
Byzantine Geoconsensus

Joseph Oglio, Kendric Hood, Gokarna Sharma, and Mikhail Nesterenko

Department of Computer Science, Kent State University, Kent, OH 44242, USA
{joglio@,khood5@,sharma@cs.,mikhail@cs.}@kent.edu

Abstract. We define and investigate the consensus problem for a set of N pro-
cesses embedded in the d-dimensional plane, d ≥ 2, which we call the Geocon-
sensus Problem. The processes have unique coordinates and can communicate
with each other through oral messages. Faulty processes are covered by a finite-
size convex fault area F . The correct processes know the fault area size but not
its location. We prove that the geoconsensus is impossible if all processes may be
covered by at most three areas the size of the fault area.
On the constructive side, for M ≥ 1 fault areas F of arbitrary shape with diame-
ter D, we present a consensus algorithm BASIC that tolerates f ≤ N−(2M+1)
Byzantine processes provided that there are 9M + 3 processes with pairwise
distance between them greater than D. We present another consensus algo-
rithm GENERIC that lifts this distance requirement. For square F with side `,
GENERIC tolerates f ≤ N − 15M Byzantine processes given that all processes
are covered by at least 22M axis aligned squares of the same size as F . For a cir-
cular F of diameter `, GENERIC tolerates f ≤ N−57M Byzantine processes if
all processes are covered by at least 85M circles. We then evaluate the tolerance
of GENERIC for various size combinations of fault and non-fault areas as well as
d-dimensional process embeddings, where d ≥ 3.

1 Introduction

The problem of Byzantine consensus [17,23] has been attracting extensive attention
from researchers and engineers in distributed systems since its initial statement. The
problem has applications in distributed storage [1,2,5,6,16], secure communication [8],
safety-critical systems [25], blockchain [21,26,28], and Internet of Things (IoT) [18].

Pease et al. [23] defined the problem as follows. Consider a set of N processes with
unique identifiers. The processes communicate in synchronous rounds. Each process
can communicate with all other processes. Some number f < N of these processes
are faulty. The fault is Byzantine which means that the faulty process may behave ar-
bitrarily. The correct processes know the number of the faults f but not the identifiers
of the faulty processes. The Byzantine Consensus Problem requires all N − f correct
processes to agree on a single value.

Pease et al. proved that the maximum number of faults f that can be tolerated by a
deterministic algorithm depends on the communication assumptions. Unauthenticated
oral messages may be modified upon retransmission. If only oral messages are allowed,
Pease et al. showed that a consensus algorithm may tolerate up f < N/3 faults. In
case of unforgeable authenticated written messages, the consensus is solvable with an
arbitrary number of faults f ≤ N [23]. It is shown that Byzantine consensus requires

1

at least f rounds of communication [10] and O(N2) messages [12]. Faster and more
efficient solutions are possible if randomized algorithms are allowed [3,14,20].

The original Byzantine Consensus Problem requires the processes to have unique
identifiers but does not restrict their location. One way to add some location informa-
tion to the system is by limiting process communication. In the original problem state-
ment, any pair of processes may communicate directly. Therefore, the communication
topology is a complete graph, i.e. a clique. A number of studies relax this connectiv-
ity assumption and investigate the problem in arbitrary graphs [23,27] and wireless
networks [22]. Several papers study a related problem of Byzantine broadcast on in-
complete graphs [15,24].

Recently, Lao et al. [18] proposed a Byzantine consensus protocol for IoT and
blockchain applications, called Geographic-PBFT or simply G-PBFT, which extends
a well-known PBFT algorithm [5] to geographic setting. They considered the case of
fixed IoT devices embedded in geographic locations for data collection and process-
ing. The location data for these IoT devices can be recorded at deployment, obtained
using low-cost GPS receivers or through location estimation algorithms [4,13]. They
argued that the fixed IoT devices have more computational power than other mobile
IoT devices (e.g., mobile phones and sensors) and are less likely to exhibit Byzantine
behavior. Therefore, they exploited the geographical location information of fixed IoT
devices to reach consensus. They argued that G-PBFT avoids Sybil attacks [9], reduces
the overhead for validating and recording transactions, achieves consensus with high
efficiency and low traffic intensity. However, no formal analysis of G-PBFT is given
and it is only experimentally validated. Yet, we believe that these developments warrant
a study of Byzantine consensus in devices that are aware of their locations.

Our contribution. In this paper, we formally define and investigate the problem of
reaching consensus among processes in fixed geographical locations. We call this vari-
ant the Byzantine Geoconsensus Problem. We retain all other parameters of the original
problem statement. However, if fault locations are not constrained, Geoconsensus dif-
fers little from the classic Byzantine consensus: the geographic location of each process
can serve as its identifier. Hence, we consider a variant where the faults are constrained
geometrically. Specifically, they are limited to a fixed-size fault area F . This limita-
tion allows more effective solutions and makes Geoconsensus an interesting problem
to study. We are not aware of prior work in Byzantine consensus where processes are
embedded in a geometric plane while faulty processes are located in a fixed area.

Let us enumerate the contributions of this paper. Denote by N the number of pro-
cesses, M the number of fault areas F , D the diameter of F , and f the number of
faulty processes. In other words, f is the number of processes covered by fault areas
F . Assume that each process can communicate with all other N − 1 processes and the
communication is through oral messages only. Assume that any process covered by a
faulty area F may be Byzantine. The correct processes know the size of each faulty
area, such as its diameter, number of edges, etc. but do not know their exact locations.
In this paper, we make the following five major contributions:

(i) We prove that Geoconsensus is not solvable deterministically if all N processes
may be covered by 3 equal size areas F and one of them may be the fault area. This
extends to the case of N processes being covered by 3M areas F with M areas

2

being faulty. This is done by adapting the impossibility proof of Pease et al. [23] to
Geoconsensus.

