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1 Kent State University, Kent, OH, USA,
mikhail@cs.kent.edu,
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Abstract. Churn is processes joining or leaving the peer-to-peer over-
lay network. We study handling of various churn variants. Cooperative
churn requires leaving processes to participate in the churn algorithm
while adversarial churn allows the processes to just quit. Infinite churn
considers unbounded number of churning processes throughout a single
computation. Unlimited churn does not place a bound on the number
of concurrently churning processes. Fair churn handling requires that
each churn request is eventually satisfied. A local solution involves only
a limited part of the network in handing a churn request.

We prove that it is impossible to handle adversarial unlimited churn.
We sketch a global solution to all variants of cooperative churn and focus
on local churn handling. We prove that a local fair solution to infinite
churn, whether limited or unlimited, is impossible. On the constructive
side, we present an algorithm that maintains a linear topology and han-
dles the least restrictive unfair churn: infinite and unlimited. We extend
this solution to a 1-2 skip list, describe enhancements for generalized skip
lists and skip graphs.

1 Introduction

In a peer-to-peer overlay network, each member maintains the identifiers of its
overlay neighbors in its memory while leaving message routing to the underlay.
Such a network is inherently decentralized and scales well. Peer-to-peer overlays
are well suited for distributed content storage and delivery. Their recent appli-
cations range from internet telephony [8] to digital cryptocurrencies [29]. Due to
the lack of central authority and the volunteer nature of overlay network partic-
ipation, churn, or joining and leaving of peers, is a particularly vexing problem.
Churn may be cooperative, if departing processes execute a prescribed departure
algorithm; or adversarial, if they just quit.

Infinite and unlimited churn. Every peer-to-peer overlay network has to han-
dle churn. Usually, while the topological changes in the overlay required by the
churn request occur, the primary services of the overlay, such as content retrieval,
are either suspended or disregarded altogether. In other words, the churn is con-
sidered finite and the overlay network users have to wait till join/leave requests
stop coming. Then, the overlay network recovers and restores services. This may

? Preliminary fragments of this work appeared in [17].
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be tolerable if churn is infrequent since the overlay network is available most
of the time. However, at the scales that peer-to-peer overlay networks achieve,
churn is frequent if not continuous. In this case, churn related service degra-
dation may become unacceptable. It is, therefore, necessary to consider infinite
churn under which the overlay network has to maintain services while handling
it.

One way to handle churn is to engineer sufficient redundancy in the overlay
network topology so that if peers leave or join, there are enough alternative paths
for the operation of the network to proceed uninterrupted. In this approach, the
amount of redundancy necessarily places a limit on the number of processes that
churn concurrently: the churning processes must not sever all redundant paths.
If this limit is breached due to extensive churn, the network may collapse and
partition itself. To prevent such an outcome, the redundancy has to be extensive.
However, in the absence of heavy churn, this redundancy wastes resources. In this
paper, we consider unlimited churn with no bound on the number of concurrently
joining or leaving processes.

Unfair and local churn. In cooperative churn, the joining or leaving peer sub-
mits a request to the churn handling algorithm. Such an algorithm is fair if it
eventually satisfies every such request. A fair algorithm may not always be pos-
sible or efficient. An unfair churn handling algorithm may guarantee progress by
satisfying some requests but denying others indefinitely. A global churn handling
algorithm may designate a single process to handle all churn requests. Although
such a serial request handling solution may be simple, it may not be practical
as it creates a performance bottleneck and a single point of failure. In contrast,
a local solution only involves processes in the vicinity of the churning process.
In this paper, we study fairness and locality of churn solutions.

Topologies. An ad hoc peer-to-peer network forms haphazardly. A structured
peer-to-peer network maintains a particular topology to optimize its perfor-
mance. Most structured networks start with peer linearization [19] and then
add skip-links for search acceleration [1, 5, 34, 37]. A skip-list and skip-graph [13,
24, 30] are examples of a structured network built in this manner. Handling
churn in a skip-list extends to other similarly built structured networks in a
straightforward manner.

finite infinite
limited or unlimited limited or unlimited

global possible, Proposition 1

local
unfair

possible, Theorems 3 and 4
fair impossible,Theorem 2

Fig. 1. Cooperative churn solutions summary.

