
Ideal Stabilization 197

Ideal Stabilization

Mikhail Nesterenko
Kent State University, USA

Sébastien Tixeuil
UPMC Sorbonne Universités & IUF, France

Abstract: We propose a new approach to specifying and reasoning about forward
recovery fault tolerant programs. We call it ideal stabilization. The program is ideally
stabilizing if its every state is legitimate. Ideal stabilization allows the specification
designer to prescribe, with arbitrary degree of precision, not only the fault-free program
behavior but also its recovery operation. Unlike the classic variant, ideal stabilization is
particularly suitable for program composition. Specifications may or may not mention all
possible states. We identify approaches to designing ideal stabilization to both classes of
specifications. For the first class, we state the necessary condition for an ideally stabilizing
solution. On the basis of this condition we prove that there is no ideally stabilizing
solution to the leader election problem. We illustrate the utility of the concept of ideal
stabilization by providing examples of well-known programs and proving them ideally
stabilizing. Specifically, we prove ideal stabilization of the conflict manager, the alternator,
the propagation of information with feedback and the alternating bit protocol.

Keywords: Distributed algorithms, Fault-tolerance, Self-stabilization, Methodology

Reference to this paper should be made as follows: Mikhail Nesterenko and Sébastien
Tixeuil. (2011) ‘Ideal Stabilization’, Int. J. Grid and Utility Computing, Vol. 1, No. 1,
pp.1–2.

Biographical notes: Mikhail Nesterenko got his PhD in 1998 from Kansas State
University. Presently he is a full professor at Kent State University. He is interested in
wireless networking, distributed algorithms and fault-tolerance.

Sébastien Tixeuil is a full professor at the University Pierre & Marie Curie - Paris
6 (France) and Institut Universitaire de France, where he leads the NPA research
group. He received his Ph.D. from University of Paris Sud-XI in 2000. His research
interests include fault and attack tolerance in dynamic networks and systems.

1 Introduction

A program is self-stabilizing [13, 14, 30] (or just
stabilizing) if, regardless of the initial state, it eventually
satisfies its specification. This elegant property enables
the program to recover from transient faults or lack
of initialization. During this stabilization period the
program behavior is unpredictable. It is tempting
to try to engineer the specification such that the
program behavior during fault-recovery is controlled.
For example, the program starts behaving correctly in
no more than ten steps, or critical messages are never
lost. However, one of the features of classic stabilization
is that the program does not have to satisfy the
specification for an arbitrary amount of time. That is,
the program is free to ignore the recovery constrains built
into the specification.

This results in rather limited compositional
properties of stabilizing programs. Stabilizing programs

are usually composed by layers: the lower level
components are not influenced by the higher level
components and, after the lower component starts
behaving correctly, they higher level, due to stabilization
will eventually behave correctly as well. However, if there
is non-trivial two-way interaction between components,
the stabilization or correct operation of the composed
system is not guaranteed. One way of circumventing this
shortcoming is stating an additional program property
that the solution has to satisfy besides the specification.
For example, that the program has to converge to the
legitimate state in finite time. In fact, stabilization
itself is a program property that cannot be expressed
in the specification alone. However, this haphazard
approach leads to difficulties in program composition
and reasoning about multiple component programs. For
example, it is unclear how the program components
should be composed in case their extra-specification
properties do not match. These shortcomings diminish



198 M. Nesterenko and S. Tixeuil

the attractiveness of stabilization as a viable fault-
tolerance technique.

In this paper we study the class of programs
whose every state satisfies the specification. We call
such programs ideally stabilizing. Related concepts are
occasionally considered by fault-tolerance researchers.
However, these approaches are often regarded as
theoretical curiosity with a few isolated examples of little
practical importance. Our thesis is that the opposite
is true. Ideal stabilization retains the advantages of
classical stabilization while allowing the engineers and
program designers to control the program behavior
during fault recovery. Moreover, ideally stabilizing
program composition is similar to conventional program
composition. This eliminates the need to specify extra-
specification program properties. Therefore, the vast
array of established program composition techniques can
be applied to ideally stabilizing programs. We are thus
hopeful that our approach to stabilization makes the
general concept of self-stabilization more attractive to
fault-tolerance practitioners.

Our contribution. In this paper we study two
approaches to ideal stabilization. The approaches depend
on the specification type. Specification itself is ideal if it
allows (i.e. mentions) all possible states. Specification is
not ideal otherwise. Ideal stabilization may be possible
to both types of specifications.

Ideal stabilization to non-ideal specification uses the
approach we call state displacement. The specification
implementer provides such mapping from program states
to specification states that none of the possible program
states map to disallowed specification states. We identify
the necessary condition for such specifications to allow
ideal stabilization and explain how two well-known
programs: conflict manager and the alternator use state
displacement to achieve ideal stabilization. By way of
contrast, we demonstrate how a simplified leader election
specification does not satisfy this condition and hence
prohibits ideal stabilization.

Ideal stabilization is possible to ideal specification.
In this case, the specification should be such that every
possible state is allowed. This lets the engineer specify
precisely what behavior, including failure recovery,
is expected of the program. An ideally stabilizing
program, by definition, has to follow this specification
exactly. We state a proposition that demonstrates that
such programs are rather common. As an example,
we consider the problem specifications for two well-
known stabilizing programs: propagation of information
with feedback and alternating-bit protocol and provide
assertional proofs that the programs ideally stabilize
to these specifications. In closing, we discuss the
composition of ideally stabilizing programs. The concept
of snap-stabilization [4, 11] is close to ideal stabilization.
We address the relationship between ideal stabilization,
snap-stabilization and other related concepts in the
related literature section.

2 Model

This section introduces the notation and terms we use
in the rest of the paper. To the person familiar with
the literature on self-stabilization, our notation may
look fairly conventional. However, we encourage even the
specialists to read this section as the understanding of
the results in the further sections hinges on the notions
defined in this one.