(ii) We present algorithm BASIC that solves Geoconsensus tolerating f ≤ N − (2M +
1) Byzantine processes, provided that there are 9M + 3 processes with pairwise
distance between them greater than D. The idea is for each process to determin-
istically select a leader in each independent coverage area. Once the leaders are
selected, any generic Byzantine consensus algorithm can be run. We use the classic
algorithm by Pease et al. [23]. Non-leader processes accept the result chosen by the
leaders.

(iii) We present algorithm GENERIC that removes the pairwise distance assumption of
BASIC and solves Geoconsensus tolerating f ≤ N − 15M Byzantine processes,
provided that allN processes are covered by 22M axis-aligned squares of the same
size as the fault area F . For GENERIC, we start with covering processes by axis-
aligned squares and studying how these squares may intersect with fault areas of
various shapes and sizes. We show that determining optimal axis-aligned square
coverage is NP-hard and provide constant-ratio approximation algorithms.

(iv) We extend GENERIC to circular F tolerating f ≤ N − 57M Byzantine processes
if all N processes are covered by 85M circles of same size as F .

(v) We further extend results of (iii) and (iv) to various shape and alignment combina-
tions of fault and non-fault areas and to d-dimensional process embeddings, d ≥ 3.

Notice that we considered only square and circular fault areas. However, our results
can be immediately extended to more complex shapes as they can be inscribed into
simple ones. Providing better bounds on more sophisticated analysis of complex shapes
beyond simple inscription is left for future research.

Geoconsensus vs. generic Byzantine consensus. Let us contrast the results obtained
for Geoconsensus to those of the original Byzantine Consensus Problem. The Geocon-
sensus provides potentially tighter bounds on the number of faults. The original problem
establishes the relationship only betweenN and f , while Geoconsensus also factors the
number of fault areas M . Thus, in the original problem, at most f < N/3 faulty pro-
cesses may be tolerated, whereas our results show that as many as f ≤ N − αM
faults can be tolerated provided that the processes are placed such that at most βM
areas (same size as F) are needed to cover them. Here, α and β are both integers with
β ≥ c · α for some constant c.

Geoconsensus also allows to increase the speed and reduce message complexity of
the solution. The original consensus requires at least f consecutive rounds of message
exchanges and O(f ·N2) messages. The algorithms presented in this paper rely on the
selection of a single leader per coverage area. Since each process knows the location of
all other processes, this selection is done without message exchanges. Then, the leaders
communicate to achieve consensus. Let N processes be covered by X areas of the
same size as fault area F . Then, in one round, at most O(X2) messages need to be
exchanged. To reach consensus the algorithm runs for O(M). Thus, in the worst case,
at most O(M ·X2) < O(f ·N2) messages are exchanged.

Pease et al. [23] showed that it is impossible to solve consensus through oral mes-
sages when N = 3f but provided a solution for N ≥ 3f + 1. That is, their impossibil-
ity bound is tight. In this paper, however, we were able to show that it is impossible to

3

Symbol Description
N ; P; (xi, yi) number of processes; {p1, . . . , pN}; planar coordinates of process pi
F ;D; F fault area; diameter of F ; a set of fault areas F with |F| = M

f number of faulty processes
PD processes in P such that pairwise distance between them is more than D

A (or Aj(Ri)); A cover area that is of same shape and size as F ; a set of cover areas A
n(F) number of cover areas A ∈ A that a fault area F overlaps

Table 1: Notation used throughout the paper.

solve consensus if all N processes are covered by 3M areas that are the same size as
F . Yet, for the axis-aligned squares case, the provide the solution where N processes
are covered by at least 22M areas. Narrowing the gap between the impossible and the
achievable is left for further research.

2 Notation, Problem Definition, and Impossibility
Processes. A computer system consists of a set P = {p1, . . . , pN} of N processes.
Every process pi is embedded in the 2-dimensional plane and has unique planar coor-
dinates (xi, yi). Each process is aware of coordinates of all the other processes of P
and is capable of sending a message to any of them. The sender of the message may
not be spoofed. The communication between processes is through unauthenticated oral
messages. This communication is synchronous.
Byzantine faults. Every process is either permanently correct or faulty. The fault is
Byzantine. A faulty process may behave arbitrarily. To simplify the presentation, we
assume that all faulty processes are controlled by a unique adversary trying to prevent
the system from achieving its task.
Fault area. The adversary controls the processes as follows. Let the fault area F be
a finite-size convex area in the plane. Let D be the diameter of F , i.e. the maximum
distance between any two points of F . The adversary may place F in any location on
the plane. A process pi is covered by F if the coordinates (xi, yi) of pi is either in the
interior or on the boundary of F . Any process covered by F may be faulty.

A fault area set or just fault set is the setF of identical fault areas F . The size of this
set isM , i.e., |F| =M . The adversary controls the placement of all areas in F . Correct
processes know the shape and size of the fault areas F . However, correct processes
do not know the precise placement of the fault areas F . For example, if F contains 4
square fault areas F with the side `, then correct processes know that each fault area is
of square with side ` but do not know where they are located. Table 1 summarizes the
notation used in this paper.
Byzantine Geoconsensus. Consider the binary consensus where every correct process
is input a value v ∈ {0, 1} and must output an irrevocable decision with the following
three properties.
agreement – no two correct processes decide differently;
validity – if all the correct processes input the same value v, then every correct process

decides v;
termination – every correct process eventually decides.

4

Definition 1. An algorithm solves the Byzantine Geoconsensus Problem (or Geocon-
sensus for short) for fault area set F , if every computation produced by this algorithm
satisfies the three consensus properties.

Impossibility of Geoconsensus. Given a certain set of embedded processes P and sin-
gle area F , the coverage number k of P by F is the minimum number of such areas
required to cover each process of P . We show that Geoconsensus is not solvable if the
coverage number k is less than 4. When the coverage number is 3 or less, the problem
is reducible to the classic consensus with 3 sets of peers where one of the sets is faulty.
Pease et al. [23] proved the solution for the latter problem to be impossible. The intu-
ition is that a group of correct processes may not be able to distinguish which of the
other two groups is Byzantine and which one is correct. Hence, the correct groups may
not reach consensus.