Our contribution. We consider the problem of churn in structured peer-to-
peer overlay networks in the asynchronous message passing system model. We
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first prove that there does not exist an algorithm that can handle unlimited
adversarial churn. We then focus on cooperative unlimited churn. Our results
are summarized in Figure 1. We outline the solution to global unlimited churn
and focus on local solutions. We distinguish fair and unfair types of the problem.
We prove that there is no local solution to the Fair Infinite Churn Problem
regardless of whether it is limited or unlimited. We then present an algorithm
that solves the unfair version of the problem while maintaining a linear topology,
i.e. topological sort. This solution immediately applies to fair and finite churn.
We extend our algorithm to handle churn in a more efficient structure of a 1-2
skip list. We describe solutions for generalized skip lists and skip graphs.

To the best of our knowledge, this paper is one of the first to focus specifically
on churn and is the first systematic study of unlimited infinite churn.

Related work. Independently of peer-to-peer overlay networks, several pa-
pers [25, 28, 38] address determination of the rate of churn, which is a difficult
task itself. Churn is studied for some fundamental problems in distributed com-
puting such as Agreement [3, 4, 21]. Churn can potentially be addressed by the
solution to the Group Membership Problem [11] or an implementation of a per-
fect failure detector [12]. However, the studied problems are inherently global,
which makes them unsuitable for peer-to-peer network use.

Peer-to-peer overlay networks are often designed to have redundant links so
that they can withstand limited churn [5–7, 20]. Many papers address repairing
the topology after determining a process unexpectedly left the overlay network [1,
4, 15, 22, 34, 35]. Others limit churn to maintain overlay services while adjusting
the network [2, 27].

An alternative approach is to self-stabilize from churn. Self-stabilization al-
lows the peer-to-peer network to recover from an arbitrary state once the disrup-
tions cease [9, 10, 14, 16, 19, 23, 24, 26, 30, 31, 33, 36]. Using oracles allows a peer-
to-peer network to recover from an initial incorrect state, even disconnection [16,
31]. A general framework of dealing with node departures is discussed [9, 26].
These approaches address finite churn.

Thus, previously, studies focused on limited or finite churn, while this paper
focuses on unlimited and infinite churn.

2 Model and Problem Statement

Peer-to-peer overlay networks, topology. A peer-to-peer overlay network
consists of a set of processes with unique identifiers. When it is clear from the
context, we refer to processes and their identifiers interchangeably. Processes
communicate by message passing. A process stores identifiers of other processes
in its memory. Process a is a neighbor of process b if b stores the identifier of
a. Note that b is not necessarily a neighbor of a. A process may send a mes-
sage to any of its neighbors. Message routing from the sender to the receiver is
carried out by the underlying network. A process may send a message only to
the receiver with a specific id, i.e. we do not consider broadcasts or multicasts.
Communication channels are FIFO with unlimited message capacity. A struc-
tured peer-to-peer overlay network maintains a particular topology. One of the
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basic topologies is linear, or a topological sort, where each process b has two
neighbors a < b and b < c such that a is the highest id in the overlay network
that is less than b and c is the lowest id greater than b.

Consider a particular topology. A cut-set is a (proper) subset of processes of
the network such that the removal of these processes and their incident edges
disconnects the network. It is known that if a network topology is not a com-
plete graph, it has a cut-set. Since a peer-to-peer overlay network maintains its
connectivity by storing identifiers in the memory of other processes, once dis-
connected it may not re-connect. Hence, a peer-to-peer overlay network must
not become disconnected either through the actions of the algorithm or through
churn actions.

Searching, joining and leaving the overlay network. The primary use
of a peer-to-peer overlay network is to determine whether a certain identifier is
present in the network. A search request message bearing the identifier of interest
may appear in the incoming channel of any process that has already joined the
overlay network. The request is routed until either the identifier is found or its
absence is determined.

A process may request to join the overlay network. We abstract bootstrapping
by assuming that a join request, bearing the joining process identifier, appears in
an incoming channel of any process that has already joined the overlay network.
A process that joined the overlay network may leave it in two ways. In adversarial
churn a leaving process just exits the overlay network without participating in
further algorithm actions. In cooperative churn a leaving process sends a request
to leave the overlay network; the leaving process exits only after it is allowed to
do so by the algorithm. A process may join the overlay network and then leave.
However, a process that left the overlay network may not join it again with the
same identifier. A join or leave request is a churn request and the corresponding
join or leave message is a churn message. When a leaving process exits the
overlay network, the messages in its incoming channels are lost. However, the
messages sent from this process before exiting remain in the incoming channel
of the receiving process.

