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Abstract. We define and investigate the consensus problem for a set of
N processes embedded on the d-dimensional plane, d ≥ 2, which we call
the geoconsensus problem. The processes have unique coordinates and
can communicate with each other through oral messages. In contrast to
the literature where processes are individually considered Byzantine, it
is considered that all processes covered by a finite-size convex fault area
F are Byzantine and there may be one or more processes in a fault area.
Similarly as in the literature where correct processes do not know which
processes are Byzantine, it is assumed that the fault area location is not
known to the correct processes.

In this paper, we first prove that the geoconsensus is impossible if
all processes may be covered by at most three areas where one is a fault
area. We then prove the following results on the constructive side consid-
ering the 2-dimensional embedding. For M ≥ 1 fault areas F of arbitrary
shape with diameter D, we present a consensus algorithm that tolerates
f ≤ N−(2M+1) Byzantine processes provided that there are 9M+3 pro-
cesses with pairwise distance between them greater than D. For square
F with side �, we provide a consensus algorithm that lifts this pairwise
distance requirement and tolerates f ≤ N − 15M Byzantine processes
given that all processes are covered by at least 22M axis aligned squares
of the same size as F . For a circular F of diameter �, this algorithm tol-
erates f ≤ N − 57M Byzantine processes if all processes are covered by
at least 85M circles. Finally, we extend these results to various size com-
binations of fault and non-fault areas as well as d-dimensional process
embeddings, d ≥ 3.

1 Introduction

The problem of Byzantine consensus [10,14] has been attracting extensive atten-
tion from researchers and engineers in distributed systems. It has applications
in distributed storage [1,2,4,5,9], secure communication [6], safety-critical sys-
tems [16], blockchain [12,17,19], and Internet of Things (IoT) [11].

Consider a set of N processes with unique IDs that can communicate with
each other. Assume that f processes out of these N processes are Byzantine.
Assume also that which process is Byzantine is not known to correct processes,
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except possibly the size f of Byzantine processes. The Byzantine consensus prob-
lem here requires the N −f correct processes to reach to an agreement tolerating
arbitrary behaviors of the f Byzantine processes.

Pease et al. [14] showed that the maximum possible number of faults f that
can be tolerated depends on the way how the (correct) processes communicate:
through oral messages or through unforgable written messages (also called signa-
tures). An oral message is completely under the control of the sender, therefore,
if the sender is Byzantine, then it can transmit any possible message. This is not
true for a signed, written message. Pease et al. [14] showed that the consensus
is solvable only if f < N/3 when communication between processes is through
oral messages. For signed, written messages, they showed that the consensus is
possible tolerating any number of faulty processes f ≤ N .

The Byzantine consensus problem discussed above assumes nothing about
the locations of the processes, except that they have unique IDs. Since each pro-
cess can communicate with each other, it can be assumed that the N processes
work under a complete graph (i.e., clique) topology consisting of N vertices
and N(N − 1)/2 edges. Byzantine consensus has also been studied in arbitrary
graphs [14,18] and in wireless networks [13], relaxing the complete graph topol-
ogy requirement so that a process may not be able to communicate with all
other N − 1 processes. The goal in these studies is to establish necessary and
sufficient conditions for consensus to be solvable. For example, Pease et al. [14]
showed that the consensus is solvable through oral messages tolerating f Byzan-
tine processes if the communication topology is 3f -regular. Furthermore, there is
a number of studies on a related problem of Byzantine broadcast when the com-
munication topology is not a complete graph topology, see for example [8,15].
Byzantine broadcast becomes fairly simple for a complete graph topology.

Recently, motivated by IoT-blockchain applications, Lao et al. [11] proposed
a consensus protocol, which they call Geographic-PBFT or simply G-PBFT, that
extends the well-known PBFT consensus protocol by Castro and Liskov [4] to the
geographic setting. The authors considered the case of fixed IoT devices embed-
ded on geographical locations for data collection and processing. The location
data can be obtained through recording location information at the installation
time or can also be obtained using low-cost GPS receivers or location estimation
algorithms [3,7]. They argued that the fixed IoT devices have more computa-
tional power than other mobile IoT devices (e.g.., mobile phones and sensors)
and are less likely to become malicious nodes. They then exploited (geographical)
location information of fixed IoT devices to reach consensus. They argued that
G-PBFT avoids Sybil attacks, reduces the overhead for validating and record-
ing transactions, and achieves high consensus efficiency and low traffic intensity.
However, G-PBFT is validated only experimentally and no formal analysis is
given.

In this paper, we formally define and study the Byzantine consensus prob-
lem when processes are embedded on the geographical locations in fixed unique
coordinates, which we call the Byzantine geoconsensus problem. If fault locations
are not constrained, the geoconsensus problem differs little from the Byzantine
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consensus. This is because the unique locations serve as IDs of the processes
and same set of results can be established depending on whether communica-
tion between processes is through oral messages or unforgable written messages.
Therefore, we relate the fault locations to the geometry of the problem, assum-
ing that the faults are limited to a fault area F (going beyond the limitation
of mapping Byzantine behavior to individual processes). In other words, the
fault area lifts the restriction of mapping Byzantine behavior to individual pro-
cesses in the classic setting and now maps the Byzantine behavior to all the
processors within a certain area in the geographical setting. Applying the clas-
sic approaches of Byzantine consensus may not exploit the collective Byzantine
behavior of the processes in the fault area and hence they may not provide ben-
efits in the geographical setting. Furthermore, we are not aware of prior work in
Byzantine consensus where processes are embedded in a geometric plane while
faulty processes are located in a fixed area.