Program. A program consists of a set of N processes.
Each process contains a set of variables. Every variable
ranges over a fixed domain of values. Variable v of
process p is denoted v.p. A process state is an assignment
of a value from its domain to each variable of the process.
A program state, in turn, is an assignment of a value
to every variable of each process. The Cartesian product
of the values of all program variables is program state
space. That is, the state space defines all states that the
program can assume.

Each process also contains a set of actions. An action
has the form 〈name〉 : 〈guard〉 −→ 〈command〉. A guard
is a predicate over the variables of the process. A
command is a sequence of assignment and branching
statements.

An action whose guard is true in some program state
is enabled in that state. The execution of an enabled
action changes the values of program variables and
thus transitions the program from one state to another.
Step is such a transition. A program computation is a
maximal sequence of steps. By maximality we mean that
the computation is either infinite or it ends in a state
where none of the actions are enabled. Note that we do
not assume any fairness of action execution for infinite
computations.

Communication model, extended state. Processes
that share variables are neighbors. The communication
model determines the type and access method of the
variables shared by neighbor processes. For example, in
shared-memory communication model, the process may
mention the variables of the neighbor processes in its
actions. That is, the process may read the state of its
neighbor processes. The extended state of the process is
the state of its local variables and the variables that the
process can read.

Problem specifications and program sequence
mapping. Problem specification prescribes the program
behavior. This is done by defining the program
inputs and outputs through external variables. External
variables are thus either input or output variables. Input
variables are modified by the environment while the
program may only read them. The output variables
are updated by the program; they are used to display
the results of the program computation. Figure 1
summarizes that a particular node makes use of input,
extended state, and produces a particular output.



Ideal Stabilization 199

Input Output

Figure 1 Input, outputs, and the extended state of a
process.

1 0

1 0

Figure 2 The identity Mapping.

1 2

F T

3 4

Figure 3 An unambiguous mapping of states.

The problem specification is a set of sequences of
states of external variables. A program implements the
specification. Input step in a program computation or a
specification sequence is a state transition that updates
input variables. A transition that updates output
variables is output step. Part of the implementation of the
specification is the mapping from the program states to
the specification states. This mapping does not have to
be one-to-one. However, we only consider unambiguous
programs where each program state maps to only one
specification state.

We make another important assumption about
program sequence mappings. The mappings have to
be merge-symmetric. Specifically, let there be a set of
program states pr1 through prk such that they map
to specification states s1 through sk. Then, if there is
a specification state sm such that the extended state
of each process p in sm is the same as in one of
the states s1 through sk, then there exists a program
state prm that maps to sm. In other words, any
specification state formed by extended process state-
preserving combination of other specification states has
a program state that maps to this new specification
state. An example of a merge-symmetric mapping is

A

(a) Mapped state S1.

B

(b) Mapped state S2.

A

B

(c) Merged mapped state S3.

Figure 4 Merge symmetric mapping.

shown in Figures 4(a), 4(b),and 4(c). Ff there exists
a mapped state S1 such that the top-leftmost process
maps to state A (Figure 4(a)) and a mapped state S2

such that the rightmost process maps to state B (see
Figure 4(b)), there there also exists a third mapped state
S3 where the two previous processes both map to states
A and B, respectively (see Figure 4(c)). If the mapping
is not merge-symmetric, then a process may have to
differentiate between two global states where this process
has exactly the same extended local state. Most known
mappings are merge-symmetric.

State mapping is identical if the program and the
specification use the same state space and every program
state maps to the same specification state (See Figure 2).
In this case the program uses external variables only.



200 M. Nesterenko and S. Tixeuil

Another simple program mapping is projection. Each
process maintains output variables and internal variables
for computations and record keeping. The projection
of program states onto specification states removes the
internal variables. However, the mapping may not be as
straightforward as identical mapping or projection. For
example, the specification requires the output variable
of a process to be boolean while the program maintains
an integer variable. The mapping is such that the even
values of the integer variable are mapped to true while
odd values to false (See e.g. Figure 3).

Once the mapping between program and specification
states is established, the program computations are
mapped to specification sequences as follows. Each
program state is mapped to the corresponding
specification state. Then, stuttering, the consequent
identical specification states, is eliminated.

The program does not have to implement all
specification sequences. However, the program has to
respond to specified input in the manner prescribed
by the specification. Informally, the program cannot
just ignore “inconvenient” environment input. Hence
the following notion. Given a set of sequences A, a
subset B ⊂ A is input-complete if, for every sequence
α ∈ A, there exists a sequence β ∈ B such that: every
input step s1 of α is also in β and for every pair of
input steps s1 and s2 their order in α and β is the
same. Informally, the sequences in an input-complete
subset B preserve the results and the order of the
input steps in A. Figures 5(a) and 5(b) illustrate this
requirement: On Figure 5(b) the full mapping for a
given specification is presented, with plain black arrows
denoting process actions and dashed orange arrows
denoting input actions; by contrast, Figure 5(b) has some
mapped states that are not implemented (presented
in gray), still all input actions are included by this
implementation.

The state space of the specification is the Cartesian
product of the ranges of all external variables. The state
that is present in one of the specification sequences
is allowed by the specification. The state is disallowed
otherwise. The specification is ideal if it allows every
state in its state space; otherwise the specification is not
ideal.

We only consider specifications that are suffix-closed.
That is, every suffix of a specification sequence is also a
sequence in this specification. Suffix closure enables us
to discuss the correctness of the program on the basis of
its current state rather than potentially arbitrary long
program history. This facilitates assertional reasoning
about program correctness.

Predicates, invariants, stabilization. A state
predicate is a boolean expression over program variables.
A program state conforms to predicate R, if R evaluates
to true in this state; otherwise, the state violates R.
By this definition every state in the program state space
conforms to predicate true and none conforms to false.

A

B
C

D

E

F

G

(a) Full implementation of a specification.

A

B
C

D

E

F

G

(b) Limited but input-complete implementation.