Churn algorithm. A churn algorithm handles churn requests in cooperative
churn. For each process, an algorithm specifies a set of variables and actions. An
action is of the form 〈label〉 : 〈guard〉 −→ 〈command〉 where label differentiates
actions, guard is a predicate over local variables, and command is a sequence
of statements that are executed atomically. The execution of an action transi-
tions the overlay network from one state to another. An algorithm computation
is an infinite fair sequence of such states. We assume two kinds of fairness of
computation: weak fairness of action execution and fair message receipt. Weak
fairness of action execution means that if an action is enabled in all but finitely
many states of the computation then this action is executed infinitely often. Fair
message receipt means that if the computation contains a state where there is
a message in a channel, this computation also contains a later state where this
message is not present in the channel, i.e. there is no message loss and the mes-
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sage is received. We place no bounds on message propagation delay or relative
process execution speeds, i.e. we consider fully asynchronous computations.

Algorithm locality. A churn request may potentially be far, i.e. a large number
of hops, from the place where the topology maintenance operation needs to occur.
Place of join for a join request of process x, is the pair of processes y and z that
already joined the overlay network, such that y has the greatest identifier less
than x and z has the smallest identifier greater than x. In every particular state
of the overlay network, for any join request, there is a unique place of join. Note
that as the algorithm progresses and other processes join or leave the overlay
network, the place of join may change. Place of leave for a leave request of
process x is defined similarly. Place of churn is a place of join or leave.

A network topology is expansive if there exists a constant m independent of
the network size such that for every pair of processes x and y where the distance
between x and y is greater than m, a finite number of processes may be added m
hops away from x and the same number of processes may be removed from the
network such the distance between x and y is increased by at least one. This con-
stant m is the expansion vicinity of the topology. In other words, in an expansive
topology, every pair of processes far enough away may be further separated by
adding processes to the network while removing processes elsewhere. Note that
a completely connected topology is not expansive since the distance between any
pair of processes is always one. However, a lot of practical peer-to-peer overlay
network topologies are expansive. For example, a linear topology is expansive
with expansion vicinity of 1 since the distance between any pair of processes at
least two hops away may be increased by one if a process is added outside the
neighborhood of one member of the pair.

A churn algorithm is local if there exists a constant l independent of the
overlay network size, such that only processes within l hops from the place
of churn need to take steps to satisfy this churn request. The maximum such
constant l is the locality of the algorithm. Note that a local algorithm may
maintain only an expansive topology, and that the expansive vicinity of this
topology must not be greater than the locality of the algorithm.

Orthogonality of infinite and unlimited churn. A churn algorithm is de-
signed to handle particular churn. Churn is infinite if the number of churn re-
quests in a computation is not bounded by a constant either known or unknown
to the algorithm. To prevent the degenerate case of an indefinitely expanding
network, we assume that the difference between the number of join and leave
requests is still bounded. Churn is unlimited if the number of concurrent churn
requests in the overlay network is not bounded by a constant either known or
unknown to the algorithm. Observe that unlimited churn allows, for example,
that all process of the network request to leave. For limited churn, we assume
that there is a number k > 1 such that in any computation, the number of
concurrent requests is no more than k.

Note that these pairs of conditions are orthogonal. For example, churn may
be finite but unlimited: all processes may request to leave but no more join or
leave requests are forthcoming. Alternatively, in infinite limited churn, there may
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be an infinite total number of join or leave requests but only, for example, five
of them in any given state.

The problem statements. A link is the state of channels between a pair of
neighbor processes. As a churn algorithm services requests, it may temporarily
violate the overlay network topology that is being maintained. A transitional
link violates the overlay network topology while a stable link conforms to it.
An algorithm that solves a particular churn problem conforms to the following
properties.

request progress: if there is a churn request in the overlay network, some churn
request is eventually satisfied;

fair request: if there is a churn request in the overlay network, this churn
request is eventually satisfied;

terminating transition: every transitional link eventually becomes stable;
message progress: a message in a stable link is either delivered or forwarded

closer to the destination;
message safety: a message in a transitional link is not lost.

Note that the fair request property implies the request progress property.
The converse is not necessarily true. The following combinations of properties
are of particular interest.