Theorem 1 (Impossibility of Geoconsensus). Given a set P of N ≥ 3 processes and
an area F , there exists no algorithm that solves the Byzantine Geoconsensus Problem
if the coverage number k of P by F is less than 4.

Proof. Set N = 3 · κ, for some positive integer κ ≥ 1. Place three areas A on the
plane in arbitrary locations. To embed processes in P , consider a bijective placement
function f : P → A such that κ processes are covered by each area A. Let v and v′ be
two distinct input values 0 and 1. Suppose one area A is fault area, meaning that all κ
processes in that area are faulty.

This construction reduces the Byzantine Goeconsensus Problem to the impossibil-
ity construction for the classic Byzantine consensus problem given in the theorem in
Section 4 of Pease et al. [23] for the 3κ processes out of which κ are Byzantine.

3 Geoconsensus Algorithm BASIC
In this section, we present the algorithm we call BASIC that solves Geoconsensus for
up to f < N − (2M + 1),M ≥ 1 faulty processes located in fault area set F of size
|F| = M provided that P contains at least 9M + 3 processes such that the pairwise
distance between them is greater than the diameter D of the fault areas F ∈ F .

The pseudocode of BASIC is shown in Algorithm 1. It contains two parts: the leaders
selection and the consensus procedure. Let us discuss the selection of leaders. If the
distance between two processes is less than the D, they may be covered by a single
fault area F . Therefore, the leaders need to be selected such that, pairwise, they are at
least D away from each other. Finding the largest set of such leaders is equivalent to
computing the maximum independent set in a unit disk graph. This problem is known
to be NP-hard [7]. We, therefore, employ a greedy heuristic.

Denote by Is(G) a distance D maximal independent set of a planar graph G . It
is defined as a subset of processes of G such that the distance between any pair of
processes of Is is more than D, and every process of G that does not belong to Is is at
most D away from a process in Is . That is, pi ∈ Is(G) if ∀pj 6= pi ∈ Is, d(pi, pj) >
D and ∀pk ∈ G \ Is , ∃pm ∈ Is such that d(pk, pm) ≤ D. Denote by Nb(pi, D),
the distance D neighborhood of process pi. That is, pj ∈ Nb(pi, D) if d(pi, pj) ≤

5

Algorithm 1: Geoconsensus algorithm BASIC.
1 Setting: A set P of N processes positioned at distinct coordinates. Each process can

communicate with all other processes and knows their coordinates. There are M ≥ 1
identical fault areas F . The diameter of a fault area is D. The locations of any area F is
not known to correct processes. Each process covered by any F is Byzantine.

2 Input: Each process has initial value either 0 or 1.
3 Output: Each correct process outputs decision subject to Geoconsensus.
4 Procedure for process pk ∈ P
5 // leaders selection
6 Let PD ← ∅, PC ← P;
7 while PC 6= ∅ do
8 let P3 ⊂ PD be a set of processes such that ∀pj ∈ P3, Nb(pj , D) has distance D

independent set of at most 3;
9 let pi ∈ P3, located in (xi, yi) be the lexicographically smallest process in P3, i.e.

∀pj 6= pi ∈ P3 : located in (xj , yj) either xi < xj or xi = xj and yi < yj ;
10 add pi to PD;
11 remove pi from PC ;
12 ∀pj ∈ Nb(pi, D) remove pj from PC ;

13 // consensus
14 if pk ∈ PD then
15 run PSL algorithm, achieve decision v, broadcast v, output v;
16 else
17 wait for messages with identical decision v from at least 2M + 1 processes from

PD , output v;

D. It is known [19, Lemma 3.3] that in every distance D planar graph, there exists a
neighborhood whose induced subgraph contains an independent set of size at most 3.

The set of leaders PD ⊂ P selection procedure operates as follows. A set PC

of leader candidates is iteratively processed. At first, all processes are candidates. All
processes whose distance D neighborhood induces a subgraph with an independent set
no more than 3 are found. Among those, the process pi with lexicographically smallest
coordinates, i.e. the process in the bottom left corner, is added to the leader set PD.
Then, all processes in Nb(pi, D) are removed from the leader candidate set PC . This
procedure repeats until PC is exhausted.

The second part of BASIC relies on the classic consensus algorithm of Pease et
al. [23]. We denote this algorithm as PSL. The input of PSL is the set of 3f + 1 pro-
cesses such that at most f of them are faulty as well as the initial value 1 or 0 for each
process. As output, the correct processes provide the decision value subject to the three
properties of the solution to consensus. PSL requires f + 1 communication rounds.

The complete BASIC operates as follows. All processes select leaders in PD. Then,
the leaders run PSL and broadcast their decision. The rest of the correct processes, if
any, adopt this decision.

Analysis of BASIC. The observation below is immediate since all processes run exactly
the same deterministic leaders selection procedure.

6

Observation 1. For any two processes pi, pj ∈ P , set PD computed by pi is the same
as set PD computed by pj .

Lemma 1. If P contains at least 3x processes such that the distance between any pair
of such processes is greater than D, then the size of PD computed by processes in
BASIC is at least x.

Proof. In [19, Theorem 4.7], it is proven that the heuristic we use for the leaders se-
lection provides a distance D independent set PD whose size is no less than a third of
optimal size. Thus, x ≤ |PD|. The lemma follows.

Lemma 2. Consider a fault area F with diameter D. No two processes in PD are
covered by F .

Proof. For any two processes pi, pj ∈ PD, d(pi, pj) > D. Since any area F has diam-
eter D, no two processes > D away can be covered by F simultaneously.