Figure 5 Input complete specification.

The predicate defines a set of program states that
conform to it. In the sequel we use the predicate and
the set of states it defines interchangeably. Predicate
R is closed in a certain program P, if every state of
every computation of P conforms to R provided that the
computation starts in a state conforming to R.

A closed predicate I is an invariant of the program
P with respect to specification S if I has the following
property: every computation of P that starts in a state
conforming to I, maps to a sequence that belongs to the
specification. A program state is legitimate if it conforms
to the invariant and illegitimate otherwise.

Program P satisfies (or solves) specification S, if
there exists an invariant I of P with respect to S such
that the mappings of the program computations that
start from I form an input-complete subset of S. That
is, the program does not have to implement all the
specification sequences, but it does need to accommodate
all possible inputs. Specifically, it needs to implement an
input-complete subset of these sequences.

A program P is stabilizing to specification S if
every computation that starts in an arbitrary state of
the program state space contains a state conforming
to the invariant with respect to S. Therefore, any



Ideal Stabilization 201

Implementation Specification
(a) Non-ideal Specification

Implementation Specification
(b) State Displacement of the mapped state.

Figure 6 State displacement

computation of a stabilizing program contains a suffix
that implements a specification sequence.

Definition 2.1: A program is ideally stabilizing if
every state in its state space is legitimate.

That is, true is an invariant of an ideally stabilizing
program.

3 State Displacement.

3.1 Necessary Condition for Specification

A non-ideal specification disallows certain states in its
state space (see Figure 6(a)). Yet, every state in the
program state space is legitimate. Thus, for a program to
ideally stabilize to such specification, the state mapping
should be such that the disallowed states are displaced.
That is, none of the states in the program state space
maps to the disallowed states (see Figure 6(b)). However,
state displacements may not be possible for an arbitrary
specification. The below theorem establishes a necessary
condition for a specification to be solvable by an ideally-
stabilizing program.

Theorem 1: An ideal stabilization is possible to non-
ideal specification only if the specification contains an

input-complete subset of sequences such that in every
disallowed specification state there is at least one process
whose extended state does not occur in any of the
specification states of this subset.

Proof: Assume the opposite. There is a non-ideal
specification S that disallows state d and for every input-
complete subset C of S and for every process pi, where
i = 1, N , there is a specification state ci in one of the
sequences of C such that the extended state of pi is the
same in ci and in d. However, there is a program P that
ideally stabilizes to S.

Since P solves S, P implements an input complete-
subset of S. Assume, without loss of generality, that P
implements C. That is, for every sequence of C there is
a computation of P that maps to this sequence. This
means that for each specification state of C, there is a
program state of P that maps to it. This includes the
states ci. For each i, let pri be the program state of P
that maps to ci.

Recall that the extended state of each process in d
is the same as in one of the states ci. If this is the
case then, according to merge-symmetry of program
mapping, there exists a program state prd that maps
to d. Since P ideally stabilizes to S, every state of its
state space should be legitimate. That is, every program
state has to map to a state in one of the specification
sequences. However, the program state prd maps to state
d which is disallowed by specification S. Which means
that prd is illegitimate. Hence, contrary to our initial
assumption, P does not ideally stabilize to S. Hence the
theorem. 2

3.2 Examples

To illustrate the concept of ideal stabilization to non-
ideal specifications and the ramifications of Theorem 1,
we provide several examples.

Conflict manager. The specification we consider is
a simplified (unfair) variant of the dining philosophers
problem [7, 12] that we call UDP. The program
is adapted from the deterministic conflict manager
presented by Gradinariu and Tixeuil [22]. The processes
are arranged in a chain. Every process has a unique
identifier. The specification defines one external output
boolean variable in per process. If the value of in is true,
the process may execute the exclusive critical section
of code. The specification defines infinite sequences
where in variables alternate between true and false.
The sequences are not necessarily fair as a certain
process may never be given a chance to execute the
critical section. That is, an input-complete subset of the
specification contains any subset of such sequences.

The specification prohibits concurrent critical section
access by neighbor processes. That is, the specification
disallows states where in variables of two neighbors



202 M. Nesterenko and S. Tixeuil

are true in the same state. Assuming shared memory
communication, the extended state of the process
contains the state of its neighbors. Hence, none of the
allowed specification states contain an extended process
state where both the process and one of its neighbors are
inside the critical section. The specification thus satisfies
the conditions of Theorem 1.

The conflict manager program CM is as follows. Each
process has a single boolean variable access and a single
action flip that is always enabled. The action toggles the
value of access.

flip : true −→ access := ¬access

The program mapping is this. For each process p the
variable p.in is true if p.access is true and p has the
highest identifier among its neighbors with access set to
true.

Let us discuss why this mapping is merge-symmetric.
Any extended process state-preserving combination of
specification states produces a specification state where
neighbors are not accessing the critical section. Then, by
appropriately setting access variables, we can generate
the program state that maps to this specification state.

Let us give an illustration for this reasoning. Assume
we have a chain of four processes with identifiers
〈2, 1, 3, 4〉. The extended state of each process in this
case is its own state plus the state of its left and right
neighbors. Consider two specification states

s1 ≡ 〈true, false, false, false〉

and

s2 ≡ 〈false, false, false, true〉

Some of the program states that map to s1 and s2 are
respectively pr1 ≡ 〈true, true, false, false〉 and pr2 ≡
〈false, false, false, true〉.

Specification state s3 ≡ 〈true, false, false, true〉 is
formed by merging states s1 and s2. Note that the
extended states of each process in s3 are the same
in either s1 or s2. For example, the extended state
of process p2 is 〈true, false, false〉, which is the same
in s1 and s3. Note that there are a number of
program states that map to s3. For example, pr3 ≡
〈true, false, true, true〉. Thus, the program

Theorem 2: Program CM ideally stabilizes to the
unfair dining philosophers specification UDP.

