni 2005; Kulkarni and Arumugam 2003]
propose deterministic solutions to the same problem. In [Arumugam and Kulkarni
2005], to avoid conflicts they propose to serialize channel assignments by circu-
lating a single assignment token (privilege) throughout the network. In [Kulkarni
and Arumugam 2003], they consider a regular grid topology where each node is
aware of its position in the grid. [Gairing et al. 2004] propose an elegant stabiliz-
ing algorithm for conflict neighbor sets containing the communication neighbors of
distance at most two. They apply their algorithm to a number of graph-theoretical
problems. However, their algorithm cannot solve the diners as it is not designed to
ensure fair access to the CS in the case of several neighboring processes continually
requesting it. That is, their program allow unfair computations. [Goddard et al.
2006] propose a solution to the conflict neighbor sets of communication neighbors
at most k-hops away. Their solution recursively extends Gairing’s algorithm. It is
unfair as well.

Roadmap. We generalize the diners problem to separate the conflict and commu-
nication neighbor sets of each process. We formally state this problem, as well as
describe our notation and execution model in Section 2. To the best of our knowl-
edge, this problem has not been defined or addressed before either inside or outside
the context of self-stabilization. In Section 3, we present GDP — a self-stabilizing
deterministic terminating solution to this problem. In the same section we provide
a formal correctness proof of GDP and discuss its performance. In Section 4 we
describe how GDP can be implemented in wireless sensor networks. We describe
a number of further extensions to GDP in Section 5. Specifically, we describe how
GDP can be extended to solve the generalized drinkers problem and the generalized
committee coordination problem; we simplify our solution to handle problems that
do not require fairness of CS access.

ACM Journal Name, Vol. V, No. N, Month 20YY.
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2. PRELIMINARIES

Program model. For the formal description of our program we use simplified
UNITY notation [Chandy and Misra 1988; Gouda 1998]. A program consists of
a set of processes. A process contains a set of constants that it can read but
not update. A process maintains a set of variables. Each variable ranges over a
fixed domain of values. We use small case letters to denote singleton variables,
and capital ones to denote sets. An action has the form 〈name〉 : 〈guard〉 −→
〈command〉. A guard is a Boolean predicate over the variables of the process and
its communication neighbors. A command is a sequence of statements assigning
new values to the variables of the process. We refer to a variable var and an action
ac of process p as var.p and ac.p respectively. A parameter is used to define a set
of actions as one parameterized action. For example, let j be a parameter ranging
over values 2, 5, and 9; then a parameterized action ac.j defines the set of actions:
ac.(j = 2) ][ ac.(j = 5) ][ ac.(j = 9).

A state of the program is the assignment of a value to every variable of each
process from the variable’s corresponding domain. Each process contains a set of
actions. An action is enabled in some state if its guard is true at this state. A
computation is a maximal fair sequence of states such that for each state si, the
next state si+1 is obtained by executing the command of an action that is enabled
in si. Maximality of a computation means that the computation is infinite or it
terminates in a state where none of the actions are enabled. Such state is a fixpoint.
In a computation the action execution is weakly fair. That is, if an action is enabled
in all but finitely many states of an infinite computation then this action is executed
infinitely often.

A state conforms to a predicate if this predicate is true in this state; otherwise
the state violates the predicate. By this definition every state conforms to predicate
true and none conforms to false. We do not differentiate between a set of states
that conform to the predicate and the predicate itself. For example, when it is
convenient we state that a state belongs to the predicate. Let R and S be predicates
over the state of the program. Predicate R is closed with respect to the program
actions if every state of the computation that starts in a state conforming to R
also conforms to R. Predicate R converges to S if R and S are closed and any
computation starting from a state conforming to R contains a state conforming to
S. The program stabilizes to R if true converges to R.

Problem statement. An instance of the generic diners problem defines for each
process p a set of communication neighbors N.p and a set of conflict neighbors M.p.
Both relations are symmetric. That is, for any two processes p and q if p ∈ N.q
then q ∈ N.p. The same applies to M.p. We do not consider asymmetric communi-
cation links that may, for example, appear in radio transmission. Throughout the
computation each process requests CS access an arbitrary number of times: from
zero to infinity. A program that solves the generic diners satisfies the following two
properties for each process p:

. safety — if the action that executes the CS is enabled in p, it is disabled in all
processes of M.p;

. liveness — if p wishes to execute the CS, then the computation contains either
ACM Journal Name, Vol. V, No. N, Month 20YY.
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process p

const
M : conflict neighbors of p

N : communication neighbors of p

(∀q : q ∈M : dad.p.q ∈ N,KIDS .p.q ⊂ N)
parent id and set of children ids for each conflict neighbor

parameter

r : M
var

state.p.p : {idle, req},
(∀q : q ∈M : state.p.q : {idle, req, rep}),
YIELD : {∀q : q ∈M : q > p} lower priority processes to wait for

needcs : boolean, application variable to request the CS

∗[
join: needcs ∧ state.p.p = idle ∧YIELD = ∅ ∧

(∀q : q ∈ KIDS .p.p : state.q.p = idle) −→
state.p.p := req

][
enter : state.p.p = req ∧

(∀q : q ∈ KIDS .p.p : state.q.p = rep) ∧
(∀q : q ∈M ∧ q < p : state.p.q = idle) −→

