
Infinite Unlimited Churn (Short Paper)

Dianne Foreback1(B), Mikhail Nesterenko1, and Sébastien Tixeuil2

1 Kent State University, Kent, OH, USA
dforebac@kent.edu

2 UPMC Sorbonne Universités and IUF, Paris, France

Abstract. We study unlimited infinite churn in peer-to-peer overlay
networks. Under this churn, arbitrary many peers may concurrently
request to join or leave the overlay network; moreover these requests may
never stop coming. We prove that unlimited adversarial churn, where
processes may just exit the overlay network, is unsolvable. We focus on
cooperative churn where exiting processes participate in the churn han-
dling algorithm. We define the problem of unlimited infinite churn in
this setting. We distinguish the fair version of the problem, where each
request is eventually satisfied, from the unfair version that just guaran-
tees progress. We focus on local solutions to the problem, and prove that
a local solution to the Fair Infinite Unlimited Churn is impossible. We
then present our algorithm UIUC that solves the Unfair Infinite Unlim-
ited Churn Problem for a linearized peer-to-peer overlay network. We
extend this solution to skip lists and skip graphs.

1 Our Contribution

We study the problem of churn in (structured) peer-to-peer overlay networks in
the asynchronous message passing system model. Peers in the overlay network
maintain the identifiers of its overlay neighbors in memory; message routing
is left to the underlay. Specifically, we consider cooperative churn as opposed
to adversarial when processes just exit. We prove that there does not exist an
algorithm that can handle unlimited adversarial churn.

We define infinite unlimited churn in peer-to-peer overlay networks. Infinite
churn handles an unbounded number of churn requests under which the overlay
network has to maintain services (e.g. content retrieval) while handling it. This
is opposed to finite churn, where services are either considered suspended or
they are disregarded altogether [2]. We consider unlimited churn where there is
no bound on the number of concurrently joining or leaving processes; potentially
all processes presently in the overlay network may request to leave concurrently.
Note that the infinite and unlimited churn properties are orthogonal. For exam-
ple, churn may be finite but unlimited: all processes may request to leave but
no more join or leave requests are forthcoming. Alternatively, in infinite limited
churn, there may be an infinite total number of join or leave requests but only,
for example, five of them in any given state. To the best of our knowledge, this
paper is the first systematic study of unlimited infinite churn.
c© Springer International Publishing AG 2016
B. Bonakdarpour and F. Petit (Eds.): SSS 2016, LNCS 10083, pp. 148–153, 2016.
DOI: 10.1007/978-3-319-49259-9 12



Infinite Unlimited Churn 149

2 The Infinite Unlimited Churn Problem

We distinguish fair and unfair types of the problem. A request to join and, in
cooperative churn, leave the overlay network is submitted to the overlay by the
churning process. A churn handling algorithm is fair if it eventually satisfies
every request. By contrast, a churn algorithm that allows the possibility, under
infinite churn, to bypass indefinitely some requests (still guaranteeing progress,
i.e., satisfying some churn requests indefinitely), is unfair. Unfair algorithms are
possibly more efficient.

A link is the state of channels between a pair of neighbor processes. As a
churn algorithm services requests, it may temporarily violate the overlay net-
work topology that is being maintained. A transitional link violates the overlay
network topology while a stable link conforms to it. An algorithm that solves
the infinite churn problem conforms to a combination of the following properties:
request progress: if there is a churn request in the overlay network, some churn
request is eventually satisfied; fair request: if there is a churn request in the
overlay network, this churn request is eventually satisfied; terminating tran-
sition: every transitional link eventually becomes stable; message progress:
a message in a stable link is either delivered or forwarded closer to the destina-
tion; message safety: a message in a transitional link is not lost. Note that the
fair request property implies the request progress property. The converse is not
necessarily true.

We define two variants of the problem. The Unfair Infinite Unlimited Churn
Problem is the combination of request progress, terminating transition, message
progress and message safety properties. The Fair Infinite Unlimited Churn Prob-
lem is the combination of fair request, terminating transition, message progress
and message safety properties. In other words, Fair Infinite Unlimited Churn
guarantees that every churn request is eventually satisfied while Unfair Infinite
Unlimited Churn does not.

3 Impossibilities

A network topology is expansive if there exists a constant m independent of
the network size such that for every pair of processes x and y where the dis-
tance between x and y is greater than m, a finite number of processes may be
added m hops away from x to increase the distance between x and y by at
least one. This constant m is the expansion vicinity of the topology. Note that a
completely connected topology is not expansive since the distance between any
pair of processes is always one. However, a lot of practical peer-to-peer overlay
network topologies are expansive. For example, a linear topology is expansive
with expansion vicinity of 1 since the distance between any pair of processes at
least two hops away may be increased by one if a process is added outside the
neighborhood of one member of the pair.