Proof: To prove ideal stabilization we need to show
that a computation of CM from an arbitrary program
state satisfies UDP. First, we show that every state of
CM maps to an allowed state of UDP. Indeed, among
the neighbors whose access is true, in is set to true
only for the process with the highest identifier. That is,

every program state maps to the state of UDP where
neighbors do not access the critical section concurrently.
Hence, no program state maps to a disallowed state.

Moreover in every computation of the program
at least one process, the process with the largest
identifier in the system, alternates between setting
access to true and false. This means that this
process alternates between entering and exiting the
critical section indefinitely. Such computations satisfy
the specification. That is, CM ideally stabilizes to UDP.
2

Leader election. We present a simplified leader election
problem LE as an example of the specification for which
ideally stabilizing solutions do not exist. Again, the
processes form a chain. In this case, we only consider
N > 3. In the external state, each process has two
boolean variables: an input variable contend and an
output variable leader. The value of the input variable
contend is set to a particular value and it does not
change throughout the specification sequence. In each
specification state leader of at most one process is true.
To exclude trivial solutions, the specification requires
that the leader is elected only out of the processes that
contend for leadership. That is, the processes whose
contend variable is true. Each specification sequence is
finite and ends with a state where the leader is elected.
Note that the input complete subset of sequences has
to contain a sequence for every combination of the
contending processes.

Theorem 3: There does not exist a program that
ideally stabilizes to the simplified leader election
specification LE .

Proof: Let us consider state s1 (See Figure 7(a))
where the first process is the only one contending
for leadership. This is the process that has to be
elected leader. That is, the following output state
has to be in every input-complete subset. s1 ≡
〈true, false, · · · , false, false〉 Similarly, let s2 be the
state where the last process is the only one contending
(see Figure 7(b): s2 ≡ 〈false, false, · · · , false, true〉.

We now form the state s3 where both the first and
the last processes are contending for leadership and both
of them are elected (see Figure 7(c)). That is,

s3 ≡ 〈true, false, · · · , false, true〉

This state is disallowed. Yet, the extended state of every
process is present in either s1 or s2. Thus, according to
Theorem 1, ideal stabilization is not possible to LE . 2

Linear alternator. For another example, we



Ideal Stabilization 203

L

(a) State s1

L

(b) State s2.

L L

(c) State s3.

Figure 7 Leader Election

demonstrate how a well-known program called the linear
alternator LA proposed by Gouda and Haddix [20] fits
into the definition of ideal stabilization. The alternator
provides a solution to the fair variant of the dining
philosophers problem FDP. The problem specification
is the same as described above except all the sequences
are fair with respect to the process critical section
access. The modified specification still excludes the
states where two neighbors are executing the critical
section concurrently and, hence, the specification still
satisfies the conditions of Theorem 1. Therefore, the
ideal solution is still possible for this specification.

The implementation of LA is as follows. Similar to
CM, each process has a boolean variable x. This time
though we assume that the processes in the chain are
numbered in the increasing order from 1 to N . The
numbering is for presentation purposes only as each
process only needs to be aware of its right and left
neighbor. The program actions of LA are shown in
Figure 8.

The program-to-specification states mapping is as
follows. For each process pj , the output variable in.pj

evaluates to true if process’ action is enabled.

Theorem 4: Program LA ideally stabilizes to the fair
dining philosophers specification FDP.

Proof: Gouda and Haddix [20] prove that the
alternator satisfies the fairness properties of the dining
philosophers specification from an arbitrary program
state. We only show the displacement of disallowed

Implementation Specification
Figure 9 Mapping to an ideal specification.

states. Note that an action of a process p is enabled
if x.p is not equal to the left neighbor’s variable and
equal to the right neighbor’s variable. This can only
hold for one process in the neighborhood. That is, every
program state maps to a specification state where none of
the neighbors are in the critical section concurrently. In
other words, the program states only map to the allowed
states. Hence the theorem. 2

4 Stabilizing to Ideal Specifications

4.1 Forming Ideal Specifications

Another method of achieving ideal stabilization is
by stating the specification such that all the states
in its space are legitimate. That is, stating ideal
specification. At first this seems difficult to achieve.
However, the following proposition demonstrates that
such specifications are rather common.

Proposition 4.1: For every program there is an ideal
specification to which this program ideally stabilizes.

We provide an informal argument for the validity
of this proposition. Consider any program and all the
computations produced by this program when it starts
from an arbitrary state of its state space. Now define the
specification that contains exactly these computations
and identical mapping from program to specification
states. This specification is ideal as all the states of
its state space are allowed while the program ideally
stabilizes to this specification (See Figure 9).

Naturally, this kind of specification may not be very
useful as it, in essence, defines the specification to be
whatever the program computes. However, below we
describe how a number of stabilizing programs published
in the literature can be defined as ideally stabilizing to
ideal specifications.

4.2 Examples

Propagation of Information with Feedback. As
the first example we describe a program PIF that



204 M. Nesterenko and S. Tixeuil

x.p1 = x.p2 −→ x.p1 := ¬x.p1

(x.pj 6= x.pj−1) ∧ (x.pj = x.pj+1)−→ x.pj := ¬x.pj

x.pN−1 6= x.pN −→ x.pN := ¬x.pN

Figure 8 LA program actions. Parameter j ranges from 2 to N − 1.

ideally stabilizes to the propagation of information with
feedback [8, 29] specification. The presentation of this
program as snap-stabilizing is well-known [4].

The program is designed for rooted trees. A root is
an arbitrary distinguished process in the tree. A non-
root process with a single neighbor is leaf. Processes that
are neither roots nor leaves are intermediate. For each
process u, all processes that lie on the path from u to
the root are ancestors of u. Process v is a descendant of
process u, if u is an ancestor of v. Observe that the root
is the ancestor of the all other nodes while all of them
are the root’s descendants. A parent of a process is its
nearest ancestor. The height of a process is the distance
to this node’s farthest descendant. A child of a process
is its nearest descendant. A process may have only one
parent but many children. A causality chain for a leaf is
the path of its ancestors to the root. For any two leaves
the causality chains have at least one process, the root,
in common. Once we are reasoning about a particular
causality chain, we assume that it is laid out horizontally
with the root located on the left and the leaf on the right.