/* CS */

YIELD := {∀q : q ∈M ∧ q > p : state.p.q = rep},
state.p.p := idle

][

forward.r: state.p.r = idle ∧ state.(dad.p.r).r = req ∧
((KIDS .p.r = ∅) ∨ (∀q : q ∈ KIDS .p.r : state.q.r = idle)) −→

state.p.r := req

][
back.r: (state.p.r = req ∧ state.(dad.p.r).r = req ∧

((KIDS .p.r = ∅) ∨ (∀q : q ∈ KIDS .p.r : state.q.r = rep))) ∨
(state.p.r 6= rep ∧ state.(dad.p.r).r = rep) −→

state.p.r := rep

][

stop.r: (state.p.r 6= idle ∨ r ∈ YIELD) ∧
state.(dad.p.r).r = idle −→

YIELD := YIELD \ {r},
state.p.r := idle

]

Fig. 1. Process of GDP

the execution of the CS or a state where p does not wish to enter the CS.

A desirable performance property of a solution to diners is termination: if a
computation contains finitely many states where processes wish to execute the CS,
then this computation is itself finite. To put another way, if there are no requests
for the CS, a terminating solution to diners should eventually arrive at a state
where no actions are enabled.

ACM Journal Name, Vol. V, No. N, Month 20YY.
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3. GDP ALGORITHM

3.1 Description

Algorithm overview. The main idea of the algorithm is to coordinate CS request
notifications between multiple conflict neighbors of the same process. We assume
that for each process p there is a tree that spans the conflict set M.p. This tree is
rooted in p. For simplicity, we assume that every process q that is in the tree also
belongs to M.p. A stabilizing breadth-first construction of a spanning tree is a rela-
tively simple task [Dolev 2000]. It is well-known that layered composition preserves
the property of stabilization [Herman 1991]: if the two component programs are
independently stabilizing and one of the components does not modify the behavior
of the other, then the combined system is stabilizing as well. Essentially, after the
tree-construction component stabilizes and outputs the correct tree, the diners may
start to stabilize. This property allows us to ignore the spanning tree formation
and assume that the requisite variables are available to our diners algorithm as
constants.

The processes in the spanning tree propagate the CS request of its root. The
request reflects from the leaves and informs the root that its conflict neighbors are
notified. This mechanism resembles information propagation with feedback [Blin
et al. 2003; Bui et al. 1999].

The access to the CS is granted on the basis of the priority of the requesting
process. Each process has an identifier that is unique throughout the system. A
process with lower identifier has higher priority. To ensure liveness, when executing
the CS, each process p records the identifiers of its lower priority conflict neighbors
that also request the CS. Before requesting it again, p then waits until all these
processes access the CS. This technique resembles a synchronization mechanism in
the atomicity refinement solution by Nesterenko and Arora [Nesterenko and Arora
2002b].

Detailed description. Each process p has access to a number of constants. The
set of identifiers of its communication neighbors is N , and its conflict neighbors
is M . For each of its conflict neighbors r, p knows the appropriate spanning tree
information: the parent identifier — dad.p.r, and a set of ids of its children —
KIDS .p.r.

Process p stores its own request state in variable state.p.p and the state of each
of its conflict neighbors in state.p.r. Notice that p’s own state can be only idle or
req, while for its conflict neighbors p also has rep. To simplify the description,
depending on the state, we refer to the process as being idle, requesting or replying.
In YIELD , process p maintains the ids of its lower priority conflict neighbors that
should be allowed to enter the CS before p requests it again. Variable needcs is
an external Boolean variable that indicates if CS access is desired. Notice that CS
entry is guaranteed only if needcs remains true until p requests the CS.

There are five actions in the algorithm. The first two: join and enter manage
CS entry of p itself. The remaining three: forward, back and stop — propagate
CS request information along the tree. Notice that the latter three actions are
parameterized over the set of p’s conflict neighbors.

Action join states that p requests the CS when the application variable needcs
ACM Journal Name, Vol. V, No. N, Month 20YY.



Self-Stabilizing Philosophers with Generic Conflicts · 7

Fig. 2. Phases of GDP operation

is true, p itself, as well as its children in its own spanning tree, is idle and there are
no lower priority conflict neighbors to wait for. As action enter describes, p enters
the CS when its children reply and the higher priority processes do not request the
CS themselves. To simplify the presentation, we describe the CS execution as a
single action1.