Definition 1. A solution to the Unfair Churn Problem satisfies the combination
of request progress, terminating transition, message progress and message safety
properties.

Definition 2. A solution to the Fair Churn Problem satisfies the combination of
fair request, terminating transition, message progress and message safety prop-
erties.

In other words, a solution to the Fair Churn Problem guarantees that every
churn request is eventually satisfied while a solution to the Unfair Churn Problem
does not. An algorithm may satisfy these properties while handling finite or
infinite, limited or unlimited churn. Note that if a solution is proven impossible
under more restrictive churn conditions, it is also impossible under less restrictive
conditions. For example, if the solution to the Fair Churn Problem cannot handle
limited churn, it cannot handle unlimited churn either. Conversely, if a solution
is proven to handle less restrictive conditions, it is guaranteed to handle more
restrictive conditions. For example, if the solution to the Unfair Churn Problem
handles infinite unlimited churn, it also handles limited and finite churn.

3 Impossibilities and Global Solutions

Adversarial churn.

Theorem 1. There does not exist a solution for unlimited adversarial churn if
the maintained topology is not fully connected.
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Formal proofs are in the full version of the paper [18]. Intuitively, the reason
for the negative result of Theorem 1 is as follows. So long as the network is not
completely connected, there is a subset of nodes whose abrupt departure may
disconnect the network. For the rest of the paper, we are focusing on cooperative
churn.

Theorem 2. There does not exist a local solution to the Fair Churn Problem
that can handle infinite limited or unlimited churn for an expansive overlay net-
work topology.

The intuition for Theorem 2 is that, in an expansive overlay network topology,
the requests may arrive to produce a “treadmill effect” for a particular churn
request r: the satisfaction of inopportune requests by a local algorithm extends
the topology such that r never reaches its place of churn. Hence, no fairness.

Global churn handling.

Proposition 1. There exists a global Fair Churn Algorithm that can handle
infinite unlimited cooperative churn.

Let us sketch the global solution. The algorithm chooses the coordinator, for
example the process with the highest id, to handle churn requests. All processes
know this coordinator and forward their requests to it. The coordinator serial-
izes the requests handling. For each request, the coordinator sends the topology
updates to the churning process and its neighbors. The coordinator waits for the
process acknowledgements before starting the next request. If the coordinator x
itself requests to leave, it stops handling other churn requests, selects the next
coordinator y, forwards the incoming requests to y. The new coordinator y does
not start handling requests until it gets the permission from x. Meanwhile, x in-
forms all processes of the coordinator change, waits for their acknowledgements,
forwards the permission for y to start handling requests and then leaves. This
algorithm satisfies all the properties of the Fair Churn Algorithm.

Note that the outlined algorithm handles the least restrictive churn: infinite
and unlimited. Therefore, this algorithm also handles infinite limited and finite
limited and unlimited, see Figure 1. We now focus on local algorithms.

4 Linear Topology Churn Handling

Linear topology under churn. In a linear topology, each process p maintains
two identifiers: left, where it stores the largest identifier less than p and right,
where it stores the smallest identifier greater than p. Processes are thus joined in
a chain. For ease of exposition, we consider the chain laid out horizontally with
higher-id processes to the right and lower-id processes to the left. The largest
process stores positive infinity in its right variable; the smallest process stores
negative infinity in left. A left end of a link is the smaller-id neighbor process.
A right end is the greater-id process.

As a process joins or leaves the overlay network, it may change the values
of its own or its neighbors variables thus transitioning the link from one state
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to another. In a linear topology, a link is transitional if its left end is not a
neighbor of its right end or vice versa. The link is stable otherwise. The largest
and smallest processes may not leave. The links to the right of the largest process
and to the left of the smallest processes are always stable. A process may leave
the overlay network only after it has joined. We assume that in the initial state
of the overlay network, all links are stable.

constant p // process identifier
variables

left, right: ids of left and right neighbors,
⊥ if undefined

leaving: boolean, initially false, read only,
application request

busy: boolean, initially false; true when
servicing a join/leave request
or when joining