Theorem 2. Algorithm BASIC solves the Byzantine Geoconsensus Problem for a fault
area set F , the size of M ≥ 1 with fault areas F with diameter D for N processes in P
tolerating f ≤ N−(2M+1) Byzantine faults provided that P contains at least 9M+3
processes such that their pairwise distance is more than D. The solution is achieved in
M + 2 communication rounds.

Proof. If P contains at least 9M + 3 processes whose pairwise distance is more than
D, then, according to Lemma 1, each processes in BASIC selects PD such that |PD| ≥
3M +1. We have M ≥ 1 fault areas, i.e., |F| =M . From Lemma 2, a process p ∈ PD

can be covered by at most one fault area F . Therefore, if |PD| ≥ 3M + 1, then it is
guaranteed that even if M processes in PD are Byzantine, 2M +1 correct processes in
PD can reach consensus using PSL algorithm.

In the worst case, the adversary may position fault areas of F such that all but
2M + 1 processes in P are covered. Hence, BASIC tolerates N − (2M + 1) faults.

Let us address the number of rounds that BASIC requires to achieve Geoconsensus.
It has two components executed sequentially: leaders selection and PSL. Leaders selec-
tion is done independently by all processes and requires no communication. PSL takes
M+1 rounds for the 2M+1 leaders to arrive at the decision. It takes another round for
the leaders to broadcast their decision. Hence, the total number of rounds isM +2.

4 Covering Processes
In this section, in preparation for describing the GENERIC Geoconsensus algorithm,
we discuss techniques of covering processes by axis-aligned squares and circles. These
techniques vary depending on the shape and alignment of the fault area F .
Covering by squares. The algorithm we describe below covers the processes by square
areas A of size `× `, assuming that the fault areas F are also squares of the same size.
Although F may not be axis-aligned, we use axis-aligned areas A to cover processes.
Later, we determine the maximum number of such areas A, that non-axis-aligned F
may overlap.

7

Let A be positioned on the plane such that the coordinate of its bottom left cor-
ner is (x1, y1). The coordinates of its top left, top right, and bottom right corners are
respectively (x1, y1 + `), (x1 + `, y1 + `), and (x1 + `, y1). Let process pi be at coor-
dinate (xi, yi). We say that pi is covered by A if and only if x1 ≤ xi ≤ x1 + ` and
y1 ≤ yi ≤ y1 + `. We assume that A is closed, i.e., process pi is assumed to be covered
by A even if pi is positioned on the boundary of A.

Let us formally define the problem of covering processes by square areas, which
we denote by SQUARE-COVER. Denote by A a set of square areas A. We say that
A completely covers all N processes if each pi ∈ P is covered by at least one square
A ∈ A.

Definition 2 (The SQUARE-COVER problem). Suppose N processes are embedded
into a 2d-plane such that the coordinates of each process are unique. Given a number
k ≥ 1, is there a set A of size k composed of identical square areas A = ` × ` that
completely covers these N processes?

Theorem 3. SQUARE-COVER is NP-Complete.

Proof. To prove the theorem, we demonstrate that SQUARE-COVER is reducible to
the BOX-COVER problem which was shown to be NP-Complete by Fowler et al. [11].
BOX-COVER is defined as follows: There is a set of N points on the plane such that
each point has unique integer coordinates. A closed box (rigid but relocatable) is set
to be a square with side 2 and is axis-aligned. The problem is to decide whether a set
of k ≥ 1 identical axis-aligned closed boxes are enough to completely cover all N
points. Fowler et al. provided a polynomial-time reduction of 3-SAT to BOX-COVER
such that k boxes will suffice if and only if the 3-SAT formula is satisfiable. In this
setting, SQUARE-COVER reduces to BOX-COVER for ` = 2. Therefore, the NP-
Completeness of BOX-COVER extends to SQUARE-COVER.

A greedy square cover algorithm. Since SQUARE-COVER is NP-Complete, we use
a greedy approximation algorithm to find a set A of kgreedy axis-aligned square areas
A = `× ` that completely cover all N processes in P . We prove that kgreedy ≤ 2 ·kopt,
where kopt is the optimal number of axis-aligned squares in any algorithm to cover
those N processes. That is, our heuristic is a 2-approximation of the optimal algorithm.
We call this algorithm GSQUARE. Each process pi can run GSQUARE independently,
because pi knows all required input parameters for GSQUARE.

GSQUARE operates as follows. Suppose the coordinates of process pi ∈ P are
(xi, yi). Let xmin = min1≤i≤N xi, xmax = max1≤i≤N xi, ymin = min1≤i≤N yi,
and ymax = max1≤i≤N yi. Let R be an axis-aligned rectangle with the bottom left
corner at (xmin, ymin) and the top right corner at (xmax, ymax). It is immediate that
R is the smallest axis-aligned rectangle that covers all N processes. The width of R is
width(R) = xmax − xmin and the height is height(R) = ymax − ymin. See Figure 1
for illustration.

Cover rectangle R by a set R of m slabs R = {R1, R2, . . . , Rm}. The height of
each slab Ri is `, except for possibly the last slab Rm whose height may be less than `.
The width of each slab is width(R). That is this width is the same is the width of R.

8

(xmin,ymin)

(xmax,ymax)

width(R)

he
ig

ht
(R

)

slab R1

slab R2

slab Rm-1

slab Rm

l

l

l

<= l

Fig. 1: Selection of axis-aligned smallest enclosing rectangle R covering all N pro-
cesses inP and coverage ofR by axis-aligned slabsRi of height ` and widthwidth(R).
The slabs are selected such that the at least one process is positioned on the bottom side
of each slab.

width(R2) = width(R)

slab R2
l

l l l l

A1(R2) A2(R2) A3(R2) A4(R2)

Fig. 2: Selection of axis-aligned areas Aj(R2) (shown in red) to cover the processes in
the slab R2 of Figure 1. At least one process is positioned on the left side of each area.