The tree is organized as follows. Each process
has unique identifier throughout the system. For each
process, one neighbor’s identifier is designated as its
parent. This topological designation is constant and
incorruptible. If there is no parent, the process is the
root. As a shorthand, we assume that the root just has
identifier root; a leaf’s identifier is leaf , each process u
has set of neighbors Ch.u that are its children and a
constant parent.

Each process has a state variable st. In the
intermediate processes, the variable may hold one of the
three values: i, rq, rp which stand for idle, requesting
and replying respectively. The root can only be idle or
requesting while the leaf can be either idle or replying.

The objective of the program is to send a signal
from the root to the leaves and, in return, receive an
acknowledgment that matches this signal. Operationally,
the program should ensure that after the root makes
a request then intermediate processes propagate this
request in causally ordered steps along each causality
chain transitioning from idle to requesting. Afterwards,
the intermediate processes propagate the replys from
each leaf back to the root in casually ordered steps
transitioning from requesting to replying.

We define the following state predicates. For each
causality chain whose length is N , RP (k) are the
specification states where all k processes on the left are
requesting (k = 1, N − 1) and the rest of the processes
are replying. RQ(l,m) are the specification states where
all l processes on the left are requesting (l = 0, N − 1)
and all m− l processes following them are idle (m =

l + 1, N), while the remaining processes are replying.
The two predicates are mutually exclusive. Specification
SPIF includes the sequences where, for each causality
chain, the system satisfies one of the predicates and
transitions from one to the other infinitely.

Observe that a step of the root moves the chain from
RP to RQ while a step of the leaf moves the chain
back from RQ to RP . Since the root is present in each
causality chain, the transition from RP to RQ happens
in all chains simultaneously, the transition back to RP
may differ for each individual chain.

Let us define another pair of predicates. Predicate
RP ′(k) defines the states where k processes on the
left are requesting (k = 1, N − 1), the process k + 1 is
replying and the state of the other processes is arbitrary.
Notice that RP (k) ⊂ RP ′(k). Predicate RQ′(l,m) are
the states where all l processes on the left are requesting
(l = 0, N − 1), all m− 1 following them are idle (m =
l + 1, N) and the state of the other processes is arbitrary.
Similarly, RQ(l,m) ⊂ RQ′(l,m). Specification IPIF
includes the sequences where the system always satisfies
either RP ′(k) or RQ′(l, m), each sequence has a sequence
in SPIF as a suffix and the transition from RQ′(l,m)
is only to RP (k).

We now describe program PIF . It has only external
variables. The mapping between the program and
specification states is identical. The actions of PIF are
shown in Figure 10.

Lemma 4.2: For any causality chain in the tree,
predicate RQ(l,m) ∨RP (k) is closed in PIF .

Proof: (Sketch) Notice that the actions of the
processes outside the particular causality chain do not
have their variables in the predicate and, therefore,
cannot affect it. The closure can then be ascertained
by examining the actions of processes in the causality
chain. If the program state conforms to RQ(l,m), then
the execution of any of the enabled action of a process
in this chain moves the system to a state that conforms
to either RQ(l,m) or to RP (k). 2

Lemma 4.3: For any causality chain, if a computation
of PIF starts in a state conforming to RQ(l,m), this
computation also contains a state satisfying RP (k).

Proof: Suppose that initially the program state
satisfies RQ(l,m). We show that if l < N − 1, eventually
both l and m are incremented. If m < N , stop is enabled
at process m + 1 in the causality chain. The execution
of this action increments m in RQ(l,m).



Ideal Stabilization 205

request : st.root = i ∧ (∀q ∈ Ch.root : st.q = i) −→ st.root := rq
clear : st.root = rq ∧ (∀q ∈ Ch.root : st.q = rp)−→ st.root := i
forward : st.parent = rq∧ st.p = i ∧ (∀q ∈ Ch.p : st.q = i) −→ st.p := rq
back : st.parent = rq∧ st.p = rq ∧ (∀q ∈ Ch.p : st.q = rp) −→ st.p := rp
stop : st.parent = i ∧ st.p 6= i −→ st.p := i
reflect : st.parent = rq∧ st.leaf = i −→ st.leaf := rp
reset : st.parent = i ∧ st.leaf = rp −→ st.leaf := i

Figure 10 PIF program actions. Actions request and clear belong to the root process; actions forward, back, and stop – to
an intermediate processes; actions reflect and reset – to a leaf.

The case of l is a bit more involved. If l = 0, the
root is idle. The children of the root may or may not be
idle. However, if there is a process q ∈ Ch.root such that
st.q 6= i, then stop is enabled in q. The execution of this
action transitions q to idle. Once all of the root’s children
are idle, its request action is enabled. If it is executed,
root transitions to requesting state which increments l.
Let us examine the case of 0 < l < N − 1. If PQ(l,m)
is satisfied, process pl+1 and its parent are idle. Similar
to the case of the root, if pl+1 is idle, stop is enabled in
its each child that is not idle. Once, every child executes
stop, forward becomes enabled in pl+1. If this action is
executed, pl+1 becomes requesting and l is incremented.
That is, if a state of the causality chain satisfies RQ(l,m)
both l and m are eventually incremented.

If l = N − 1 and RQ(l,m) is satisfied, all processes in
the causality chain but the leaf are requesting while the
leaf is idle. In this case reflect is enabled in the leaf. The
execution of this action moves the leaf to the replying
state. In this case, the causality chain satisfies RP (k)
with k = N − 1. That is, the computation that starts
in a state that satisfies RQ(l,m) also contains the state
satisfying RP (k) 2

Lemma 4.4: For any causality chain, if a computation
of PIF starts in a state conforming to RQ′(l,m), this
computation also contains a state satisfying RP (k).