C: incoming channel

actions
joinRequest:

join ∈ C −→
receive join (reqId)
if (p < reqId < right) and not leaving
and not busy then

send sua(right) to reqId
busy := true

else
if reqId < p then

send join(reqId) to left
else

send join(reqId) to right

leaveRequest:
leave ∈ C −→

receive leave(reqId, q)
if reqId = right and not leaving
and not busy then

send sua(⊥) to q
busy := true

else
if p <= reqId then

send leave(reqId, q) to left
else

send leave(reqId, q) to right

setUpA:
sua ∈ C −→

receive sua(reqId) from q
if reqId 6= ⊥ then // Join 1.1 received

right := reqId
left := q
send sua(⊥) to right

else // Join 1.2 or Leave 1 received
left := q
send sub to left

setUpB :
sub ∈ C −→

receive sub from q
if q 6= right then // Join 2.2 or Leave 2 received

send tda to right
right := q

else // Join 2.1 received
send sub to left

tearDownA:
tda ∈ C −→

receive tda from q
if q 6= left then // Join 3 or Leave 3.2 received

send tdb to q
else // Leave 3.1 received

send tda to right

tearDownB :
tdb ∈ C −→

receive tdb from q
if q 6= right then // Join 4 or Leave 4.2 received

send ftd to q
busy := false

else // Leave 4.1 received
send tdb to left

tranDone:
ftd ∈ C −→

receive ftd from q
if leaving then // Leave 5 received, p may exit

right = ⊥
left = ⊥

else
busy := false // Join 5 received

Fig. 2. Algorithm CL for process p.

Algorithm description. We present a local algorithm Unfair Infinite Unlim-
ited Churn (CL) that satisfies the four properties of the Unfair Churn Problem
while handling unfair unlimited churn and maintaining a linear topology. The
basic idea of the algorithm is to have the handler process with the smaller iden-
tifier of the place of join coordinate churn requests to its immediate right. This

8



handler considers one such request at a time. This serializes request processing
and guarantees the accepted request’s eventual completion.

The algorithm is shown in Figure 2. To maintain the topology, each process p
has two variables: left and right with respective domains less than p and greater
than p. Read-only variable leaving is set to true by the environment once the
joined process wishes to leave the overlay network. Variable busy is used by the
handler process to indicate whether it currently coordinates a churn request, or
is initialized to true for a joining process. The incoming channel for process p
is variable C. Processes do not accept churn requests when busy is true.

The request is sent in the form of a single join or leave message. We assume
that a join and, for symmetry, a leave message is inserted into an incoming
channel of an arbitrary joined process in the overlay network.

Message join carries the identifier of the process wishing to join the overlay
network. Message leave carries the identifier of the leaving process as well as
the identifier of the process immediately to its right. Actions joinRequest and
leaveRequest describe the processing of the two types of requests. If the receiver
realizes that it is to the immediate left of the place of join or leave, and the
receiver is not currently handling another request, i.e. busy 6= true, and it does
not want to leave, it starts handling the arrived request. Otherwise, the recipient
process forwards the request to its left or right.

Request handling is illustrated in Figure 3. It is similar for join and leave and
is divided into five stages. The first two stages are setup stages: they set up the
channels for the links of the the joining process or for the processes that are the
neighbors of the leaving process. The third and forth stages are teardown stages:
they remove the channels of the links being replaced. The last stage informs
either the leaving process that it may exit, or the joining process that it may
start coordinating its own churn requests. In the case of join, links between two
pairs of neighbors need to be set up, hence the setup stages are divided into two
substages 1.1, 1.2, 2.1 and 2.2, and links between one pair of neighbors are tore
down in stages 3 and 4. Similarly, in the case of leave, link setup stages 1 and
2 establish links between a pair of neighbors, followed by the teardown stages
substages 3.1, 3.2, 4.1 and 4.2 to tear down links between two pairs of neighbors,
then stage 5. We include the stage and substage numbers in the comments of
Figure 2. The messages transmitted during corresponding stages are 1. set up
A sua, 2. set up B sub, 3. tear down A tda, 4. tear down B tdb and 5. finish
teardown ftd.

CL correctness proof. The formal proof is here [18] but the idea is as follows.
We denote message tda or tdb as td*. Similarly, su* is sua or sub. We show
that in CL, a teardown td* message is the last in the channel being torn down.
Similar su* is the first message in a channel to be set up. The processes locally
handle churn request sequentially. Thus, no regular messages are lost in the
transition process. Moreover, the messages are eventually received and forwarded
correctly, which leads to some churn request eventually being handled. Hence the
below theorem.
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a.   join(y) 

x 
y 

z 

3. tda 

1.1 sua(z) 

4. tdb 

1.2 sua 

2.2 sub 2.1 sub 

5. ftd 

b.   leave(y, z) 

x y z 

1. sua 

3.1 tda 

2. sub 

3.2 tda 

4.2 tdb 

5. ftd 

4.1 tdb 

Fig. 3. CL join and leave request handling.