Action forward describes the propagation of a request of a conflict neighbor r of
p along r’s tree. Process p propagates the request when p’s parent — dad.p.r is
requesting and p’s children are idle. Similarly, back describes the propagation of a
reply back to r. Process p propagates the reply either if its parent is requesting and
p is the leaf in r’s tree or all p’s children are replying. The second disjunct of back
is to expedite the stabilization of GDP. Action stop resets the state of p in r’s tree
to idle when its parent is idle. This action removes r from the set of lower-priority
processes to await before initiating another request.

Example operation. The operation of GDP in legitimate states is illustrated in
Figure 2. We focus on the conflict neighborhood M.a of a certain node a. We
consider representative nodes in the spanning tree of M.a. Specifically, we consider
one of a’s children — e, a descendant — b, b’s parent — c and one of b’s children
— d.

Initially, the states of all processes in M.a are idle. Then, a executes join and
sets state.a.a to req (see Figure 2, i). This request propagates to process b, which
executes forward and sets state.b.a to req as well (Figure 2, ii). The request reaches
the leaves and bounces back as the leaves change their state to rep. Process b then
executes back and changes its state to rep as well (Figure 2, iii). After the reply

1Separating CS exit into a separate action is not difficult: as the process enters the CS, due to
safety, its conflict neighbors are blocked from CS entry and have to wait for the progress of this

process. Hence, CS exit can be relegated to a separate action.

ACM Journal Name, Vol. V, No. N, Month 20YY.
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reaches a and if none of the higher priority processes are requesting the CS, a
executes enter. This action resets state.a.a to idle. This reset propagates to b
which executes stop and also changes state.b.a to idle (Figure 2, iv).

3.2 Proof of Correctness

Proof outline. We present theGDP correctness proof as follows. We first state
a predicate we call InvG and demonstrate that GDP stabilizes to it in Theorem
1. We then proceed to show that if InvG holds, then GDP satisfies the safety and
liveness properties of the generic diners in Theorems 2 and 3 respectively.

Proof notation. Throughout this section, unless otherwise specified, we consider
the conflict neighbors of a certain node a (see Figure 2). That is, we implicitly
assume that a is universally quantified over all processes in the system. We focus
on the following nodes: e ∈ KIDS .a.a, b ∈M.a, c ≡ dad.b.a and d ∈ KIDS .b.a.

Since we discuss the states of e, b, c and d in the spanning tree of a, when it
is clear from the context, we omit the specifier of the conflict neighborhood. For
example, we use state.b for state.b.a. Also, for clarity, we attach the identifier of
the process to the actions it contains. For example, forward.b is the forward action
of process b.

Our global predicate consists of the following predicates that constrain the states
of each individual process and the states of its communication neighbors. The
predicate below relates the states of the root of the tree a to the states of its
children.

(state.a = idle)⇒ (∀e : e ∈ KIDS .a : state.e 6= req) (Inv.a)

The following sequence of predicates relates the state of b to the state of its neigh-
bors.

state.b = idle ∧ state.c 6= rep ∧ (∀d : d ∈ KIDS .b : state.d 6= req) (I.b.a)
state.b = req ∧ state.c = req (R.b.a)
state.b = rep ∧ (∀d : d ∈ KIDS .b : state.d = rep) (P.b.a)

We denote the disjunction of the above three predicates as follows:

I.b.a ∨R.b.a ∨ P.b.a (Inv.b.a)

The following predicate relates the states of all processes in M.a.

(∀a :: Inv.a ∧ (∀b : b ∈M.a : Inv.b.a)) (InvG)

To aid in exposition, we mapped the states and transitions for individual pro-
cesses in Figure 3. Note that to simplify the picture, for the intermediate process
b we only show the states and transitions if Inv holds for each ancestor of b. For
b, the I.b, R.b and P.b denote the states conforming to the respective predicates.
While the primed versions I ′.b and P ′.b signify the states where b is respectively idle
and replying but Inv.b.a does not hold. Notice that if Inv.c holds for b’s parent c,
the primed version of R does not exist. Indeed, to violate R, b should be requesting
while c is either idle or replying. However, if Inv.c holds and c is in either of these
two states, b cannot be requesting.
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Fig. 3. State transitions for an individual process

For a, IR.a and RR.a denote the states where a is respectively idle and requesting
while Inv.a holds. In states IR′.a, a is idle while Inv.a does not hold. Notice that
since state = req falsifies the antecedent of Inv.a, the predicate always holds if a is
requesting. The state transitions in Figure 3 are labeled by actions whose execution
effects them. Loopback transitions are not shown.

Theorem 1 (Stabilization). Program GDP stabilizes to InvG.

Proof. By the definition of stabilization, InvG should be closed with respect
to the execution of the actions of GDP, and GDP should converge to InvG. We
prove the closure first.