This slab-covering is done as follows. Place slab R1 at the bottom of R such
that its bottom side aligns with the bottom of R and left and right sides align with
the corresponding sides of R. Slide R1 up so that the bottom-most process pmin =
(xmin, ymin) ∈ P is on the bottom side of R1. See Figure 1 for illustration. Now con-
sider only the processes in R that are not covered by R1. Denote this process set by P ′.
Consider the bottom-most process ymin′ of P ′. Slide the next slab R2 up so that pmin′

is on its bottom side. Continue placing slabs over R in this manner until all processes
of P are covered.

We now cover each such slab by axis-aligned square areas A = `× `. See Figure 2
for illustration. This square-covering is done similar to slab-covering. Let Ri be a slab
to cover. Place the first area A, call it A1(Ri), on Ri such that the top left corner of A
overlaps with the top left corner of slab Ri. Slide A1(Ri) horizontally to the right until
the left-most process in Ri is positioned on the left side of A1(Ri). Now consider only
the processes in Ri not covered by A1(Ri). Slide the next area A, called A2(Ri), such
that the left-most process in Ri is positioned on the left side of A. Note that there are
no uncovered processes between A1(Ri) and A2(Ri). Continue to cover all the points
in Ri in this manner. The last square may extend past the right side of the slab. Repeat
this procedure for every slab of R.

Lemma 3. Consider any two slabs Ri, Rj ∈ R produced by GSQUARE. Ri and Rj

do not overlap, i.e., if some process p ∈ Ri, then p /∈ Rj .

Proof. It is sufficient to prove this lemma for adjacent slabs. Suppose slabs Ri and Rj

are adjacent, i.e., j = i+1. According to algorithm GSQUARE, after the location of Ri

9

is selected, only processes that are not covered by the slabs so far are considered for the
selection of Rj . The first such process lies above the top (horizontal) side of Ri. Hence,
there is a non-empty gap between the top side of Ri and the bottom side of Rj .

Lemma 4. Consider any two square areasAj(Ri) andAk(Ri) selected by GSQUARE
in slab Ri ∈ R. Aj(Ri) and Ak(Ri) do not overlap, i.e., if some process p ∈ Aj(Ri),
then p /∈ Ak(Ri).

Proof is provided in the appendix due to space limitations.

Lemma 5. Consider slab Ri ∈ R. Let k(Ri) be the number of squares Aj(Ri) to
cover all the processes inRi using GSQUARE. There is no algorithm that can cover the
processes in Ri with k′(Ri) number of squares Aj(Ri) such that k′(Ri) < k(Ri).

Proof. GSQUARE operates such that it places each square A so that some process
p lies on the left side of this square. Consider a sequence of such processes: σ ≡
〈p1 · · · pu, pu+1 · · · pj〉. Consider any pair of subsequent processes pu and pu+1 in σ
with respective coordinates (xu, yu) and (xu+1, yu+1). GSQUARE covers them with
non-overlapping squares with side `. Therefore, xu + ` < xu+1. That is, the dis-
tance between consequent processes in σ is greater than `. Hence, any such pair of
processes may not be covered by a single square. Since the number of squares placed
by GSQUARE in slab Ri is k, the number of processes in σ is also k. Therefore,
any algorithm that covers these processes with axis-aligned squares requires at least
k squares.

Let kopt(R) be the number of axis-aligned square areas A = ` × ` to cover all
N processes in R in the optimal cover algorithm. We now show that kgreedy(R) ≤
2 · kopt(R), i.e., GSQUARE provides 2-approximation. We divide the slabs in the setR
into two setsRodd andReven. For 1 ≤ i ≤ m, let

Rodd := {Ri, imod 2 6= 0} andReven := {Ri, imod 2 = 0}.

Lemma 6. Let k(Rodd) and k(Reven) be the total number of (axis-aligned) square
areas A = ` × ` to cover the processes in the sets Rodd and Reven, respectively. Let
kopt(R) be the optimal number of axis-aligned squares A = ` × ` to cover all the
processes inR. kopt(R) ≥ max{k(Rodd), k(Reven)}.

Proof. Consider two slabs Ri and Ri+2 for i ≥ 1. Consider a square Aj(Ri) placed
by GSQUARE. Consider also two processes p ∈ Ri and p′ ∈ Ri+2, respectively. The
distance between p and p′ is d(p, p′) > `. Therefore, if Aj(Ri) covers p, then it cannot
cover p′ ∈ Ri+2. Hence, no algorithm can produce the number of squares kopt(R) less
than the maximum between k(Rodd) and k(Reven).

Lemma 7. kgreedy(R) ≤ 2 · kopt(R).

Proof. From Lemma 5, we obtain that GSQUARE is optimal for each slab Ri. From
Lemma 6, we get that for any algorithm kopt(R) ≥ max{k(Rodd), k(Reven)}. More-
over, the GSQUARE produces the total number of squares kgreedy(R) = k(Rodd) +
k(Reven). Comparing kgreedy(R) with kopt(R), we get

kgreedy(R)
kopt(R)

≤ k(Rodd) + k(Reven)

max{k(Rodd), k(Reven)}
≤ 2 ·max{k(Rodd), k(Reven)}

max{k(Rodd), k(Reven)}
≤ 2.

10

width(R)

l A1(Ri) A4(Ri)

l

l l l

A1(Ri+1)

slab Ri

slab Ri+1

A2(Ri+1) A3(Ri+1)

A2(Ri) A3(Ri)

Fig. 3: The maximum overlap of an axis-aligned fault area F with the identical axis-
aligned cover squares A of same size.

Covering by circles. Let A be the set of identical circles of diameter `. We say that A
completely covers all the processes if every process pi ∈ P is covered by at least one of
the circles in A. The problem CIRCLE-COVER of completely covering processes by
A may be formally stated similar to SQUARE-COVER in Definition 2. The following
theorem, in turn, can be proven similar to Theorem 3 for SQUARE-COVER.

Theorem 4. CIRCLE-COVER is NP-Complete.