In light of the recent development on location-based consensus protocols,
such as G-PBFT [11], discussed above, we believe that our setting deserves a
formal study. In this paper we consider the Byzantine geoconsensus problem in
case the processes are embedded in a d-dimensional plane, d ≥ 2. Formally, we
define the problem as follows. Consider the binary consensus where every correct
process is input a value v ∈ {0, 1} and must output an irrevocable decision with
the following three properties.

Agreement – no two correct processes decide differently;
Validity – if all the correct processes input the same value v, then every correct

process decides v;
Termination – every correct process eventually decides.

Definition 1 (Byzantine Geoconsensus). An algorithm solves the Byzan-
tine geoconsensus Problem (or geoconsensus for short) for fault area set F , if
every computation produced by this algorithm satisfies the three consensus prop-
erties.

We study the possibility and bounds for a solution to geoconsensus. We
demonstrate that geoconsensus allows quite robust solutions: all but a fixed
number of processes may be Byzantine. We discuss in detail our contributions
below.

Contributions. Let N denotes the number of processes, M denotes the number
of fault areas F , D denotes the diameter of F , and f denotes the number of faulty
processes. Assume that each process can communicate with all other N − 1
processes and the communication is through oral messages. Assume that all the
processes covered by a faulty area F are Byzantine. The correct processes know
the size of each faulty area (such as its diameter, number of edges, area, etc.)
and the total number M of them but do not know their exact location.

In this paper, we made the following five contributions:

(i) An impossibility result that geoconsensus is not solvable if all N processes
may be covered by 3 equal size areas F and one of them may be fault area.
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This extends to the case of N processes being covered by 3M areas F with
M areas being faulty.

(ii) The algorithm BASIC that solves geoconsensus tolerating f ≤ N −(2M +1)
Byzantine processes, provided that there are 9M +3 processes with pairwise
distance between them greater than D.

(iii) The algorithm GENERIC that solves geoconsensus tolerating f ≤ N −15M
Byzantine processes, provided that all N processes are covered by 22M axis-
aligned squares of the same size as the fault area F , removing the pairwise
distance assumption in the algorithm BASIC.

(iv) An extension of the GENERIC algorithm to circular F tolerating f ≤ N −
57M Byzantine processes if all N processes are covered by 85M circles of
same size as F .

(v) Extensions of the results (iii) and (iv) to various size combinations of fault
and non-fault areas as well as to d-dimensional process embeddings, d ≥ 3.

Our results are interesting as they provide trade-offs among N,M, and f ,
which is in contrast to the trade-off provided only between N and f in the
Byzantine consensus literature. For example, the results in Byzantine consensus
show that only f < N/3 Byzantine processes can be tolerated, whereas our
results show that as many as f ≤ N −αM , Byzantine processes can be tolerated
provided that the processes are placed on the geographical locations so that at
least βM areas (same size as F ) are needed to cover them. Here α and β are
both integers with β ≥ c · α for some constant c.

Furthermore, our geoconsensus algorithms reduce the message and space
complexity in solving consensus. In the Byzantine consensus literature, every
process sends communication with every other process in each round. Therefore,
in one round there are O(N2) messages exchanged in total. As the consensus
algorithm runs for O(f) rounds, in total O(f ·N2) messages are exchanged in the
worst-case. In our algorithms, let N processes are covered by X areas of size the
same as fault area F . Then in a round only O(X2) messages are exchanged. Since
the algorithm runs for O(M) rounds to reach geoconsensus, in total O(M · X2)
messages are exchanged in the worst-case. Therefore, our geoconsensus algo-
rithms are message (equivalently communication) efficient. The improvement on
space complexity can also be argued analogously.

Finally, Pease et al. [14] showed that it is impossible to solve consensus
through oral messages when N = 3f but there is a solution when N ≥ 3f + 1.
That is, there is no gap on the impossibility result and a solution. We can only
show that it is impossible to solve consensus when all N processes are covered
by 3M areas that are the same size as F but there is a solution when all N
processes are covered by at least 22M areas (for the axis-aligned squares case).
Therefore, there is a general gap between the condition for impossibility and the
condition for a solution.

Techniques. Our first contribution is established extending the impossibility
proof technique of Pease et al. [14] for Byzantine consensus to the geoconsensus
setting. The algorithm BASIC is established first through a leader selection to
compute a set of leaders so that they are pairwise more than distance D away
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from each other and then running carefully the Byzantine consensus algorithm
of Pease et al. [14] on those leaders.

For the algorithm GENERIC, we start by covering processes by axis-aligned
squares and studying how these squares may intersect with fault areas of various
shapes and sizes. Determining optimal axis-aligned square coverage is NP-hard.
We provide constant-ratio approximation algorithms. We also discuss how to
cover processes by circular areas. Then, we use these ideas to construct algorithm
GENERIC for fault areas that are either square or circular, which does not
need the pairwise distance requirement of BASIC but requires the bound on
the number of areas in the cover area set. Finally, we extend these ideas to
develop covering techniques for higher dimensions. These covering techniques
then provide tolerance bounds for Byzantine consensus in higher dimensions.

Future Work. Our results show the dependency of the tolerance guarantees on
the shapes and sizes of the fault areas. Therefore, for future work, it would also
be interesting to consider fault area F shapes beyond circles and squares that we
studied; to investigate process coverage by non-identical squares, circles or other
shapes to see whether better bounds on the set A and fault-tolerance guarantee
f can be obtained. It would also be interesting to close or reduce the gap between
the condition for impossibility and a solution (as discussed in Contributions).
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