
Self-Stabilizing Philosophers with
Generic Conflicts

Praveen Danturi1, Mikhail Nesterenko1?, and Sébastien Tixeuil2??

1 Department of Computer Science, Kent State University, Kent, OH, USA
{pdanturi, mikhail}@cs.kent.edu

2 LRI-CNRS UMR 8623 & INRIA Grand Large Université Paris Sud, France
tixeuil@lri.fr

Abstract. We generalize the classic dining philosophers problem to sep-
arate the conflict and communication neighbors of each process. Com-
munication neighbors may directly exchange information while conflict
neighbors compete for the access to the exclusive critical section of code.
This generalization is motivated by a number of practical problems in
distributed systems including problems in wireless sensor networks. We
present a self-stabilizing deterministic algorithm — KDP that solves a
restricted version of the generalized problem where the conflict set for
each process is limited to its k-hop neighborhood. Our algorithm is ter-
minating. We formally prove KDP correct and evaluate its performance.
We then extend KDP to handle fully generalized problem. We further ex-
tend it to handle a similarly generalized drinking philosophers problem.
We describe how KDP can be implemented in wireless sensor networks
and demonstrate that this implementation does not jeopardize its cor-
rectness or termination properties.

1 Introduction

Self-stabilization (or just stabilization) [12, 17] is an elegant approach to forward
recovery from transient faults as well as initializing a large-scale system. Re-
gardless of the initial state, a stabilizing system converges to the legitimate set
of states and remains there afterwards. In this paper we present a stabilizing
solution to our generalization of the dining philosophers problem.

The dining philosophers problem [11] is a fundamental resource allocation prob-
lem. The name of the problem is frequently shortened to diners [27]. The diners,
as well as its generalization — the drinking philosophers problem [8], has a va-
riety of applications. In diners, a set of processes (philosophers) request access
to the critical section (CS) of code. For each process there is a set of neighbor
? This author was supported in part by DARPA contract OSU-RF #F33615-01-C-

1901 and by NSF CAREER Award 0347485.
?? This author was supported in part by the FNS grants FRAGILE and SR2I from

ACI “Sécurité et Informatique”. Some of the research for this paper was done while
the author was visiting Kent State University.

processes. Each process has a conflict with its neighbors: it cannot share the CS
with any of them. In spite of the conflicts, each requesting process should even-
tually execute the CS. To coordinate CS execution, the processes communicate.
In classic diners it is assumed that each process can directly communicate with
its conflict neighbors. In other words, for every process, the conflict neighbor set
is a subset of the communication neighbor set.

However, there are applications where this assumption does not hold. Con-
sider, for example, wireless sensor networks. A number of problems in this area,
such as TDMA slot assignment, cluster formation and routing backbone main-
tenance can be considered as instances of resource allocation problems. Yet, due
to radio propagation peculiarities, the signal’s interference range may exceed its
effective communication range. Moreover, radio networks have so called hidden
terminal effect. The problem is as follows. Let two transmitters t1 and t2 be
mutually out of reception range, while receiver r be in range of them both. If t1
and t2 broadcast simultaneously, due to mutual radio interference, r is unable
to receive either broadcast. The potential interference pattern is especially in-
tricate if the antennas used by the wireless sensor nodes are directional (see for
example [23]). Such transmitters can be modeled as conflict neighbors that are
not communication neighbors. To accommodate such applications, we propose
the following extension. Instead of one, each process has two sets of neighbors:
the conflict neighbors and the communication neighbors. These two sets are not
necessarily related. The only restriction is that each conflict-neighbor has to be
reachable through the communication neighbors.

Some solutions to classic diners can potentially be extended to this problem.
Indeed, if a separate communication channel is established to each conflict neigh-
bor the classic diners program can be applied to the generalized case. However,
such a solution may not be efficient. The channels to conflict neighbors go over
the communication topology of the system. The channels to multiple neighbors
of the same process may overlap. Moreover, the sparser the topology, the greater
the potential overlap. Yet, in a diners program, the communication between con-
flict neighbors is only of two kinds: a process either requests the permission to
execute the CS from the neighbors, or releases this permission. Due to channel
overlap, communicating the same message to each conflict neighbor separately
leads to excessive overhead. This motivates our search for a solution to generic
diners that effectively combines communication to separate conflict neighbors.

Related work. There exist a number of deterministic self-stabilizing solutions
to classic diners [1, 4, 5, 16, 20, 21, 25, 26]. Cantarell et al [7] solve the drinking
philosophers problem. Datta et al [10] solve a specific extension of diners. None
of these solutions separate conflict and communication neighbors.