The proof of this lemma is similar to the proof of
Lemma 4.3.

Lemma 4.5: For any causality chain in the tree, if
a computation of PIF starts in a state conforming to
RP (k), it contains a state conforming to RQ(l,m).

Proof: We first demonstrate that if the computation
starts in a state where the causality chain satisfies RP (k)
with k > 1, then it also contains a state where k is
decremented. We do it by strong induction on the height
of all causality chains in the tree. Specifically, we show
that every causality chain of length N reaches a state
where the process whose distance from the leaf is N −
k + 1 is replying. The base case of the distance being
zero, i.e. k = N − 1, means that only leaf is replying. It
follows from Lemma 4.3.

Let us assume that every process at height at least
N − k is replying. Let us consider a process p that is not

replying and whose height N − k + 1. The height of all
children of p is at most N − k. Due to the assumption,
there is a state in this computation where every child of
p is replying. Since the chain conforms to RP (k), both p
and parent.p are requesting. replying. In this case, back
action is enabled in p. Once executed, p is replying. By
induction this proves our claim.

From this claim, it follows that this computation
contains a state where all children of the root process are
replying. Since this state conforms to RQ(k), The root
is requesting. In this case, action clear is enabled in the
root process. Once, executed, all causality chains of the
system transition to RQ(0, 1). Hence, the lemma. 2

Lemma 4.6: For any causality chain in the tree, if
a computation of PIF starts in a state conforming to
RP ′(k), it contains a state conforming to RQ(l,m)

The proof of this lemma is similar to the proof of
Lemma 4.5

Theorem 5: PIF classically stabilizes to SPIF and
ideally stabilizes to IPIF .

Proof: Specification SPIF requires that for every
causality chain in the tree, the solution should remain
in the disjunction of the predicates RQ(l,m) and RP (k)
and infinitely transition from one to the other. According
to Lemma 4.2, the disjunction of predicates is closed
in PIF . According to Lemmas 4.3 and 4.5, if the
computation starts in a state conforming to one of
the predicates, it transitions to the other. Hence, the
disjunction of the predicates is the invariant of PIF with
respect to SPIF .

Observe that for every causality chain, the
disjunction of predicates RQ′(l, m) ∨RP ′(k). That is,
it contains the program and specification state space.
According to Lemma 4.4, if a computation of PIF starts
in a state conforming to RQ′(l,m), then it also contains
a state satisfying RP (k). Similarly, due to Lemma 4.6,
if PIF starts from a state conforming to RP ′(k), it
transitions to RQ(l,m).This means that the program
stabilizes to SPIF and ideally stabilizes to IPIF . 2

Alternating bit protocol. Alternating bit protocol
is an elementary data-link network protocol. There is



206 M. Nesterenko and S. Tixeuil

a number of classic stabilizing implementations of the
protocol. Refer to Howell et al [24] for an extensive list
of citations. There is also a snap-stabilizing version [11].

The problem is stated as follows. There are two
processes: sender — p, and receiver — q. The processes
maintain boolean sequence numbers ns.p and nr.q.
The processes exchange messages over communication
channels. The channels are reliable and their capacity
is one. That is, if the channel is empty, the message is
reliably sent. If the channel already contains a message,
an attempt to send another message leads to the loss
of the new message. The processes exchange two types
of messages: data and ack. Both carry the sequence
numbers.

The specification SABP prescribes infinite sequences
of states where there is exactly one message in the two
channels. The message carries the sequence number of
the sender. The state transitions are such that p changes
the value of ns. This change is followed by the change of
the value in nr that matches the value of ns.

The ideal specification of IABP is that for every state
in the state space there is a sequence that starts in it
and every sequence contains a sequence of SABP as a
suffix. Moreover, the non-SABP prefix of a sequence of
IABP contains no more than five steps.

The program ABP uses only external variables as
described by SABP and IABP. The mapping from
program to specification states is identical. ABP actions
are shown in Figure 11. The sender has two actions: next
and timeout. Action next is enabled if there is a message
from q in the channel. The timeout action is enabled if
there are no messages in either channel. Upon receiving
a message from q with matching sequence number, p
increments the sequence number and sends the next
message. If p times out, it resubmits the same message.
The receiver has a single action. When q, receives a
message, it sends an acknowledgment back to p. If the
message bears a sequence number different from rn, q
increments rn signifying the successful receipt of the
message.

next : receive ack(nm) −→
if nm = ns then

ns := ¬ns
send data(ns)

timeout : timeout() −→ send data(ns)
reply : receive data(nm) −→

if nm 6= nr then
nr := nm

send ack(nm)

Figure 11 ABP actions.

Theorem 6: ABP classically stabilizes to SABP and
ideally stabilizes to IABP.

Proof: We prove the correctness of the theorem by
enumerating the state transitions of ABP. We classify

ack(ns) data(ns)

data(ns)

∅

ack(¬ns)

∅

ack(¬ns)

data(¬ns)

ack(ns)data(¬ns)

ns=nr ns≠nrnext

reply
reply timeout

next

reply

timeout

next

reply

next

Figure 12 ABP state transitions.

the state space of ABP into two groups: (i) ns is equal
to nr and (ii) ns is not equal to nr. The states are
further classified according to the type of messages in the
channels. The states and state transitions are shown in
Figure 12. Note that to simplify the diagram we do not
show the states that contain more than a single message.
However, after a single transition, the program moves
from one of those states to a state shown in the figure.
The correctness of the theorem claims can be ascertained
by examining the states and transitions shown in the
figure. 2

Note that ABP can be readily composed with other
programs. For example a transport-level protocol that
transmits a sequence of messages from the sender to the
receiver. Recall that IABP requires that its solution
stabilizes to SABP in no more than five steps. If that
is the case, then ABP can incorrectly deliver no more
than five messages. This tolerance property can be taken
into account in composing ABP with a transport-level
protocol.