A greedy circle cover algorithm. We call this algorithm GCIRCLE. Select the square
cover set A as produced by GSQUARE. Consider an individual square A ∈ A. For
each side of A, find a midpoint and place a circle of diameter ` there. Observe that thus
placed four circles completely cover the area of the square A.

Lemma 8. Let kCgreedy(R) be the number of circles C of diameter ` needed to cover all
the processes in P by algorithm GCIRCLE. Let also kCopt(R) be the minimum number
of such circles used by any algorithm. Then, kCgreedy(R) ≤ 8 · kCopt(R).

Proof is provided in the appendix due to space limitations.

Overlapping fault area. The adversary may place the fault area F in any location in the
plane. This means that F may not necessarily be axis-aligned. Algorithms GSQUARE
and GCIRCLE produce a cover set A of axis-aligned squares and circles, respectively.
The algorithm we present in the next section needs to know how many areas inA, fault
area F overlaps. We now compute the bound for this number. The bound considers both
square and circle areas A under various size combinations of fault and non-fault areas.
The lemma below is for each A ∈ A and F being either squares of side ` or circles of
diameter `.

Lemma 9. For the processes of P , consider the cover set A consisting of the axis-
aligned square areas A = ` × `. Place a relocatable square area F = ` × ` in any
orientation (not necessarily axis-aligned). F overlaps no more than 7 squares A. If the
cover set consists of circles C ∈ A of diameter ` and F is a circle of diameter `, then
F overlaps no more than 28 circles C.

Proof. Suppose F is axis-aligned. F may overlap at most two squares A horizontally.
Indeed, the total width covered by two squares in A is > 2` since the squares do not
overlap. Meanwhile, the total width of F is `. Similarly, F may overlap at most two
squares vertically. Thus, F may overlap at most 4 distinct axis-aligned areas A. See
Figure 3 for illustration.

11

width(R)

l A1(Ri) A4(Ri)

l A1(Ri+1)

slab Ri

slab Ri+1

A2(Ri) A3(Ri)

l A1(Ri+2) A4(Ri+2)A3(Ri+2)A2(Ri+2)

A2(Ri+1)
A3(Ri+1) A4(Ri+1)

slab Ri+2

Fig. 4: The maximum overlap of a non-axis-aligned fault area F with the identical axis-
aligned cover squares A of the same size.

Consider now that F is not axis-aligned. F can span at most
√
2` horizontally and√

2` vertically. Therefore, horizontally, F can overlap at most three areas A. Vertically,
F can overlap three areas as well. However, not all three areas on the top and bottom
rows can be overlapped at once. Specifically, not axis-aligned F can only overlap 2
squares in the top row and 2 in the bottom row. Therefore, in total, F may overlap at
most 7 distinct axis-aligned areas. Figure 4 provides an illustration.

Let us consider circular F of size `. It can be inscribed in a square of side `. The
square may overlap at most 7 square areas A of side `. Therefore, a circular F can also
overlap at most 7 squares. One square area A can be completely covered by 4 circles
C. Hence, the circular F may overlap at most 7× 4 = 28 circles C.

The first lemma below is for eachA being an axis-aligned square of side ` or a circle
of diameter ` while F being either a square of side `/

√
2 or a circle of diameter `/

√
2.

The second lemma below considers circular fault area F of diameter
√
2`.

Lemma 10. For the processes in P , consider the cover set A consisting of the axis-
aligned squares A = ` × `. Place a relocatable square area F = `/

√
2 × `/

√
2 in

any orientation (not necessarily axis-aligned). F overlaps no more than 4 squares A. If
the cover set A consists of circles C of diameter ` each, and F is a circle of diameter
`/
√
2, then F overlaps no more than 16 circles C.

Proof is provided in the appendix due to space limitations.

Lemma 11. For the processes in P , consider the cover set A consisting of the axis-
aligned square areas A = `× `. Place a relocatable circular fault area F of diameter√
2`. F overlaps no more than 8 squares A. If A consists of circles C of diameter `,

then circular F of diameter
√
2` overlaps no more than 32 circles C.

Proof is provided in the appendix due to space limitations.

5 Geoconsensus Algorithm GENERIC
We are now ready to present an algorithm for solving Geoconsensus that we call
GENERIC. The algorithm lets the set P of N processes agree to a single value of either
0 or 1 despite faulty process interference. GENEREC follows the same logic as BASIC
but uses the GSQUARE or GCIRCLE algorithms, described in the previous section, to
obtain the coverage of processes in P by a set A. A is a set of axis-aligned squares
separated such that at most a bounded number of them can be covered by a fault area.
A single process per square then participates in the classic consensus.

12

Algorithm 2: Geoconsensus algorithm GENERIC.
1 Setting: A set P of N processes positioned at distinct planar coordinates. Each process

can communicate with all other processes and knows the coordinates of all other
processes. The processes covered by a fault area F at unknown location may be
Byzantine. There are M ≥ 1 of identical fault areas F and processes know M .

2 Input: Each process has initial value either 0 or 1.
3 Output: Each correct process outputs decision subject to Geoconsensus
4 Procedure for process pk
5 // leaders selection
6 compute the set A of covers Aj(Ri) using either GSQUARE or GCIRCLE;
7 for every cover Aj(Ri) ∈ A do
8 Pmin ← a set of processes with minimum y-coordinate among covered by Aj(Ri);

9 if |Pmin| = 1 then
10 lj(Aj(Ri))← the only process in Pmin;

11 else
12 lj(Aj(Ri))← the process in Pmin with minimum x-coordinate;

13 // consensus
14 Let PL be the set of leaders, one for each Aj(Ri) ∈ A;
15 if pk ∈ PL then
16 run PSL algorithm, achieve decision v, broadcast v, output v
17 else
18 wait for messages with identical decision v from at least 2M + 1 processes from

PL, output v

The pseudocode for GENERIC is given in Algorithm 2. The algorithm operates as
follows. Each process pk computes a set A of covers Aj(Ri) that are of same size as
F . Then pk determines the leader lj(Aj(Ri)) in each cover Aj(Ri). The process in
Aj(Ri) with smallest y-coordinate is selected as a leader. If there exist two processes
with the same smallest y-coordinate, then the process with the smaller x-coordinate
between them is picked. If pk is selected leader, it participates in running PSL [23]
(or any other Byzantine consensus algorithm). The leaders run PSL then broadcast the
achieved decision. The non-leader processes adopt it.