Theorem 3. CL is a local Unfair Churn Algorithm that handles infinite unlim-
ited churn and maintains the linear topology.

Since finite churn limits the number of requests in a computation, it follows
that CL handles finite unlimited churn and maintains the linear topology.

5 Skip List Churn Handling

In this section, we describe the algorithm CSL that handles unlimited infinite
churn to maintain a deterministic 1-2 skip list. The advantage of a skip list over
linear topology is that data search and churn request processing takes O(logN)
steps compared to the linear search complexity. A skip list [32] consists of n
levels with each level sorted in ascending order. The bottom level 0 contains all
processes in the overlay network. In a 1-2 deterministic skip list, processes at
level i + 1 > 0 skip over one or two processes at level i. Algorithm CSL derives
from CL. Therefore, instead of presenting the code for the algorithm, we describe
its operation. We use the same system model defined in Section 2.

Variables. Similar to the CL algorithm, variable leaving indicates if a process
wishes to leave. At every level i, each process uses the busy variable to block
itself at that level. Also, at every level i, each process x stores 1-hop and 2-
hop neighbor identifiers. The first hop are conversational links that are used
to exchange messages. The variables x.i.l and x.i.r store 1-hop left and right
conversational neighbors. The second hop are informational links that do not
contain messages but are used by the algorithm to make decisions. Variables
x.i.2l and x.i.2r store 2-hop informational neighbors. Boolean variable x.i.up
indicates whether the process x exists at level i + 1. If x.i.up = true, process x
is up at level i, it is down otherwise. The smallest and largest id processes never
leave and are present at every level of the skip list. The smallest process stores
negative infinity in its i.l and i.2l variables. The largest process stores positive
infinity in its i.r and i.2r variables.
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Phases of operation. We use two phases to construct a 1-2 skip list: permis-
sion and construction. The permission phase gathers all necessary permissions
and blocks all processes involved in a particular churn request from accepting
additional churn requests. Once all permissions are gathered and the required
processes are blocked by setting busy to true at each required level, the construc-
tion phase carries out the topology modification related to the churn request.

Permission phase. The permission phase proceeds recursively from level 0. At
each level i, the handler considers the churn request. If it is not busy handling
another churn request or wishing to leave, it blocks itself from considering any
other requests, gathers the necessary permissions for the request at this level and,
if necessary, submits the request to level i+1 and awaits level i+1’s permission.
Once level i is secured, the permission is submitted to the lower level handler.
If permission is not secured, a rejection is sent to the lower level handler.

 

z y x w u v 

level i+1 
level i 

z y x w u v z y v’ v x w u y x v z w x w z y u 

(a) no rise, x gets  
w’s permission at level i 

(b) no rise, x gets  
w’s permission at level i 

(c) y rises, x gets w’s  
permission at level i, w  
gets level i+1 permissions 

(d) z rises, x gets  
w’s permission at level i, 
x gets u’s permission at  
level i+1 

(e) x rises, x gets  
w’s permission at level i, 
w gets u’s permission for 
level i+1 

Fig. 4. The cases of process x coordinating y’s joining.

 

y z x w 

level i+1 
level i 

z y x w u v 

z y v’ v x w u 

(a) no rise, no descend  
x’s gets w’s permission at level i 

(b) no rise, no descend  
x gets w’s permission at level i 

(d) z rises, y descends, x gets w’s  
permission at level i, w  
gets level i+1 permissions for y 
to leave then z to join 

(f) no rise, x descends, x gets 
w’s permission at level i, 
x gets u’s permission at  
level i+1 

y x v z w 

(c) no rise, y descends, x gets 
 w’s permission at level i, w 
gets level i+1 permissions 

y x v z w v’ 

(e) x rises, y descends, x gets 
w’s permission at level i, 
w gets u’s permission at  
level i+1 

z y v’ v x w u 

(g) x rises, y descends, x gets 
w’s permission at level i, 
w gets u’s permission for y  
to leave then x to join level i+1 

z y v x w u 

(h) w rises, x descends, x gets 
w’s permission at level i, 
x gets t’s permission for x to 
leave then w to join level i+1 

y x z w u t 

Fig. 5. The cases of process x coordinating y’s leaving.