5 Related Work

We group the related work into three broad categories.

Snap-stabilization. Ideal stabilization is closely
related to the notion of snap-stabilization [4, 11].
We regard ideal stabilization as both a restriction
and a generalization of snap-stabilization. Snap-
stabilization has been defined in two ways: a program
is snap-stabilizing if its every execution satisfies the
specification. In this sense, an ideally stabilizing program
is snap-stabilizing to its specification. In fact, some
previously published snap-stabilizing programs [25] are
ideally stabilizing as their every state is shown to be
legitimate. The state displacement technique that we
describe in Section 3 demonstrates how to design such



Ideal Stabilization 207

snap-stabilizing protocols. Conversely, ideal stabilization
to ideal specifications developed in Section 4 subsumes
all known variants of stabilization, including snap-
stabilization, as it incorporates arbitrary tolerance
properties into the specification itself.

The second definition of snap-stabilization describes
a snap-stabilizing program as immediately satisfying an
external invocation (such as waves in [9, 10, 11]). Such
approach may lead to specifications with sequence-based
safety and liveness properties. Proving snap-stabilization
to such specifications often results in operational proofs
that are difficult to verify. The compositional properties
of such programs are unclear. Our definition, on the
other hand, allows us to provide assertional correctness
proofs for well-known snap-stabilization programs and
explore the compositional properties of such programs.

Extra property preserving stabilization. Adding
safety properties to self-stabilizing protocols has been
an active research direction. However, in order to satisfy
a particular safety property, most studies restrict the
nature and the extent of the faults. Safe stabilizing
algorithms [3, 17] stabilize from an arbitrary initial
state and, additionally, can withstand several faults
without compromising a certain safety property. Fault-
containing stabilization [18] may handle only a single
transient failure to ensure actual containment and
recovery. Super-stabilizing protocols [15] can withstand
one topology change at a time. When faults are simple
enough to be detected by checksums [23], it is also
possible to maintain elaborate safety predicates. Other
approaches to safety enforcement make use of external
entities [16] or incorruptible memory [28]. By contrast,
ideal stabilization does not restrict the nature or the
extent of the transient faults that may affect the system,
nor does it require an external safety oracle.

Composition. A number of articles consider
composition of classic stabilizing programs [21, 26,
27, 31]. Varghese [31] studies the case where the
components are able to stabilize independently. Gouda
and Herman [21] discuss adaptive programming
where the stabilization of the composed program
depends on cooperation of the environment. Leal
and Arora [27] provide a detailed study of stabilizing
program design by limiting the corruption propagation
between components. Candea and Fox [6] organize
non-stabilizing program components in a restart tree.
If a component gets corrupted, all its descendant
components are restarted. There is a string of articles
(see, for example, [26]) that explore addition of tolerance
components by examining the program state space and
eliminating faulty transitions and states. By contrast,
the composition of ideally stabilizing programs is as
simple as the composition of ordinary programs.

6 New Research Directions

In this paper we proposed a new way of approaching
stabilization and its variants. This approach opens a
number of new research directions. In conclusion of this
paper we would like to outline several proming diretions.

Ideal stabilization legitimizes every possible state
thus rendering this term, in conventional sense,
meaningless. However, as ideal stabilization shifts
emphasis from the implementer to the specification
writer, the transitional questions of correct program
design are restated differently. Since the ideally
stabilizing program satisfies the specification exactly as
stated, there is a need to investigate whether there is
an equivalent specification-based stabilization to some
desired set of states. For example, ideal stabilization
may possess a concept that correspond to attractors in
pseudo-attractors that by Burns et al [5] defined for
self-stabilization. It would be useful to investigate the
existence of an equivalent to convergence stair [19] which
is a foundation of correctness proofs in self-stabilization
as well as local checking and correction [1, 2] which is
another well-known proof technique.

Ideal stabilization has interesting compositional
properties that make it similar to non-stabilization
than to stabilization. Indeed, since a program has to
instantly conform to its specification, the composition of
two programs is immediate once the two specifications
are compatible. Hence, the the composition moves
from program to specification. Specification composition
has to ensure compatibility during stabilization. For
example, if one specification requires recovery from a
fault under x steps and another specification requires
recovery from a fault in y steps, then the composed
specification would have to allow recovery in x + y steps.

A particularly interesting research direction is
trying to combine ideal stabilization with tolerance
to permanent faults classes such as process crashes,
topology changes or Byzantine faults. Unlike transient
faults, whose nature is abstracted by considering an
arbitrary initial state, permanent faults require changes
in the specification of both recovery and post-recovery
behavior. A systematic study of the combination of
permanent and transient faults would significantly
enhance the applicability of ideal stabilization.

References

[1] B. Awerbuch, B. Patt-Shamir, and G. Varghese.

Self-stabilization by local checking and correction.

In FOCS91 Proceedings of the 31st Annual IEEE

Symposium on Foundations of Computer Science, pages

268–277, 1991.

[2] B. Awerbuch and G. Varghese. Distributed program

checking: a paradigm for building self-stabilizing

distributed protocols. In FOCS91 Proceedings of the 31st

Annual IEEE Symposium on Foundations of Computer

Science, pages 258–267, 1991.



208 M. Nesterenko and S. Tixeuil

[3] Alina Bejan, Sukumar Ghosh, and Shrisha Rao. An
extended framework of safe stabilization. In David Jeff
Jackson, editor, 21st International Conference on
Computers and Their Applications, CATA-2006, Seattle,
Washington, USA, March 23-25, 2006, Proceedings,
pages 276–282. ISCA, 2006.

[4] Alain Bui, Ajoy Kumar Datta, Franck Petit, and
Vincent Villain. State-optimal snap-stabilizing PIF in
tree networks. In Anish Arora, editor, 1999 ICDCS
Workshop on Self-stabilizing Systems, Austin, Texas,
June 5, 1999, Proceedings, pages 78–85. IEEE Computer
Society, 1999.