Closure. To aid in the subsequent convergence proof, we show a property that is
stronger than just the closure of InvG. We demonstrate the closure of the following
conjunction of predicates: Inv.a and Inv.b.a for a set of descendants of a up to a
certain depth of the tree. To put another way, in showing the closure of Inv.b.a for b
we assume that the appropriate predicates hold for all its ancestors. Naturally, the
closure of InvG follows. By definition of predicate closure, we need to demonstrate
that if the predicate holds in a certain state, the execution of any action in this
state does not violate the predicate.

Let us consider Inv.a and the root process a first. Notice that the only two actions
that can potentially violate Inv.a are enter.a and forward.e. Let us examine each
action individually. If enter.a is enabled, each child of a is replying. Hence, when
it is executed and it changes the state of a to idle, Inv.a holds. If forward.e is
enabled, a is requesting. Thus, executing the action and setting the state of e to
req does not violate Inv.a.

Let us now consider Inv.b.a for an intermediate process b ∈ M.a. We examine
the effect of the actions of b, b’s parent — c, and one of b’s children — d in this
sequence.

We start with the actions of b. If I.b holds, forward.b is the only action that
can be enabled. If it is enabled, c is requesting. Thus, if it is executed, R.b holds
and Inv.b.a is not violated. If R.b holds then back.b is the only action that can

ACM Journal Name, Vol. V, No. N, Month 20YY.
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be enabled. However, if back.b is enabled and R.b holds, then all children of b are
replying. If back.b is executed, the resultant state conforms to P.b. If P.b holds,
then stop.b can exclusively be enabled. If P.b holds and stop.b is enabled, then c is
idle and all children of b are replying. The execution of back.b sets the state of b to
idle. The resulting state conforms to I.b and Inv.b.a is not violated.

Let us examine the actions of c. Recall that we are assuming that Inv.c and the
respective invariants of all of b’s ancestors hold. If I.b holds, forward.c and join.c
(in case b is a child of a) are the actions that can possibly be enabled. If either is
enabled, b is idle. The execution of either action changes the state of c to req. I.b
and Inv.b.a still hold. If R.b holds, none of the actions of c are enabled. Indeed,
actions forward.c, back.c, join.c and enter.c are disabled. Moreover, if R.b holds, c
is requesting: since Inv.c holds, c must be in R.c. Which means that c’s parent is
not idle. Hence, stop.c is also disabled. Since P.b does not mention the state of c,
the execution of c’s actions does not affect the validity of P.b.

Assume b has at least one child d. Let us examine its actions. If I.b holds, the
only possibly enabled action is stop.d. The execution of this action changes the
state of d to idle, which does not violate I.b. R.b does not mention the state of
d. Hence, its action execution does not affect R.b. If P.b holds, all actions of d are
disabled. This concludes the closure proof of InvG.

Convergence. We prove convergence by induction on the depth of the tree rooted
in a. Let us show convergence of a. The only illegitimate set of states is IR′.a.
When a conforms to IR′.a, a is idle and at least one child e is requesting. In such
state, all actions of a that affect its state are disabled. Moreover, for every child
of a that is idle, all relevant actions are disabled as well. For the child of a that is
not idle, the only enabled action is stop.e. After this action is executed, e is idle.
Thus, eventually IR.a holds.

Let a conform to Inv.a. Also, let every descendant process f of a up to depth
i confirm to Inv.f . Let the distance from a to b be i + 1. We shall show that
Inv.b.a eventually holds. Notice that according to the preceding closure proof, the
conjunction of Inv.a and Inv.f for each process f in the distance no more than i
is closed.

Note that according to Figure 3, there is no loop in the state transitions contain-
ing primed states. Hence, to prove that b eventually satisfies Inv.b.a we need to
show that b does not remain in a single primed set of states indefinitely. Process b
can satisfy either I ′.b or P ′.b. Let us examine these cases individually.

Let b ∈ I ′.b. Since Inv.c holds, if b is idle, c cannot satisfy P.c. Thus, for b to
satisfy I ′.b, at least one child d of b must be requesting. However, if b is idle then
stop.d is enabled. Notice that when b is idle, none of its non-requesting children
can start to request. Thus, when this stop is executed for every requesting child of
b, b leaves I ′.b.

Suppose b ∈ P ′.b. Process b may leave P ′.b be executing stop.b. Assume it
does not. If b ∈ P ′.b, then there exists at least one child d of b that is not replying.
However, for every such process d, back.d is enabled. Notice that when b is replying,
none of its replying children can change state. Thus, when back is executed for every
non-replying child of b, b leaves P ′.b.
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Hence, GDP converges to InvG.

Theorem 2 (Safety). If InvG holds and enter.a is enabled, then for every pro-
cess b ∈M.a, enter.b is disabled.