To determine the necessary permissions required for the join request from
process y at level i, the handler process x considers the five cases shown in
Figure 4. Similarly, for leaving, x considers the eight cases in Figure 5. For all
cases, handler x at level i requests permission from its left neighbor w. Once
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x gets the permission from w, if necessary, x requests permission from its left
neighbor at level i+ 1. Before w replies to x, it may need to get permission from
its left neighbor at level i, if further necessary, w requests permission from level
i + 1 becoming the handler at level i + 1.

To determine the processes that must rise or descend, handler x requires
2-hop information, as opposed to only 1-hop information per the CL algorithm.
Let’s consider join Case e in Figure 4 in more detail. Process x is the handler
and y is requesting to join. A hollow circle indicates a process whose status is
changing at the corresponding level. At level i, w and x are down while u and z
are up. When handler x accepts y’s join request at level i, x examines its 2-hop
neighborhood status and determines that it must rise and join level i + 1 and
that y’s status must change to be down. Process x first requests w’s permission
at level i. If w is not blocked handling another request, w blocks itself. Then, w
sends to u a request for x to join level i + 1. Process u becomes the handler of
the request at level i + 1. If the necessary permissions are obtained at this and
higher levels, w sends the permission to x and x sends it further downward. If the
request is rejected, the process unblocks itself and sends the rejection downward.

Once the permission phase for a certain churning process y ends, the ap-
propriate 2-hop neighbors are not able to join or leave. Indeed, if y is leaving,
y, x and w are blocked. Process y rejects all requests from z, so z cannot leave.
Moreover, since z forwards to y for (i) its right neighbor v to leave or (ii) a new
neighbor z′ to join, where z < z′ < v, y’s 2-hop right neighborhood is precluded
from joining or leaving. The situation is similar if y is leaving.

 

b.   leave(y) 

x y 
z 

1. sua 

5.1 tda 

4. sub 

5.2 tda 
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Fig. 6. CSL join and leave request handling.

Construction Phase. The construction phase proceeds from the top level
down. At each level, the construction phase operates similar to CL algorithm.
See Figure 6. The setup and tear down messages, sua, sub, tda and tdb, setup
and tear down 1-hop conversational links. The informational messages, ia and
ib, are added to maintain the informational 2-hop right and 2-hop left neighbor
links and status, and to unblock y’s 2-hop left neighborhood.
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Correctness proof. The formal proof of CSL correctness is here [18]. The basic
operation of the algorithm is similar to that of CL, the major additions are the
multi-level permission and construction phases. We show that for each request,
the phases eventually end. Indeed, since the difference between the number of
join and leave requests is bounded, the number of levels in a skip list is bounded
also. The number of steps at each level is finite. Hence, eventually, the permission
phase either returns the permission or rejection. The only way it can return a
rejection is if some other request succeeds. Once all permissions are gathered, the
construction phase proceeds in a similar manner. The correctness proof result is
summarized in the below theorem.

Theorem 4. CSL is a local Unfair Churn Algorithm that handles infinite un-
limited churn and maintains a 1-2 skip list.

Since finite churn limits the number of requests in a computation, it follows
that CSL handles finite unlimited churn and maintains a 1-2 skip list.

6 Extensions and Future Work

Our solution for a 1-2 skip list can be extended to generalized skip lists and
skip graphs. Notice, the locality of a 1-2 skip list is 2 and the permission phase
blocked, whether explicitly or implicitly, the 2-hop neighborhood of the churning
process. For a 2-3 skip list, the locality is 3, and the permission phase should
block the 3-hop neighborhood. In general, the permission phase should block the
specific neighborhood of the churning process. The construction phase should be
modified to include the serialization of additional information messages, ia* and
ib*, to reach the specific neighborhood. For a 2-3 skip list, the informational
messages are sent to the 2-hop and 3-hop neighbors of the churning process.
The set up and tear down message patterns remain the same for the 1-hop
neighborhood covering the conversational links.

As further research, it is interesting to consider extensions of CL to ring
structures such as Chord [37] or Hyperring [5]. Another important area of inquiry
is addition of limited adversarial churn.
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