Meanwhile, researchers working in the area of self-stabilization studied spe-
cific problems that require such separation. A few studies [3, 18, 22] address the
aforementioned problem of TDMA slot assignment in the presence of the hidden
terminal effect. This problem requires the processes to agree on a fixed schedule
of time intervals (slots) such that each slot is allocated exclusively to a single

process in the conflict neighborhood. Herman and Tixeuil [18] present a self-
stabilizing probabilistic TDMA slot assignment algorithm for wireless sensor net-
works. They deal with channel conflicts that may arise between nodes that can-
not communicate directly by assuming an underlying probabilistic CSMA/CA
mechanism that provides constant time correct transmission with high proba-
bility. The authors assume that the network is tightly synchronized so that the
phases that use the CSMA/CA mechanism are clearly distinguished from the
phases that use TDMA mechanism. Arumugam and Kulkarni [3, 22] propose
deterministic solutions to the same problem. In [3], to avoid conflicts they pro-
pose to serialize channel assignments by circulating a single assignment token
(privilege) throughout the network. In [22], they consider a regular grid topology
where each node is aware of its position in the grid. Gairing et al [13] propose an
interesting stabilizing algorithm for conflict neighbor sets containing the com-
munication neighbors of distance at most two. They apply their algorithm to a
number of graph-theoretical problems. However, their algorithm cannot solve the
diners as it is not designed to allow each requesting process to enter the CS if its
continuously request as well. That is, their program allow unfair computations.
Goddard et al [14] propose a solution to the conflict neighbor sets of communica-
tion neighbors at most k-hops away. Their solution recursively extends Gairing’s
algorithm. It is unfair as well.

Our contribution and paper outline. We generalize the diners problem to
separate the conflict and communication neighbor sets of each process. We for-
mally state this problem, as well as describe our notation and execution model
in Section 2. To the best of our knowledge, this problem has not been defined
or addressed before either inside or outside of context of self-stabilization. In
Section 3, we present a self-stabilizing deterministic terminating solution to a
restricted version of this problem where the conflict set comprises the set of pro-
cesses that are at most a fixed number of hops k away from the process. We call
this program KDP. In the same section we provide a formal correctness proof
of KDP and discuss its stabilization performance. We extend KDP to solve
generalized diners in Section 4. In Section 5 we describe how KDP can be im-
plemented in wireless sensor networks without compromising its correctness or
performance properties. We describe a number of further extensions to KDP in
Section 6. Specifically, we generalize KDP to handle arbitrary conflict neighbor
sets, as well as solve generalized drinking philosophers; we simplify our solution
to handle problems that do not require fairness of CS access.

2 Preliminaries

Program model. For the formal description of our program we use simplified
UNITY notation [9, 15]. A program consists of a set of processes. A process
contains a set of constants that it can read but not update. A process maintains
a set of variables. Each variable ranges over a fixed domain of values. We use
small case letters to denote singleton variables, and capital ones to denote sets.

An action has the form 〈name〉 : 〈guard〉 −→ 〈command〉. A guard is a Boolean
predicate over the variables of the process and its communication neighbors. A
command is a sequence of statements assigning new values to the variables of the
process. We refer to a variable var and an action ac of process p as var.p and ac.p
respectively. A parameter is used to define a set of actions as one parameterized
action. For example, let j be a parameter ranging over values 2, 5, and 9; then
a parameterized action ac.j defines the set of actions: ac.(j := 2)][ac.(j :=
5)][ac.(j := 9).

A state of the program is the assignment of a value to every variable of each
process from the variable’s corresponding domain. Each process contains a set
of actions. An action is enabled in some state if its guard is true at this state.
A computation is a maximal fair sequence of states such that for each state si,
the next state si+1 is obtained by executing the command of an action that
is enabled in si. Maximality of a computation means that the computation is
infinite or it terminates in a state where none of the actions are enabled.

In a computation the action execution is weakly fair. That is, if an action
is enabled in all but finitely many states of an infinite computation then this
action is executed infinitely often.

A state conforms to a predicate if this predicate is true in this state; oth-
erwise the state violates the predicate. By this definition every state conforms
to predicate true and none conforms to false. Let R and S be predicates over
the state of the program. Predicate R is closed with respect to the program
actions if every state of the computation that starts in a state conforming to R
also conforms to R. Predicate R converges to S if R and S are closed and any
computation starting from a state conforming to R contains a state conforming
to S. The program stabilizes to R iff true converges to R.

Problem statement. An instance of the generalized diners problem defines
for each process p a set of communication neighbors N.p and a set of conflict
neighbors M.p. Both relations are symmetric. That is for any two processes p and
q if p ∈ N.q then q ∈ N.p. Same applies to M.p. Throughout the computation
each process requests CS access an arbitrary number of times: from zero to
infinity. A program that solves the generalized diners satisfies the following two
properties for each process p: safety — if the action that executes the CS is
enabled in p, it is disabled in all processes of M.p; liveness — if p wishes to
execute the CS, it is eventually allowed to do so.

A desirable performance property of a solution to diners is termination: if
a computation contains finitely many states where processes wish to execute the
CS, then this computation is itself finite. To put another way, if there are no
requests for the CS, a terminating solution to diners should eventually arrive at
a state with all actions disabled.

A restriction of the generalized diners problem which we call k-hop diners
specifies that M.p for each process p contains the processes whose distance to p
in the graph formed by the communication topology is no more than k.

process p
const

M : k-hop conflict neighbors of p
N : communication neighbors of p
(∀q : q ∈ M : dad.p.q ∈ N,KIDS.p.q ⊂ N)

parent id and set of children ids for each k-hop neighbor
parameter

r : M
var

state.p.p : {idle, req},
(∀q : q ∈ M : state.p.q : {idle, req, rep}),
Y IELD : {∀q : q ∈ M : q > p} lower priority processes to wait for
needcs : boolean, application variable to request the CS