Proof. If enter.a is enabled, every child of a is replying. Due to InvG, this
means that every descendant of a is also replying. However, for each process x ∈
M.a whose priority is lower than a, enter.x can only be enabled when state.x.a
is idle. Thus, for every such process x, if enter.a is enabled, enter.x is disabled.
Note also, that since enter.a is enabled, for every process y ∈ M.a whose priority
is higher than a’s, state.a.y is idle. According to InvG, none of the ancestors of a
in y’s tree, including y’s children, are replying. Thus, enter.y is disabled. In short,
when enter.a is enabled, neither higher nor lower priority processes of M.a have
enter enabled. The theorem follows.

Lemma 1. If InvG holds and some process a is requesting, then eventually either
a stops requesting or none of its descendants are idle.

Proof. Notice that the lemma trivially holds if a stops requesting. Thus, we
focus on proving the second claim of the lemma. We prove it by induction on the
depth of a’s tree. Process a is requesting and so it is not idle. By the assumption
of the lemma, a never becomes idle. Now let us assume that this lemma holds for
all its descendants up to distance i. Let b be a descendant of a whose distance from
a is i+ 1. And let b be idle.

By inductive assumption, b’s parent c is not idle. Due to InvG, if b is idle, c is
not replying. Hence, c is requesting. If there exists a child d of b that is not idle,
then stop.d is enabled at d. When stop.d is executed, d is idle. Notice that when
b and d are idle, all actions of d are disabled. Thus, d remains idle. When all
children of b are idle and its parent is requesting, forward.b is enabled. When it is
executed, b is not idle. Notice, that the only way for b to become idle again is to
execute stop.b. However, by inductive assumption c is not idle. This means that
stop.b is disabled. The lemma follows.

Lemma 2. If InvG holds and some process a is requesting, then eventually all
its children in M.a are replying.

Proof. Notice that when a is requesting, the conditions of Lemma 1 are sat-
isfied. Thus, eventually, none of the descendants of a are idle. Notice that if a
process is replying, it does not start requesting without being idle first (see Figure
3). It remains to be proven that each individual process is eventually replying. We
prove it by induction on the height of a’s tree.

If a leaf node b is requesting and its parent is not idle, back.b is enabled. When it
is executed, b is replying. Assume that each node whose longest distance to a leaf of
a’s tree is i is replying. Let b’s longest distance to a leaf be i+1. By assumption, all
its children are replying. Due to Lemma 1, its parent is not idle. In this case back.b
is enabled. After it is executed, b is replying. By induction, the lemma holds.

Lemma 3. If InvG holds and the computation contains infinitely many states
where a is idle, then for every descendant there are infinitely many states where it
is idle as well.
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Proof. We first consider the case where the computation contains a suffix where
a is idle in every state. In this case we prove the lemma by induction on the depth
of a’s tree with a itself as a base case. Assume that there is a suffix where all
descendants of a up to depth i are idle. Let us consider process b whose distance to
a is i+ 1 and this suffix. Notice that this means that c remains idle in every state
of this suffix. If b is not idle, stop.b is enabled. Once it is executed, no relevant
actions are enabled at b and it remains idle afterwards. By induction, the lemma
holds.

Let us now consider the case where no computation suffix of continuously idle a
exists. Yet, there are infinitely many states where a is idle. Thus, a leaves the idle
state and returns to it infinitely often. We prove by induction on the depth of the
tree that every descendant of a behaves similarly. Assume that this claim holds for
the descendants up to depth i. Let b’s distance to a be i+ 1.

When InvG holds, the only way for b’s parent c to leave idle is to execute
forward.c (see Figure 3). Similarly, the only way for c to return to idle is to
execute stop.c while c is replying 2. However, forward.c is enabled only when b is
idle. Also, according to InvG when c is requesting, b is not idle. Thus, b leaves
idle and returns to it infinitely many times as well. By induction, the lemma
follows.

Lemma 4. If InvG holds and process a is requesting such that and a’s priority
is the highest among the processes of M.a that request the CS in this computation,
then a eventually executes the CS.

Proof. If a is requesting, then, by Lemma 2, all its children are eventually
replying. Therefore, the first and second conjuncts of the guard of enter.a are
true. If a’s priority is the highest among all the requesting processes in M.a,
then each process z, whose priority is higher than that of a is idle. According to
Lemma 3, state.a.z is eventually idle. Thus, the third and last conjunct of enter.a
is enabled. This allows a to execute the CS.

Lemma 5. If InvG holds and process a is requesting, a eventually executes the
CS.

Proof. Notice that by Lemma 2, for every requesting process, the children are
eventually replying. According to InvG, this implies that all the descendants of
the requesting process are also replying. For the remainder of the proof we assume
that this condition holds.

We prove this lemma by induction on the priority of the requesting processes.
According to Lemma 4, the requesting process with the highest priority eventually
executes the CS. Thus, if process a is requesting and there is no higher priority
process b ∈M.a which is also requesting then, by Lemma 4, a eventually enters the
CS.