[5] J.E. Burns, M.G. Gouda, and R.E. Miller. Stabilization
and pseudo-stabilization. Distributed Computing, 7:35–
42, 1993.

[6] George Candea and Armando Fox. Recursive
restartability: Turning the reboot sledgehammer into a
scalpel. In Eighth IEEE Workshop on Hot Topics in
Operating Systems (HotOS-VIII, pages 125–132, May
2001.

[7] K. M. Chandy and J. Misra. The drinking philosophers
problem. ACM Trans. on Programming Languages and
Sys., 6(4):632, October 1984.

[8] Ernest J. H. Chang. Echo algorithms: Depth parallel
operations on general graphs. IEEE Transactions on
Software Engineering, 8(4):391–401, July 1982.

[9] A. Cournier, S. Devismes, and V. Villain. From Self-to
Snap-Stabilization. In Stabilization, safety, and security
of distributed systems: 8th international symposium,
SSS 2006, Dallas, TX, USA, November 17-19, 2006:
proceedings, page 199. Springer-Verlag New York Inc,
2006.

[10] A. Cournier, S. Devismes, and V. Villain. Light enabling
snap-stabilization of fundamental protocols. ACM
Transactions on Autonomous and Adaptive Systems
(TAAS), 4(1):6, 2009.

[11] Sylvie Delaët, Stéphane Devismes, Mikhail Nesterenko,
and Sébastien Tixeuil. Snap-stabilization in message-
passing systems. In Rida A. Bazzi and Boaz Patt-
Shamir, editors, Proceedings of the Twenty-Seventh
Annual ACM Symposium on Principles of Distributed
Computing, PODC 2008, Toronto, Canada, August 18-
21, 2008, page 443. ACM, 2008.

[12] E. W. Dijkstra. Co-operating sequential processes. In
F. Genuys, editor, Programming Languages, pages 43–
112. Academic Press N.Y., 1968.

[13] E. W. Dijkstra. Self-stabilizing systems in spite of
distributed control. Communications of the ACM,
17(11):643–644, November 1974.

[14] S Dolev. Self-Stabilization. MIT Press, 2000.

[15] Shlomi Dolev and Ted Herman. Superstabilizing
protocols for dynamic distributed systems. Chicago J.
Theor. Comput. Sci, 1997, 1997.

[16] Shlomi Dolev and Frank A. Stomp. Safety assurance via
on-line monitoring. Distributed Computing, 16(4):269–
277, December 2003.

[17] Sukumar Ghosh and Alina Bejan. A framework
of safe stabilization. In Shing-Tsaan Huang and
Ted Herman, editors, Self-Stabilizing Systems, 6th
International Symposium, SSS 2003, San Francisco,
CA, USA, June 24-25, 2003, Proceedings, volume 2704

of Lecture Notes in Computer Science, pages 129–140.
Springer, 2003.

[18] Sukumar Ghosh, Arobinda Gupta, Ted Herman, and
Sriram V. Pemmaraju. Fault-containing self-stabilizing
algorithms. In Proceedings of the 15th Annual ACM
Symposium on Principles of Distributed Computing
(PODC ’96), pages 45–54, New York, USA, May 1996.
ACM.

[19] MG Gouda and N Multari. Stabilizing communication
protocols. IEEE Transactions on Computers, 40(4):448–
458, 1991.

[20] Mohamed G. Gouda and F. Furman Haddix. The
alternator. Distributed Computing, 20(1):21–28, 2007.

[21] Mohamed G. Gouda and Ted Herman. Adaptive
programming. IEEE Transactions on Software
Engineering, 17(9):911–921, September 1991.

[22] Maria Gradinariu and Sébastien Tixeuil. Conflict
managers for self-stabilization without fairness
assumption. page 46. IEEE Computer Society, 2007.

[23] Ted Herman and Sriram V. Pemmaraju. Error-
detecting codes and fault-containing self-stabilization.
Inf. Process. Lett, 73(1-2):41–46, 2000.

[24] Rodney R. Howell, Mikhail Nesterenko, and Masaaki
Mizuno. Finite-state self-stabilizing protocols in
message-passing systems. J. Parallel Distrib. Comput,
62(5):792–817, 2002.

[25] Colette Johnen, Luc Alima, Ajoy K. Datta,
and Sébastien Tixeuil. Optimal snap-stabilizing
neighborhood synchronizer in tree networks. Parallel
Processing Letters, 12(3-4):327–340, 2002.

[26] Sandeep S. Kulkarni and Anish Arora. Automating
the addition of fault-tolerance. In Formal Techniques
in Real-Time and Fault-Tolerant Systems, 6th
International Symposium (FTRTFT 2000) Proceedings,
number 1926 in Lecture Notes in Computer Science,
pages 82–93, September 2000.

[27] William Leal and Anish Arora. Scalable self-
stabilization via composition. In 24th International
Conference on Distributed Computing Systems, pages
12–21. IEEE Computer Society, March 2004.

[28] Chengdian Lin and Janos Simon. Observing self-
stabilization. In Maurice Herlihy, editor, Proceedings of
the 11th Annual Symposium on Principles of Distributed
Computing, pages 113–124, Vancouver, BC, Canada,
August 1992. ACM Press.

[29] A. Segall. Distributed network protocols. IEEE
Transactions on Information Theory, IT-29(1):23–35,
January 1983.

[30] Sébastien Tixeuil. Self-stabilizing algorithms. In
Algorithms and Theory of Computation Handbook,
chapter 3. Chapma and Hall/CRC Applied Algorithms
and Data Structures, 2009.

[31] George Varghese. Compositional proofs of self-
stabilizing protocols. In 3rd Workshop on Self-stabilizing
Systems, Santa Barbara, California, August, 1997,
Proceedings, pages 80–94. Carleton University Press,
1997.