∗[
join: needcs ∧ state.p.p = idle ∧ Y IELD = ∅ ∧

(∀q : q ∈ KIDS.p.p : state.q.p = idle) −→
state.p.p := req

][
enter : state.p.p = req ∧

(∀q : q ∈ KIDS.p.p : state.q.p = rep) ∧
(∀q : q ∈ M ∧ q < p : state.p.q = idle) −→

/* CS */
Y IELD := {∀q : q ∈ M ∧ q > p : state.p.q = rep},
state.p.p := idle

][
forward : state.p.r = idle ∧ state.(dad.p.r).r = req ∧

((KIDS.p.r = ∅) ∨ (∀q : q ∈ KIDS.p.r : state.q.r = idle)) −→
state.p.r := req

][
back : state.p.r = req ∧ state.(dad.p.r).r = req ∧

((KIDS.p.r = ∅) ∨ (∀q : q ∈ KIDS.p.r : state.q.r = rep)) ∨
state.p.r 6= rep ∧ state.(dad.p.r).r = rep −→

state.p.r := rep
][

stop: (state.p.r 6= idle ∨ r ∈ Y IELD) ∧
state.(dad.p.r).r = idle −→

Y IELD := Y IELD \ {r},
state.p.r := idle

]

Fig. 1. Process of KDP

3 KDP Algorithm

3.1 Description

Algorithm overview. The main idea of the algorithm is to coordinate CS
request notifications between multiple conflict neighbors of the same process.
We assume that for each process p there is a tree that spans M.p. This tree
is rooted in p. A stabilizing breadth-first construction of a spanning tree is a
relatively simple task [12].

The processes in this tree propagate CS request of its root. The request re-
flects from the leaves and informs the root that its conflict neighbors are notified.
This mechanism resembles information propagation with feedback [6].

The access to the CS is granted on the basis of the priority of the requesting
process. Each process has an identifier that is unique throughout the system.
A process with lower identifier has higher priority. To ensure liveness, when
executing the CS, each process p records the identifiers of its lower priority
conflict neighbors that also request the CS. Process p then waits until all these
processes access the CS before requesting it again.

Detailed description. Each process p has access to a number of constants. The
set of identifiers of its communication neighbors is N , and its conflict neighbors
is M . For each of its conflict neighbors r, p knows the appropriate spanning tree
information: the parent identifier — dad.p.r, and a set of ids of its children —
KIDS.p.r.

Process p stores its own request state in variable state.p.p and the state of
each of its conflict neighbors in state.p.r. Notice that p’s own state can be only
idle or req, while for its conflict neighbors p also has rep. To simplify the de-
scription, depending on the state, we refer to the process as being idle, requesting
or replying. In Y IELD, process p maintains the ids of its lower priority conflict
neighbors that should be allowed to enter the CS before p requests it again.
Variable needcs is an external Boolean variable that indicates if CS access is
desired. Notice that CS entry is guaranteed only if needcs remains true until p
requests the CS.

There are five actions in the algorithm. The first two: join and enter manage
CS entry of p itself. The remaining three: forward, back and stop — propagate
CS request information along the tree. Notice that the latter three actions are
parameterized over the set of p’s conflict neighbors.

Action join states that p requests the CS when the application variable
needcs is true, p itself, as well as its children in its own spanning tree, is idle
and there are no lower priority conflict neighbors to wait for. As action enter
describes, p enters the CS when its children reply and the the higher priority
processes do not request the CS themselves. To simplify the presentation, we
describe the CS execution as a single action3.

3 In Section 6, we demonstrate how to extend our algorithm to perform CS entry and
exit in separate actions.

Action forward describes the propagation of a request of a conflict neighbor r
of p along r’s tree. Process p propagates the request when p’s parent — dad.p.r is
requesting and p’s children are idle. Similarly, back describes the propagation of
a reply back to r. Process p propagates the reply either if its parent is requesting
and p is the leaf in r’s tree or all p’s children are replying. The second disjunct
of back is to expedite the stabilization of KDP. Action stop resets the state of
p in r’s tree to idle when its parent is idle. This action removes r from the set
of lower-priority processes to await before initiating another request.

Fig. 2. Phases of KDP operation

Example operation. The operation of KDP in legitimate states is illustrated
in Figure 2. We focus on the conflict neighborhood M.a of a certain node a.
We consider representative nodes in the spanning tree of M.a. Specifically, we
consider one of a’s children — e, a descendant — b, b’s parent — c and one of
b’s children — d.

Initially, the states of all processes in M.a are idle. Then, a executes join
and sets state.a.a to req (see Figure 2, i). This request propagates to process
b, which executes forward and sets state.b.a to req as well (Figure 2, ii). The
request reaches the leaves and bounces back as the leaves change their state to
rep. Process b then executes back and changes its state to rep as well (Figure
2, iii). After the reply reaches a and if none of the higher priority processes are
requesting the CS, a executes enter. This action resets state.a.a to idle. This
reset propagates to b which executes stop and also changes state.b.a to idle
(Figure 2, iv).

3.2 Proof of Correctness

Proof outline. We present KDP correctness proof as follows. We first state a
predicate we call InvK and demonstrate that KDP stabilizes to it in Theorem
1. We then proceed to show that if InvK holds, then KDP satisfies the safety
and liveness properties of the k-hop diners in Theorems 2 and 3 respectively.