Suppose, on the contrary, that there exists a requesting process b ∈ M.a whose
priority is higher than a’s. If every such process b enters the CS finitely many times,
then, by repeated application of Lemma 4, there is a suffix of the computation where
all processes with priority higher than a’s are idle. Then, by Lemma 4, a enters the

2The argument is slightly different for c = a as it executes join.a and enter.a instead.
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CS. Suppose there exists a higher priority process b that enters the CS infinitely
often. Since a is requesting, eventually state.b.a = rep. When b executes the CS, it
enters a into YIELD .b. We assume that b enters the CS infinitely often. However,
b can request the CS again only if YIELD .b is empty. The only action that takes a
out of YIELD .b is stop.b. However, this action is enabled if state.b.a is idle. Notice
that, if InvG holds, the only way for the descendants of a to move from replying
to idle is if a itself moves from requesting to idle. That is a executes the CS. Thus,
each process a requesting the CS eventually executes it.

Lemma 6. If InvG holds and process a wishes to enter the CS, a eventually
requests.

Proof. We show that a wishing to enter the CS eventually executes join.a. We
assume that a is idle and needcs.a is true. Then, join.a is enabled if YIELD .a is
empty. Note that a adds a process to YIELD only when it executes the CS. Thus,
as a remains idle, processes can only be removed from YIELD .a.

Let us consider a process b ∈ YIELD .a. If b executes the CS finitely many times,
then there is a suffix of the computation where b is idle. According to Lemma 3,
for all descendants of b, including a, state.a.b is idle. If this is the case stop.a is
enabled. When it is executed b is removed from YIELD .a.

Let us consider the case, where b executes the CS infinitely often. In this case,
b enters and leaves idle infinitely often. According to Lemma 3, state.a.b is idle
infinitely often. Moreover, a moves to idle by executing stop.a, which removes b
from YIELD .a. The lemma follows.

The theorem below follows from Lemmas 5 and 6.

Theorem 3 (Liveness). If InvG holds, a process wishing to enter the CS then
the computation contains either the execution of the CS or a state where p does
not wish to enter the CS.

We draw the following corollary from Theorems 1, 2 and 3.

Corollary 1. Program GDP is a self-stabilizing solution to the generic diners
problem.

Theorem 4 (Termination). Program GDP is terminating.

Proof. To prove termination we need to show that if a computation of GDP
contains only finitely many states where some process p is requesting (i.e. variable
needcs.p is true), then the computation ends in a fixpoint (a state where all actions
are disabled). If such a computation ends in a state where needcs.p is true for
some process, then the condition of the theorem is satisfied since such computation
is finite. Otherwise, the computation contains a suffix where needcs.p is false for
every process. Let us consider such computation σ and a single process a. According
to Theorem 1, every computation contains a suffix where the invariant InvG holds.
Let us consider the shorter of the two suffixes σ′. If the suffixes are of the same
length (i.e. they are identical), we just let σ′ be that suffix.

According to Theorem 3, if InvG holds and a is requesting to enter the CS in σ′,
a eventually does so. After CS entry, a becomes idle. Notice that a may not rejoin
the CS contention in σ′ as needcs.a is false. Hence, a spends the remainder of σ′
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as idle. A simple induction on the depth of the spanning tree in M.a (cf. the first
part of the proof of Lemma 3) demonstrates that there is a suffix σ′′ of σ′ where
all descendants of a are also idle.

Let us consider the actions of a and its descendants in σ′′. Observe that all of the
processes are idle. Thus, the actions enter, forward and back are disabled. Action
join.a is disabled due to needcs.a = idle. However, stop.b at some process b may
be enabled if YIELD .b contains a. However, after stop.b executes, a is removed
from YIELD .b. Process a is never included into YIELD .b again since state.b.a is
idle in σ′′. Hence, all actions of processes in M.a are eventually disabled. Since
this argument applies to all processes in the system, the computation σ ends in a
fixpoint. The theorem follows.

3.3 Efficiency Evaluation

We estimate the efficiency of our algorithm in asynchronous rounds. A round is
a segment of a computation where each process that has an action enabled in the
initial state, either executes this action or the action is disabled.

Let d and δ be the maximum depth of a conflict tree and the maximum degree
of a process respectively. Observe (see Figure 3) that each process executes at
most two of its own actions before satisfying the stabilization predicate. Thus, a
conflict neighborhood stabilizes in 2(δ+1)d rounds. The stabilization of one conflict
neighborhood is independent of stabilization of another.

Synchronization delay is the maximum number of rounds between one conflict
neighbor leaving the CS and another process joining it. The process CS entry and
exit requires propagation of a request down the tree, collecting a reply and resetting
the tree to its idle state. Thus, the synchronization delay of GDP is 3d.

Step complexity is the maximum number of steps required per CS execution.
Each process in the conflict tree has to execute exactly three steps. There are at
most δd processes in the conflict tree. Therefore, the step complexity of the CS
access of GDP is 3δd.