A churn request may potentially be far away, i.e. a large number of hops, from
the place where the topology maintenance operation needs to occur. We will



150 D. Foreback et al.

consider an overlay network that maintains a linear topology, i.e., a topological
sort. Place of join for a join request of process x, is the pair of processes y and
z that already joined the overlay network, such that y has the greatest identifier
less than x and z has the smallest identifier greater than x. In every particular
state of the overlay network, for any join request, there is a unique place of
join. Note that as the algorithm progresses and other processes join or leave the
overlay network, the place of join may change. Place of leave for a leave request
of process x is defined similarly. Place of churn is a place of join or leave.

A churn algorithm is local if there exists a constant l independent of the
overlay network size, such that only processes within l hops from the place
of churn need to take steps to satisfy this churn request. The minimum such
constant l is the locality of the algorithm. Note that a local algorithm may
maintain only an expansive topology, and that the expansive vicinity of this
topology must be greater than the locality of the algorithm.

Theorem 1. There does not exist a solution for unlimited adversarial churn if
the maintained topology is not fully connected1.

Theorem 2. There does not exist a local solution to the Fair Infinite Unlimited
Churn Problem for an expansive overlay network topology.

constant p // process identifier
variables

left, right: ids of left and right neighbors,
⊥ if undefined

leaving: boolean, initially false, read only,
application request

busy: boolean, initially false; true when
servicing a join/leave request
or when joining

C: incoming channel

actions
joinRequest: join ∈ C −→

receive join (reqId)
if (p < reqId < right) and not leaving
and not busy then

send sua(right) to reqId
busy := true

else
if reqId < p then

send join(reqId) to left
else

send join(reqId) to right

leaveRequest: leave ∈ C −→
receive leave(reqId, q)
if reqId = right and not leaving
and not busy then

send sua(⊥) to q
busy := true

else
if p <= reqId then

send leave(reqId, q) to left
else

send leave(reqId, q) to right

setUpA: sua ∈ C −→
receive sua(reqId) from q
if reqId �= ⊥ then // Join 1.1 received

right := reqId
left := q
send sua(⊥) to right

else // Join 1.2 or Leave 1 received
left := q
send sub to left

setUpB: sub ∈ C −→
receive sub from q
if q �= right then // Join 2.2 or Leave 2 received

send tda to right
right := q

else // Join 2.1 received
send sub to left

tearDownA: tda ∈ C −→
receive tda from q
if q �= left then // Join 3 or Leave 3.2 received

send tdb to q
else // Leave 3.1 received

send tda to right

tearDownB: tdb ∈ C −→
receive tdb from q
if q �= right then // Join 4 or Leave 4.2 received

send ftd to q
busy := false

else // Leave 4.1 received
send tdb to left

tranDone: ftd ∈ C −→
receive ftd from q
if leaving then // Leave 5 received, p may exit

right = ⊥
left = ⊥

else
busy := false // Join 5 received

Fig. 1. Algorithm UIUC for process p.

1 Proofs and referenes are in the full version of the paper [3].



Infinite Unlimited Churn 151

4 Local Unfair Infinite Unlimited Churn (UIUC)
We present a local algorithm Unfair Infinite Unlimited Churn (UIUC) in Fig. 1
that satisfies the four properties of the Unfair Infinite Unlimited Churn Problem
while maintaining a linear topology. The basic idea of the UIUC algorithm is to
have the handler process with the smaller identifier coordinate churn requests
to its immediate right. This handler considers one such request at a time. This
serializes request processing and guarantees the accepted request’s eventual com-
pletion. The request is sent in the form of a single join or leave message. Each
process p maintains two identifiers: left, where it stores the largest identifier
greater than p and right, where it stores the smallest identifier less than p. Read-
only variable leaving is set to true by the environment once the joined process
wishes to leave the overlay network. Variable busy is used by the handler process
to indicate whether it currently coordinates a churn request, or it is initialized
to true for a joining process. The incoming channel for process p is variable C.
Communication channels are FIFO with unlimited message capacity. We refer to
processes and their identifiers interchangeably. Process p is a neighbor of process
q if q stores the identifier of p. Note that q is not necessarily a neighbor of p.
A process may send a message to any of its neighbors. A process may send a
message only to the receiver with a specific id, i.e., we do not consider broadcasts
or multicasts. The processes have unique identifiers. The largest process stores
positive infinity in its right variable; the smallest process stores negative infinity
in left. A left end of a link is the smaller-id neighbor process. A right end is the
greater-id process. As a process joins or leaves the overlay network it may change
the values of its own or its neighbors variables thus transitioning the link from
one state to another. In a linear topology, a link is transitional if its left end is
not a neighbor of its right end or vice versa. The link is stable otherwise. The
largest and smallest processes may not leave. The links to the right of the largest
process and to the left of the smallest processes are always stable. A process may
leave the overlay network only after it has joined. We assume that in the initial
state of the overlay network, all links are stable.