Proof notation. Throughout this section, unless otherwise specified, we con-
sider the conflict neighbors of a certain node a (see Figure 2). That is, we im-
plicitly assume that a is universally quantified over all processes in the system.
We focus on the following nodes: e ∈ KIDS.a.a, b ∈ M.a, c ≡ dad.b.a and
d ∈ KIDS.b.a.

Since we discuss the states of e, b, c and d in the spanning tree of a, when it
is clear from the context, we omit the specifier of the conflict neighborhood. For
example, we use state.b for state.b.a. Also, for clarity, we attach the identifier
of the process to the actions it contains. For example, forward.b is the forward
action of process b.

Our global predicate consists of the following predicates that constrain the states
of each individual process and the states of its communication neighbors. The
predicate below relates the states of the root of the tree a to the states of its
children.

(state.a = idle) ⇒ (∀e : e ∈ KIDS.a : state.e 6= req) (Inv.a)

The following sequence of predicates relates the state of b to the state of its
neighbors.

state.b = idle ∧ state.c 6= rep ∧ (∀d : d ∈ KIDS.b : state.d 6= req) (I.b.a)
state.b = req ∧ state.c = req (R.b.a)
state.b = rep ∧ (∀d : d ∈ KIDS.b : state.d = rep) (P.b.a)

We denote the disjunction of the above three predicates as follows:

I.b.a ∨R.b.a ∨ P.b.a (Inv.b.a)

The following predicate relates the states of all processes in M.a.

(∀a :: Inv.a ∧ (∀b : b ∈ M.a : Inv.b.a)) (InvK)

To aid in exposition, we mapped the states and transitions for individual
processes in Figure 3. Note that to simplify the picture, for the intermediate
process b we only show the states and transitions if Inv holds for each ancestor
of b. For b, the I.b, R.b and P.b denote the states conforming to the respective
predicates. While the primed versions I ′.b and P ′.b signify the states where b is
respectively idle and replying but Inv.b.a does not hold. Notice that the primed
version of R does not exist if Inv.c holds for b’s parent c. Indeed, to violate R,

Fig. 3. State transitions for an individual process

b should be requesting while c is either idle or replying. However, if Inv.c holds
and c is in either of these two states, b cannot be requesting.

For a, IR.a and RR.a denote the states where a is respectively idle and
requesting while Inv.a holds. In states IR′.a, a is idle while Inv.a does not
hold. Notice that since state = req falsifies the antecedent of Inv.a, the predicate
always holds if a is requesting. The state transitions in Figure 3 are labeled by
actions whose execution effects them. Loopback transitions are not shown.

Theorem 1 (Stabilization). Program KDP stabilizes to InvK.

Proof: By the definition of stabilization, InvK should be closed with respect
to the execution of the actions of KDP, and KDP should converge to InvK.
We prove the closure first.

Closure. To aid in the subsequent convergence proof, we show a property that
is stronger than just the closure of InvK. We demonstrate the closure of the
following conjunction of predicates: Inv.a and Inv.b.a for a set of descendants of
a up to a certain depth of the tree. To put another way, in showing the closure of
Inv.b.a for b we assume that the appropriate predicates hold for all its ancestors.
Naturally, the closure of InvK follows.

By definition of a closure of a predicate, we need to demonstrate that if the
predicate holds in a certain state, the execution of any action in this state does
not violate the predicate.

Let us consider Inv.a and a root process a first. Notice that the only two
actions that can potentially violate Inv.a are enter.a and forward.e. Let us
examine each action. If enter.a is enabled, each child of a is replying. Hence,
when it is executed and it changes the state of a to idle, Inv.a holds. If forward.e
is enabled, a is requesting. Thus, executing the action and setting the state of e
to req does not violate Inv.a.

Let us now consider Inv.b.a for an intermediate process b ∈ M.a. We examine
the effect of the actions of b, b’s parent — c, and one of b’s children — d in this
sequence.

We start with the actions of b. If I.b holds, forward.b is the only action that
can be enabled. If it is enabled, c is requesting. Thus, if it is executed, R.b holds
and Inv.b.a is not violated. If R.b holds then back.b is the only action that can
be enabled. However, if back.b is enabled and R.b holds, then all children of b are
replying. If back.b is executed, the resultant state conforms to P.b. If P.b holds,
then stop.b can exclusively be enabled. If P.b holds and stop.b is enabled, then
c is idle and all children of b are replying. The execution of back.b sets the state
of b to idle. The resulting state conforms to I.b and Inv.b.a is not violated.

Let us examine the actions of c. Recall that we are assuming that Inv.c and
the respective invariants of all of b’s ancestors hold. If I.b holds, forward.c and
join.c (in case b is a child of a) are the actions that can possibly be enabled. If
either is enabled, b is idle. The execution of either action changes the state of c to
req. I.b and Inv.b.a still hold. If R.b holds, none of the actions of c are enabled.
Indeed, actions forward.c, back.c, join.c and enter.c are disabled. Moreover, if
R.b holds, c is requesting: since Inv.c holds, c must be in R.c. Which means that
c’s parent is not idle. Hence, stop.c is also disabled. Since P.b does not mention
the state of c, the execution of c’s actions does not affect the validity of P.b.

Let us now examine the actions of d. If I.b holds, the only possibly enabled
action is stop.d. The execution of this action changes the state of d to idle,
which does not violate I.b. R.b does not mention the state of d. Hence, its action
execution does not affect R.b. If P.b holds, all actions of d are disabled. This
concludes the closure proof of InvK.