4. IMPLEMENTATION IN WIRELESS SENSOR NETWORKS

As we motivated GDP by the problems arising in wireless sensor networks, we
would like to discuss the implementation of our algorithm in this environment. A
spanning tree construction algorithm for such environment is available [Nesterenko
and Arora 2001]. Let us attend to the stabilization of diners proper.

From algorithm correctness standpoint, this environment is a variant of a message-
passing system with lossy channels. The broadcast nature of the radio signal allows
certain performance gains. In implementing GDP in this environment the concern
is to preserve its correctness and termination properties. We discuss the modifi-
cations to preserve the algorithm’s correctness first. Note that in order to satisfy
non-trivial liveness properties we assume that our environment conforms to trans-
mission fairness: if a process attempts to send infinitely many messages, all of
its communication neighbors will receive infinitely many of them. This assump-
tion is weaker than what is previously used for self-stabilizing algorithms in sensor
networks [Herman and Tixeuil 2004; Mitton et al. 2006; Mitton et al. 2008]: it is
usually assumed that the expected message transmission time for one hop neigh-
bors is constant. Our idea is to use the timeouts such that the lost messages are
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recovered. To prove correctness of such an algorithm in asynchronous system model
we would have to use an abstract form of timeouts (see [Gouda and Multari 1991]
or [Gouda 1998]) that are enabled when the channel is empty.

There are two phases where the message recovery is important: request and
release propagation. In case of request propagation, when the parent changes its
state to req, it sends a message to its children and starts a timeout. When the
timeout expires, the parent resubmits the request. Upon the receipt of the request,
the child’s actions differ depending on its state. As in the original algorithm, in case
the child is in idle, it switches to req and further propagates the request; similarly,
if the child is in req, it ignores the request. In case the child is in rep, it sends
back the message informing the parent of its state. These actions ensure that the
request will be propagated along the routing tree and the reply will be collected. As
an efficiency optimization, a child may acknowledge the request message from its
parent. This acknowledgment is done either explicitly or by broadcasting its own
request to its children. The parent then resubmits its request only to the children
that have not acknowledged it yet. Recall that for release propagation, the parent
needs to ascertain that its children are idle before switching to req and starting to
propagate the next request. Similar to the case of request propagation, the parent
has to keep the list of its non-idle children and keep informing its children of its
idle state until all of its children acknowledge (explicitly or implicitly) that they
also switched to idle. When all its children are idle the parent can turn of its
notification timeout.

Let us now address termination preservation of GDP in wireless networks. Note
that co-satisfaction of stabilization and termination in message-passing systems is
a rather difficult objective. In message passing, incorrect state may not be detected
by any process unless they exchange messages. This means that all terminal states
have to be legitimate. However, [Arora and Nesterenko 2005] demonstrate that
mutual exclusion and, by extension, diners admits a solution with both of these
properties. Notice that, as described, it is possible that the algorithm refined to
operate in wireless sensor networks starts in an illegitimate fixpoint state where
some child is in rep and its parent is in idle. That is, the state does not have
actions enabled unless the environment requests the CS. This state is illegitimate:
if there is a further request and the parent switches to req, then the parent may
mistake the child’s reply as the answer to its new request. This mistake may result
in a safety violation (see [Arora and Nesterenko 2005] for a detailed discussion of
this issue). A stabilizing algorithm cannot terminate in an illegitimate state. Thus,
this particular terminal state has to be eliminated. The mechanism is as follows.
If a process is in req, it periodically informs its parent about its state. If parent
is in idle, it messages back with its state and forces the child to switch to idle as
well. With this modification, the only terminal state is the one where every process
is in idle. This is a legitimate state and our algorithm remains terminating and
stabilizing.

In a wireless network of resource constrained devices, maintaining information of
multiple conflict trees at each node may not be feasible. Note however, that much
of it may be reused. In the extreme case, all nodes may share the same global
spanning tree to reach conflict neighbors.
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5. FURTHER EXTENSIONS

Extension to generic drinking philosophers. In the classic drinking philoso-
phers problem, the set of conflict neighbors for each process p may vary with each
CS access request. This set is the conflict list. This problem can be extended to the
generic case of conflict neighbors. In this generalized drinking philosophers prob-
lem, the two processes are prevented from concurrently entering the CS only if one
was the member of the conflict list of the other. GDP, in its turn, can be extended
to solve this generic drinking philosophers problem as well. In this extension each
process p maintains the tree to the union of all its possible conflict list neighbors.
In the simplest implementation, each request carries the complete conflict list along
the spanning tree. The conflict neighbor q of p is prevented from entering the CS
only if q is in the list. The algorithm can be further optimized in case the conflict
lists are significantly shorter than the total set of possible conflict neighbors. Each
process q in the tree maintains the set of all its descendants. Thus, p has the list of
all its potential conflict neighbors. When p requests the CS, it propagates its com-
plete conflict list. The child of p propagates the request only if it has a descendant
in this set. Moreover, only the part of the list that is relevant to the particular
branch is propagated. This process of selective propagation repeats in each node
of the tree.