Analysis of GENERIC. Let us discuss the correctness and fault-tolerance guarantees
of GENERIC. In all theorems of this section, GENERIC achieves the solution in M +2
communication rounds. The proof for this claim is similar to that for BASIC in Theo-
rem 2.

Let the fault area F = `× ` be a, not necessarily axis-aligned, square.

Theorem 5. Given a set P of N processes and one square area F positioned at an
unknown location such that any process of P covered by F is Byzantine. Algorithm
GENERIC solves Geoconsensus with the following guarantees:

– If F = `× ` and not axis-aligned and A = `× `, f ≤ N − 15 faulty processes can
be tolerated given that |A| ≥ 22.

13

– If F = `× ` and axis-aligned and A = `× `, f ≤ N − 9 faulty processes can be
tolerated given that |A| ≥ 13.

– If F = `/
√
2× `/

√
2 but A = `× `, then even if F is not axis aligned, f ≤ N − 9

faulty processes can be tolerated given that |A| ≥ 13.

Proof. We start by proving the first case. GSQUARE produces the cover setA of at least
|A| = 22 areas. From Lemma 9, we obtain that a square fault area F = `×`, regardless
of orientation and location, can overlap at most n(F) = 7 axis-aligned squares A =
` × `. GENERIC runs PSL algorithm using the single leader process in each area A.
For its correct operation, PSL requires the number of correct processes to be more than
twice the number of faulty ones. This is guaranteed since at least 2 · |A|/3 + 1 =
2 · 22/3 + 1 ≥ 2 · n(F) + 1 = 2 · 7 + 1 leader processes are correct and they can reach
consensus using PSL.

Let us address the second case. An axis-aligned square F can overlap at most
n(F) = 4 axis-aligned squares A. Therefore, when |A| ≥ 13, we have that |A| − 9 ≥
2 · n(F) + 1 leader processes are correct and they can reach consensus. In this case,
f ≤ N − 9 processes can be covered by F and still they all can be tolerated.

Let us now address the third case, when F = `/
√
2 × `/

√
2 but A = ` × `.

Regardless of its orientation, F can overlap at most n(F) = 4 squares A. Therefore,
|A| ≥ 13 is sufficient for consensus and total f ≤ N−9 processes can be tolerated.

For the set F of multiple fault areas F with |F| = M , Theorem 5 extends as
follows.

Theorem 6. Given a set P of N processes and a set of M ≥ 1 of square areas F
positioned at unknown locations such that any process of P covered by any F may be
Byzantine. Algorithm GENERIC solves Geoconsensus with the following guarantees:

– If each F = ` × ` and not axis-aligned and A = ` × `, f ≤ N − 15M faulty
processes can be tolerated given that |A| ≥ 22M .

– If each F = `× ` and axis-aligned and A = `× `, f ≤ N − 9M faulty processes
can be tolerated given that |A| ≥ 13M .

– If each F = `/
√
2 × `/

√
2 but A = ` × `, then even if F is not axis-aligned,

f ≤ N − 9M faulty processes can be tolerated given that |A| ≥ 13M .

Proof. The proof for the case of M = 1 extends to the case of M > 1 as follows.
Theorem 5 gives the bounds f ≤ N−γ and |A| ≥ δ for one fault area for some positive
integers γ, δ. ForM fault areas,M separate |A| sets are needed, with each set tolerating
a single fault area F . Therefore, the bounds of Theorem 5 extend to multiple fault areas
with a factor of M , i.e., GENERIC needs M · δ covers and f ≤ N − M · γ faulty
processes can be tolerated. Using the appropriate numbers from Theorem 5 provides
the claimed bounds.

We have the following theorem for the case of circular fault set F , |F| =M ≥ 1.

Theorem 7. Given a set P of N processes and a set of M ≥ 1 circles F positioned at
unknown locations such that any process of P covered by F may be Byzantine. Algo-
rithm GENERIC solves Geoconsensus with the following guarantees:

14

– If each F and A are circles of diameter `, f ≤ N − 57M faulty processes can be
tolerated given that |A| ≥ 85M .

– If each F is a circle of diameter
√
2` andA is a circle of diameter `, f ≤ N−65M

faulty processes can be tolerated given that |A| ≥ 97M .
– If each F is a circle of diameter `/

√
2 andA is a circle of diameter `, f ≤ N−33M

faulty processes can be tolerated given that |A| ≥ 49M .

Proof is provided in the appendix due to space limitations.

6 Extensions to Higher Dimensions
Our approach can be extended to solve Geoconsensus in d-dimensions, d ≥ 3. BA-
SIC extends as is. GENERIC runs correctly so long as we determine (i) the cover set
A of appropriate dimension and (ii) the overlap bound – the maximum number of d-
dimensional covers A that the fault area F may overlap. The bound on f then depends
on M and the cover set size |A|. In what follows, we discuss 3-dimensional space. The
still higher dimensions can be treated similarly.

If d = 3, the objective is to cover the embedded processes of P by cubes of size
`× `× ` or spheres of diameter `. It can be shown that the greedy cube (sphere) cover
algorithm, let us call it GCUBE (GSPHERE), provides 2d−1 = 4 (16) approximation
of the optimal cover. The idea is to appropriately extend the 2-dimensional slab-based
division and axis-aligned square-based covers discussed in Section 4 to 3-dimensions
with rectangular cuboids and cube-based covers. The detailed discussion is in the ap-
pendix. We summarize the results for cubic covers and cubic fault areas in Theorem 8.