Convergence. We prove convergence by induction on the depth of the tree
rooted in a. Let us show convergence of a. The only illegitimate set of states is
IR′.a. When a conforms to IR′.a, a is idle and at least one child e is requesting.
In such state, all actions of a that affect its state are disabled. Moreover, for
every child of a that is idle, all relevant actions are disabled as well. For the
child of a that is not idle, the only enabled action is stop.e. After this action is
executed, e is idle. Thus, eventually IR.a holds.

Let a conform to Inv.a. Let also every descendant process f of a up to depth
i confirm to Inv.f . Let the distance from a to b be i + 1. We shall show that
Inv.b.a eventually holds. Notice that according to the preceding closure proof,
the conjunction of Inv.a and Inv.f for each process f in the distance no more
than i is closed.

Note that according to Figure 3, there is no loop in the state transitions
containing primed states. Hence, to prove that b eventually satisfies Inv.b.a we
need to show that b does not remain in a single primed state indefinitely. Process
b can satisfy either I ′.b or P ′.b. Let us examine these cases individually.

Let b ∈ I ′.b. Since Inv.c holds, if b is idle, c cannot satisfy P.c. Thus, for b to
satisfy I ′.b, at least one child d of b must be requesting. However, if b is idle then
stop.d is enabled. Notice that when b is idle, none of its non-requesting children

can start to request. Thus, when this stop is executed for every requesting child
of b, b leaves I ′.b.

Suppose b ∈ P ′.b. This means that there exists at least one child d of b that
is not replying. However, for every such process d, back.d is enabled. Notice that
when b is replying, none of its replying children can change state. Thus, when
back is executed for every non-replying child of b, b leaves P ′.b.

Hence, KDP converges to InvK. 2

Theorem 2 (Safety). If InvK holds and enter.a is enabled, then for every
process b ∈ M.a, enter.b is disabled.

Proof: If enter.a is enabled, every child of a is replying. Due to InvK, this
means that every descendant of a is also replying. Thus, for every process x
whose priority is lower than a’s priority, enter.x is disabled. Note also, that
since enter.a is enabled, for every process y whose priority is higher than a’s,
state.a.y is idle. According to InvK, none of the ancestors of a in y’s tree,
including y’s children, are replying. Thus, enter.y is disabled. In short, when
enter.a is enabled, neither higher nor lower priority processes of M.a have enter
enabled. The theorem follows. 2

Lemma 1. If InvK holds, and some process a is requesting, then eventually
either a stops requesting or none of its descendants are idle.

Proof: Notice that the lemma trivially holds if a stops requesting. Thus, we
focus on proving the second claim of the lemma. We prove it by induction on the
depth of a’s tree. Process a is requesting and so it is not idle. By the assumption
of the lemma, a will not be idle. Now let us assume that this lemma holds for
all its descendants up to distance i. Let b be a descendant of a whose distance
from a is i + 1. And let b be idle.

By inductive assumption, b’s parent c is not idle. Due to InvK, if b is idle,
c is not replying. Hence, c is requesting. If there exists a child d of b that is not
idle, then stop.d is enabled at d. When stop.d is executed, d is idle. Notice that
when b and d are idle, all actions of d are disabled. Thus, d continues to be idle.
When all children of b are idle and its parent is requesting, forward.b is enabled.
When it is executed, b is not idle. Notice, that the only way for b to become idle
again is to execute stop.b. However, by inductive assumption c is not idle. This
means that stop.b is disabled. The lemma follows. 2

Lemma 2. If InvK holds and some process a is requesting, then eventually all
its children in M.a are replying.

Proof: Notice that when a is requesting, the conditions of Lemma 1 are sat-
isfied. Thus, eventually, none of the descendants of a are idle. Notice that if
a process is replying, it does not start requesting without being idle first (see
Figure 3). Thus, we have to prove that each individual process is eventually
replying. We prove it by induction on the height of a’s tree.

If a leaf node b is requesting and its parent is not idle, back.b is enabled. When
it is executed, b is replying. Assume that each node whose longest distance to

a leaf of a’s tree is i is replying. Let b’s longest distance to a leaf be i + 1. By
assumption, all its children are replying. Due to Lemma 1, its parent is not idle.
In this case back.b is enabled. After it is executed, b is replying. By induction,
the lemma holds. 2

Lemma 3. If InvK holds and the computation contains infinitely many states
where a is idle, then for every descendant there are infinitely many states where
it is idle as well.

Proof: We first consider the case where the computation contains a suffix
where a is idle in every state. In this case we prove the lemma by induction on
the depth of a’s tree with a itself as a base case. Assume that there is a suffix
where all descendants of a up to depth i are idle. Let us consider process b whose
distance to a is i+1 and this suffix. Notice that this means that c remains idle in
every state of this suffix. If b is not idle, stop.b is enabled. Once it is executed, no
relevant actions are enabled at b and it remains idle afterwards. By induction,
the lemma holds.

Let us now consider the case where no computation suffix of continuously
idle a exists. Yet, there are infinitely many states where a is idle. Thus, a leaves
the idle state and returns to it infinitely often. We prove by induction on the
depth of the tree that every descendant of a behaves similarly. Assume that this
claim holds for the descendants up to depth i. Let b’s distance to a be i + 1.