Extension to generic committee coordination problem. The committee co-
ordination problem [Chandy and Misra 1988] is another resource allocation problem
stated as follows. Rather than have a set of conflict neighbors, each process (pro-
fessor) has a fixed set of committee colleagues. The process periodically requests
to attend a committee and starts waiting. The process does care which committee
to attend. A committee meeting may start only after all committee members are
waiting. A committee meeting may only last a finite amount of time. A solution
to the committee coordination problem has to satisfy two properties. The safety
property requires that a process may not attend two committees at the same time;
the liveness states that if all members of some committee are waiting then one of
the members eventually attends one of the committees it is a member of.

This problem can be generalized similarly to the diners and drinkers. The solution
is as follows. The conflicting entities: the committees are represented as philoso-
phers. Two philosophers are conflict neighbors if their corresponding committees
share a professor. Therefore, if one of the committees meets (i.e. the philosopher
eats) then another committee with the same professor cannot meet. This satisfies
the safety property of the committee coordination problem. To satisfy the liveness
property, the professor’s willingness to attend a committee has to be communicated
to all committees in which this professor participates.

Observe that in the generalized version of the problem, the professors may be
located multiple hops away from their committees. The communication mechanism
is as follows. Each professor maintains a spanning tree (similar to the generic dining
philosophers tree) to all its committees. Similarly, each committee maintains a
separate spanning tree to all of its professors. The professor indicates its willingness
to attend the committee by setting its state to req. This request propagates to all
of its committees along the spanning tree. If all committee members are willing to
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attend the committee, the committee sets needcs to true. Then the synchronization
with other committees proceeds as in the generalized version of the diners. After
the CS entry, the committee notifies the professors through its own spanning tree.
Thus the liveness property of the committee coordination property is satisfied.

Simplification to unfair case. Notice that some problems [Gradinariu and
Tixeuil 2007], such as distance-k vertex coloring, maximal irredundant sets, etc.
[Goddard et al. 2006] do not require fairness of CS access specified by the diners:
in any computation of such a problem there are only finitely many CS accesses. If
GDP is to be used for such a problem, it can be simplified. In the unfair case, an
idle higher priority process does not have to wait for a lower priority neighbor. This
obviates the need for YIELD and simplifies actions stop, enter and join. Moreover,
the computations of such a program are finite. Thus, this program is capable of
operating without the weak fairness assumption about action execution.

Future research directions. It is unclear if GDP is an optimal solution to generic
diners with respect to space complexity. If the communication topology is dense,
statically maintaining spanning trees may be expensive. Hence, the construction
of a more space-efficient algorithm is an attractive area of future research. Observe
that our algorithm does not tolerate crash faults. Naturally, any solution to diners
requires that if two conflict neighbors requires the CS, one has to wait for the
other. Our algorithm allows the formation of such waiting chains of arbitrary
length. If a process crashes inside the CS, all processes that wait for it may not
proceed. A stabilizing solution to classic diners that bounds waiting chains is known
[Nesterenko and Arora 2002a]. It would be interesting to investigate if the length
of the waiting chains in GDP can be limited using similar techniques.

Observe that the information propagation mechanism used in GDP resembles in-
formation propagation with feedback (PIF) snap-stabilizing algorithms [Blin et al.
2003; Bui et al. 1999]. Snap-stabilizing algorithms are a subclass of the self-
stabilizing algorithms that have stricter safety properties. In the case of PIF,
a snap-stabilizing stabilizing algorithm stabilizes in a single request propagation
round. It would be interesting to investigate if our whole algorithm can be made
snap-stabilizing.

In our algorithm, GDP assumes the existence of a spanning tree in the conflict
neighborhood. In [Blin et al. 2003], the PIF constructs such a tree during the
request propagation. It will be interesting to study if this extra flexibility of tree
construction can be built into GDP.

Rather than solving the generic diners directly, a solution may be compartmen-
talized as follows. For each process, the set of conflict neighbors can be treated as
a network of peers overlayed on the communication neighbor network. Since the
communication to the conflict neighbors is relatively uniform: each process sends
request, receives reply and then sends release, this communication can be fashioned
as multicast in overlay networks. An area of reliable multicast in overlay networks
have been extensively studied [Banerjee et al. 2003; Shi and Turner 2002]. Using
this as a primitive, it may be possible to use a solution to classic diners to solve
generic diners.
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An attractive property of a synchronization algorithm is abortability [Jayanti
2003; Scott and Scherer, III 2001]. An algorithm is abortable if a process can
rescind its request to enter the CS within a bounded number of its own steps without
actually obtaining the CS. It appears that GDP can be modified to incorporate this
property. However, a definitive answer requires further research
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