We assume that a join and, for symmetry, a leave message is inserted into an
incoming channel of an arbitrary joined process in the overlay network. Message
join carries the identifier of the process wishing to join the overlay network.
Message leave carries the identifier of the leaving process as well as the identifier
of the process immediately to its right. If the receiver realizes that it is to the
immediate right of the place of join or leave, and the receiver is not currently
handling another request, i.e., busy �= true, and it does not want to leave, it
starts handling the arrived request. Otherwise, the recipient process forwards
the request to its left or right.

Request handling is accomplished by the order messages are sent and received
to setup stable links and tear down transitional links to maintain the linear
topology. It is similar for join and leave and is divided into five stages. The first
two stages are setup stages: they set up the channels for the links of the joining
process or for the processes that are the neighbors of the leaving process. The
third and forth stages are teardown stages : they remove the channels of the links



152 D. Foreback et al.

being replaced. The last stage informs either the leaving process that it may exit,
or the joining process that it may start coordinating its own churn requests. In
the case of join, two links need to be set up, hence the setup stages are divided
into two substages 1.1, 1.2, 2.1 and 2.2, followed by the teardown stages 3 and
4, then stage 5; these join substage numbers are included in the comments of
Fig. 1. Similarly, in the case of leave, links setup stages 1 and 2 are followed by
the teardown stages that are divided into substages 3.1, 3.2, 4.1, 4.2 because
two links need to be torn down, then stage 5. The messages transmitted during
corresponding stages are 1. set up A sua, 2. set up B sub, 3. tear down A tda,
4. tear down B tdb and 5. finish teardown ftd.

Theorem 3. Algorithm UIUC is local and it solves the Unfair Infinite Unlim-
ited Churn Problem.

5 UIUC Extensions to Skip List and Skip Graph
and Further Work

Churn algorithm UIUC extends to more complicated topologies such as skip
lists and skip graphs In these topologies, the processes have links on multiple
levels. The processes are linearized in the lowest level. In the higher levels, the
processes have links to progressively more distant peers. These higher level links
accelerate overlay network searches and other operations. To extend UIUC to
such a structure a separate version of UIUC should be run at each level. The
churn request should bear the level number to differentiate which level UIUC
they belong to. The churning process should proceed up and down the levels as
follows. A joining process first joins the first, linear, level, then the next and so
on until it joins all the levels appropriate to the particular structure. The leaving
process should proceed in reverse: the leaving process requests to leave the levels
in decreasing order.

As further research it is interesting to consider extensions of UIUC to ring
structures such as Chord [4] or Hyperring [1]. Another important area of inquiry
is addition of limited adversarial churn. This problem is difficult to address in
the asynchronous message passing model where the exited process may not be
differentiated from a slow one. Oracles determining a process exit [2] may have
to be used.

References

1. Awerbuch, B., Scheideler, C.: The hyperring: a low-congestion deterministic data
structure for distributed environments. In: SODA, pp. 318–327. Society for Indus-
trial and Applied Mathematics, Philadelphia (2004)

2. Foreback, D., Koutsopoulos, A., Nesterenko, M., Scheideler, C., Strothmann, T.:
On stabilizing departures in overlay networks. In: Felber, P., Garg, V. (eds.)
SSS 2014. LNCS, vol. 8756, pp. 48–62. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-11764-5 4

http://dx.doi.org/10.1007/978-3-319-11764-5_4
http://dx.doi.org/10.1007/978-3-319-11764-5_4


Infinite Unlimited Churn 153

3. Foreback, D., Nesterenko, M., Tixeuil, S.: Infinite unlimited churn. Technical report
1608.00726, arXiv (2016)

4. Stoica, I., Morris, R., Liben-Nowell, D., Karger, D.R., Frans Kaashoek, M., Dabek,
F., Balakrishnan, H.: Chord: a scalable peer-to-peer lookup protocol for Internet
applications. IEEE/ACM Trans. Netw. 11(1), 17–32 (2003)


	Infinite Unlimited Churn (Short Paper)
	1 Our Contribution
	2 The Infinite Unlimited Churn Problem
	3 Impossibilities
	4 Local Unfair Infinite Unlimited Churn (UIUC)
	5 UIUC Extensions to Skip List and Skip Graph and Further Work
	References