When InvK holds, the only way for b’s parent c to leave idle is to execute
forward.c (see Figure 3). Similarly, the only way for c to return to idle is to
execute stop.c while c is replying 4. However, forward.c is enabled only when b is
idle. Also, according to InvK when c is requesting, b is not idle. Thus, b leaves
idle and returns to it infinitely many times as well. By induction, the lemma
follows. 2

Lemma 4. If InvK holds and process a is requesting such that and a’s priority
is the highest among the processes that ever request the CS in M.a, then a
eventually executes the CS.

Proof: If a is requesting, then, by Lemma 2, all its children are eventually
replying. Therefore, the first and second conjuncts of the guard of enter.a are
true. If a’s priority is the highest among all the requesting processes in M.a,
then each process z, whose priority is higher than that of a is idle. According
to Lemma 3, state.a.z is eventually idle. Thus, the third and last conjunct of
enter.a is enabled. This allows a to execute the CS. 2

Lemma 5. If InvK holds and process a is requesting, a eventually executes the
CS.

Proof: Notice that by Lemma 2, for every requesting process, the children
are eventually replying. According to InvK, this implies that all the descendants

4 The argument is slightly different for c = a as it executes join.a and enter.a instead.

of the requesting process are also replying. For the remainder of the proof we
assume that this condition holds.

We prove this lemma by induction on the priority of the requesting processes.
According to Lemma 4, the requesting process with the highest priority even-
tually executes the CS. Thus, if process a is requesting and there is no higher
priority process b ∈ M.a which is also requesting then, by Lemma 4, a eventually
enters the CS.

Suppose, on the contrary, that there exists a requesting process b ∈ M.a
whose priority is higher than a’s. If every such process b enters the CS finitely
many times, then, by repeated application of Lemma 4, there is a suffix of the
computation where all processes with priority higher than a’s are idle. Then,
by Lemma 4, a enters the CS. Suppose there exists a higher priority process
b that enters the CS infinitely often. Since a is requesting, state.b.a = rep.
When b executes the CS, it enters a into YIELD.b. We assume that b enters
the CS infinitely often. However, b can request the CS again only if YIELD.b
is empty. The only action that takes a out of YIELD.b is stop.b. However, this
action is enabled if state.b.a is idle. Notice that, if InvK holds, the only way
for the descendants of a to move from replying to idle is if a itself moves from
requesting to idle. That is a executes the CS. Thus, each process a requesting
the CS eventually executes it. 2

Lemma 6. If InvK holds and process a wishes to enter the CS, a eventually
requests.

Proof: We show that a wishing to enter the CS eventually executes join.a. We
assume that a is idle and needcs.a is true. Then, join.a is enabled if Y IELD.a
is empty. a adds a process to Y IELD only when it executes the CS. Thus, as a
remains idle, processes can only be removed from Y IELD.a.

Let us consider a process b ∈ Y IELD.a. If b executes the CS finitely many
times, then there is a suffix of the computation where b is idle. According to
Lemma 3, for all descendants of b, including a, state.a.b is idle. If this is the case
stop.a is enabled. When it is executed b is removed from Y IELD.a.

Let us consider the case, where b executes the CS infinitely often. In this case,
b enters and leaves idle infinitely often. According to Lemma 3, state.a.b is idle
infinitely often. Moreover, a moves to idle by executing stop.a, which removes b
from Y IELD.a. The lemma follows. 2

The theorem below follows from Lemmas 5 and 6.

Theorem 3 (Liveness). If InvK holds, a process wishing to enter the CS is
eventually allowed to do so.

We draw the following corollary from Theorems 1, 2 and 3.

Corollary 1. Program KDP is a self-stabilizing solution to the k-hop diners
problem.

Due to the space restrictions we state the following theorem without proof.

Theorem 4 (Termination). Program KDP is terminating.

3.3 Stabilization Efficiency Evaluation

Observe (see Figure 3) that each process executes at most two of its own actions
before satisfying the stabilization predicate. Each of these action executions may
only be interleaved by the action execution of the process neighbors. Let δ be the
maximum degree of a process. Since stabilization proceeds from the root, there
could be at most 2(δ + 1)k executions of actions in the conflict neighborhood
before it stabilizes. If δ is not related to the number of processes in the system,
the stabilization time of KDP depends only on k and thus independent of the
system size.

Notice that the stabilization of one conflict neighborhood is independent of
stabilization of another. Thus, the spacial extent of the state corruption is at
most 2k. Notice also that the locality extends to the trees used by KDP. The
individual tree construction is independent of construction of other trees. Thus,
these trees can be built or stabilized in parallel.

4 Solution to Generalized Dining Philosophers

Notice that we presented KDP for the case of a rather strictly defined conflict
neighborhood. However, KDP can be extended to handle an arbitrary symmetric
conflict neighborhood relation.

In this case, each process p still has to have a spanning tree to all its conflict
neighbors. Notice that, unlike KDP, it is possible that some conflict neighbor q
is only reachable through a process r that is not a conflict neighbor of p. In this
case, r is included in p’s spanning tree. Process r still propagates the requests
and replies along p’s tree. However, r ignores the state of p for its own CS access.
For instance, r never enters p in Y IELD.r.

Notice, that it may happen that some branches of the constructed tree for
some process of p do not contain its conflict neighbors at all. The CS request
propagation from p to such a branch is not necessary. To avoid such propagation
our program can be further optimized as follows. If a leaf of a tree is not a
conflict neighbor of p, it so informs its parent. If process q does not have conflict
neighbors of p in a certain branch, q does not forward p’s requests to that branch.
If process q does not have any conflict neighbors of p at all among its descendants
and q itself is not a conflict neighbor of p, q informs its parent about it. Thus, the
tree is pruned to contain only p’s conflict neighbors and their ancestors which
further improves the efficiency of our program.

5 Implementation in Wireless Sensor Networks

As we motivated KDP by the problems arising in wireless sensor networks, we
would like to discuss implementing our algorithm in this environment. From
algorithm correctness standpoint, this environment is a variant of a message-
passing system with lossy channels. The broadcast nature of the radio signal
allows certain performance gains.

In implementing KDP in this environment the concern is to preserve its
correctness and termination properties. We discuss the modifications to preserve
the algorithm’s correctness first. Note that in order to satisfy non-trivial liveness
properties we assume that our environment conforms to transmission fairness:
if a process attempts to send infinitely many messages, all of its communication
neighbors will receive infinitely many of them. Note that this assumption is
weaker than used previously for self-stabilizing algorithms in sensor networks
[19, 24]: it is usually assumed that the expected message transmission time for
one hop neighbors is constant. Our idea is to use the timeouts such that the
lost messages are recovered. There are two phases where the message recovery is
important: request and release propagation. In case of request propagation, when
the parent changes its state to req, it sends a message to its children and starts
a timeout. When the timeout expires, the parent resubmits the request. Upon
the receipt of the request, the child’s actions differ depending on its state. As in
the original algorithm, in case the child is in idle, it switches to req and further
propagates the request; similarly, if the child is in req, it ignores the request. In
case the child is in rep, it sends back the message informing the parent of its
state. These actions ensure that the request will be propagated along the routing
tree and the reply will be collected. As an efficiency optimization, a child may
acknowledge the request message from its parent. This acknowledgment is done
either explicitly or by broadcasting the its own request to its children. The parent
then resubmits its request only to the children that have not acknowledged it
yet. Recall that for release propagation, the parent needs to ascertain that its
children are idle before switching to req and starting to propagate the next
request. Similar to the case of request propagation, the parent has to keep the
list of its non-idle children and keep informing its children of its idle state until
all of its children acknowledge (explicitly or implicitly) that they also switched
to idle. When all its children are idle the parent can turn of its notification
timeout.

Let us now address termination preservation ofKDP. Note that co-satisfaction
of stabilization and termination in message-passing systems is a rather difficult
objective. However, Arora and Nesterenko [2] demonstrated that mutual exclu-
sion and, by extension, diners admits a solution with both of these properties.
Notice that, as described, it is possible that the algorithm refined to operate in
wireless sensor networks starts in an illegitimate terminal state where some child
is in rep and its parent is in idle. This state is illegitimate: if there is a further
request and the parent switches to req, then the parent may mistake the child’s
reply as the answer to its new request. This mistake may result in a safety viola-
tion (see [2] for a detailed discussion of this issue). A stabilizing algorithm cannot
terminate in an illegitimate state. Thus, this particular terminal state has to be
eliminated. The mechanism is as follows. If a process is in req, it periodically
informs its parent about its state. If parent is in idle, it messages back with its
state and forces the child to switch to idle as well. With this modification, the
only terminal state is the one where every process is in idle. This is a legitimate
state and our algorithm remains terminating and stabilizing.

6 Further Extensions

Extension to generic drinking philosophers. In the classic drinking philoso-
phers problem, the set of conflict neighbors for each process p may vary with
each CS access. This problem can be extended to the generic case of conflict
neighbors in a straightforward manner.

KDP can be extended to solve the generalized drinking philosophers problem
as well. In this case, p has to construct a spanning tree to the union of all of
its possible conflict neighbors. Each process q in the tree has the list of all its
descendants. Thus, p has the list of all its potential conflict neighbors. When
p requests the CS, it advertises the list of the actual conflict neighbors for this
request. The child of p propagates the request only if it has a descendant in this
set. The process repeats at each node.
Simplification to unfair case. Notice that some problems, such as distance-k
vertex coloring, maximal irredundant sets, etc. [14] do not require fairness of
CS access specified by the diners: in any computation of such a problem there
are only finitely many CS accesses. If KDP is to be used for such a problem,
it can be simplified. In the unfair case, an idle higher priority process does not
have to wait for a lower priority neighbor. This obviates the need for YIELD
and simplifies actions stop, enter and join. Moreover, the computations of such
program are finite. Thus, this program is capable of operating without the weak
fairness assumption about action execution.
Future research directions. It is unclear if KDP is an optimal solution to
generalized diners with respect to space complexity. If the communication topol-
ogy is dense, statically maintaining spanning trees may be expensive. Hence, the
construction of a more space-efficient algorithm is an attractive area of future

References

1. G. Antonoiu and P.K. Srimani. Mutual exclusion between neighboring nodes in an
arbitrary system graph that stabilizes using read/write atomicity. In EuroPar’99,
volume 1685 of LNCS, pages 823–830. Springer-Verlag, 1999.

2. A. Arora and M. Nesterenko. Unifying stabilization and termination in message-
passing systems. Distributed Computing, 17(3):279–290, March 2005.

3. M. Arumugam and S.S. Kulkarni. Self-stabilizing deterministic TDMA for sensor
networks. Technical Report MSU-CSE-05-19, Michigan State University, 2005.

4. J. Beauquier, A.K. Datta, M. Gradinariu, and F. Magniette. Self-stabilizing local
mutual exclusion and daemon refinement. In 14th International Symposium on
Distributed Computing, volume 1914 of LNCS, pages 223–237. Springer, 2000.

5. C. Boulinier, F. Petit, and V. Villain. When graph theory helps self-stabilization. In
PODC ’04: Proceedings of the twenty-third annual ACM symposium on Principles
of distributed computing, pages 150–159, New York, NY, USA, 2004. ACM Press.

6. A. Bui, A.K. Datta, F. Petit, and V. Villain. Space optimal PIF algorithm: self-
stabilized with no extra space. In IEEE International Conference on Performance,
Computing and Communications, pages 20–26, 1999.

7. S. Cantarell, A.K. Datta, and F. Petit. Self-stabilizing atomicity refinement allow-
ing neighborhood concurrency. In 6th International Symposium on Self-Stabilizing
Systems, volume 2704 of LNCS, pages 102–112. Springer, 2003.

8. K.M. Chandy and J. Misra. The drinking philosophers problem. ACM Transactions
on Programming Languages and Systems, 6(4):632–646, October 1984.

9. K.M. Chandy and J. Misra. Parallel Program Design: a Foundation. Addison-
Wesley, Reading, Mass., 1988.

10. A.K. Datta, M. Gradinariu, and M. Raynal. Stabilizing mobile philosophers. In-
formation Procesing Letters, 95(1):299–306, 2005.

11. E. Dijkstra. Cooperating Sequential Processes. Academic Press, 1968.
12. S. Dolev. Self-Stabilization. MIT Press, 2000.
13. M. Gairing, W. Goddard, S.T. Hedetniemi, P. Kristiansen, and A.A. McRae.

Distance-two information in self-stabilizing algorithms. Parallel Processing Let-
ters, 14(3-4):387–398, 2004.

14. W. Goddard, S.T. Hedetniemi, D.P Jacobs, and V Trevisan. Distance-k informa-
tion in self-stabilizing algorithms. to appear in the Proceedings of the 13th Collo-
quium on Structural Information and Communication Complexity (SIROCCO’06).

15. M.G. Gouda. Elmnts. of Network Protocol Design. John Wiley & Sons, Inc., 1998.
16. M.G. Gouda and F. Haddix. The alternator. In Proceedings of the Fourth Workshop

on Self-Stabilizing Systems, pages 48–53. IEEE Computer Society, 1999.
17. T. Herman. A comprehensive bibliography on self-stabilization (working paper).

CJTCS: Chicago Journal of Theoretical Computer Science, 1995.
18. T. Herman and S. Tixeuil. A distributed TDMA slot assignment algorithm for

wireless sensor networks. In Proceedings of the First International Workshop on
Algorithmic Aspects of Wireless Sensor Networks, pages 45–58, 2004.

19. Ted Herman and Sébastien Tixeuil. A distributed TDMA slot assignment algo-
rithm for wireless sensor networks. In Proceedings of the First Workshop on Algo-
rithmic Aspects of Wireless Sensor Networks (AlgoSensors’2004), number 3121 in
LNCS, pages 45–58. Springe, July 2004.

20. S.T. Huang. The fuzzy philosophers. In J. Rolim et al., editor, Proceedings of the
15th IPDPS 2000 Workshops, volume 1800 of Lecture Notes in Computer Science,
pages 130–136, Cancun, Mexico, May 2000. Springer-Verlag.

21. C. Johnen, L.O. Alima, A.K. Datta, and S. Tixeuil. Optimal snap-stabilizing
neighborhood synchronizer in tree networks. Parallel Processing Letters, 12(3-
4):327–340, 2002.

22. S.S. Kulkarni and M. Arumugam. Collision-free communication in sensor networks.
In Proceedings of the Symposium on Self-Stabilizing Systems (SSS), Springer-
Verlag LNCS:2704, pages 17–31, San Francisco,CA, June 2003.

23. M. Malhotra, M. Krasniewski, C. Yang, S. Bagchi, and W. Chappbell. Location
estimation in ad-hoc networks with directional antennas. In the 25th IEEE Inter-
national Conference on Distributed Computing Systems, pages 633–642, 2005.

24. Nathalie Mitton, Eric Fleury, Isabelle Guérin-Lassous, Bruno Séricola, and
Sébastien Tixeuil. On fast randomized colorings in sensor networks. In Proceedings
of ICPADS 2006, page to appear. IEEE Press, July 2006.

25. M. Mizuno and M. Nesterenko. A transformation of self-stabilizing serial model
programs for asynchronous parallel computing environments. Information Process-
ing Letters, 66(6):285–290, 1998.

26. M. Nesterenko and A. Arora. Stabilization-preserving atomicity refinement. Jour-
nal of Parallel and Distributed Computing, 62(5):766–791, 2002.

27. P.A.G. Sivilotti, S.M. Pike, and N. Sridhar. A new distributed resource-allocation
algorithm with optimal failure locality. In Proceedings of the 12th IASTED Inter-
national Conference on Parallel and Distributed Computing and Systems, volume 2,
pages 524–529. IASTED/ACTA Press, November 2000.