Theorem 8. Given a set P of N processes embedded in 3-d space and a set of M ≥ 1
of cubic areas F at unknown locations, such that any process of P covered by F may be
Byzantine. Algorithm GENERIC solves Geoconsensus with the following guarantees:

– If F is a cube of side ` and not axis-aligned and A is also a cube of side `, f ≤
N − 55M faulty processes can be tolerated given that the cover set |A| ≥ 82M .

– If F is a cube of side ` and axis-aligned and A is also a cube of side `, f ≤
N − 17M faulty processes can be tolerated given that |A| ≥ 25M .

– If F is a sphere of diameter ` and A is a sphere of diameter `, f ≤ N − 433M
faulty processes can be tolerated given that |A| ≥ 649M .

7 Concluding Remarks
Byzantine consensus is a relatively old, practically applicable and well-researched prob-
lem. It had been attracting extensive attention from researchers and engineers in dis-
tributed systems. In light of the recent development of location-based consensus proto-
cols, such as G-PBFT [18], we have formally defined and studied the consensus prob-
lem of processes that are embedded in a d-dimensional plane, d ≥ 2, on fixed locations
known to every other process. We have explored both the possibility as well bounds
for a solution to this Geoconsensus. Our results establish trade-offs between the three
parameters N,M, and f , in contrast to the trade-off between only two parameters N
and f in the Byzantine consensus literature. Our results also show the dependency of
the tolerance guarantees on the shapes and alignment of the fault areas.

15

References

1. Abd-El-Malek, M., Ganger, G.R., Goodson, G.R., Reiter, M.K., Wylie, J.J.: Fault-scalable
byzantine fault-tolerant services. ACM SIGOPS Operating Systems Review 39(5), 59–74
(2005)

2. Adya, A., Bolosky, W.J., Castro, M., Cermak, G., Chaiken, R., Douceur, J.R., Howell, J.,
Lorch, J.R., Theimer, M., Wattenhofer, R.P.: Farsite: Federated, available, and reliable stor-
age for an incompletely trusted environment. ACM SIGOPS Operating Systems Review
36(SI), 1–14 (2002)

3. Ben-Or, M., Kelmer, B., Rabin, T.: Asynchronous secure computations with optimal re-
silience. In: Proceedings of the thirteenth annual ACM symposium on Principles of dis-
tributed computing. pp. 183–192 (1994)

4. Bulusu, N., Heidemann, J., Estrin, D., Tran, T.: Self-configuring localization systems: Design
and experimental evaluation. ACM Transactions on Embedded Computing Systems (TECS)
3(1), 24–60 (2004)

5. Castro, M., Liskov, B.: Practical byzantine fault tolerance and proactive recovery. ACM
Transactions on Computer Systems (TOCS) 20(4), 398–461 (2002)

6. Castro, M., Rodrigues, R., Liskov, B.: Base: Using abstraction to improve fault tolerance.
ACM Transactions on Computer Systems (TOCS) 21(3), 236–269 (2003)

7. Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. Discrete mathematics 86(1-3),
165–177 (1990)

8. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-authority
election scheme. European transactions on Telecommunications 8(5), 481–490 (1997)

9. Douceur, J.R.: The sybil attack. In: International workshop on peer-to-peer systems. pp. 251–
260. Springer (2002)

10. Fischer, M.J., Lynch, N.A.: A lower bound for the time to assure interactive consistency.
Information Processing Letters 14(4), 183–186 (1982)

11. Fowler, R.J., Paterson, M., Tanimoto, S.L.: Optimal packing and covering in the plane are
np-complete. Inf. Process. Lett. 12(3), 133–137 (1981)

12. Hadzilacos, V., Halpern, J.Y.: Message-optimal protocols for byzantine agreement. Mathe-
matical systems theory 26(1), 41–102 (1993)

13. Hightower, J., Borriello, G.: Location systems for ubiquitous computing. computer 34(8),
57–66 (2001)

14. King, V., Saia, J.: Breaking the o (n 2) bit barrier: scalable byzantine agreement with an
adaptive adversary. Journal of the ACM (JACM) 58(4), 1–24 (2011)

15. Koo, C.Y.: Broadcast in radio networks tolerating byzantine adversarial behavior. In: PODC.
pp. 275–282 (2004)

16. Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski, S., Eaton, P., Geels, D., Gummadi, R.,
Rhea, S., Weatherspoon, H., Weimer, W., et al.: Oceanstore: An architecture for global-scale
persistent storage. ACM SIGOPS Operating Systems Review 34(5), 190–201 (2000)

17. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Transactions on
Programming Languages and Systems 4(3), 382–401 (1982)

18. Lao, L., Dai, X., Xiao, B., Guo, S.: G-PBFT: A location-based and scalable consensus pro-
tocol for iot-blockchain applications. In: IPDPS. pp. 664–673 (2020)

19. Marathe, M.V., Breu, H., Hunt III, H.B., Ravi, S.S., Rosenkrantz, D.J.: Simple heuristics for
unit disk graphs. Networks 25(2), 59–68 (1995)

20. Martin, J.P., Alvisi, L.: Fast byzantine consensus. IEEE Transactions on Dependable and
Secure Computing 3(3), 202–215 (2006)

21. Miller, A., Xia, Y., Croman, K., Shi, E., Song, D.: The honey badger of bft protocols. In:
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Se-
curity. pp. 31–42 (2016)

16

22. Moniz, H., Neves, N.F., Correia, M.: Byzantine fault-tolerant consensus in wireless ad hoc
networks. IEEE Transactions on Mobile Computing 12(12), 2441–2454 (2012)

23. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults. J. ACM
27(2), 228–234 (Apr 1980), https://doi.org/10.1145/322186.322188

24. Pelc, A., Peleg, D.: Broadcasting with locally bounded byzantine faults. Information Pro-
cessing Letters 93(3), 109–115 (Feb 2005)

25. Rushby, J.: Bus architectures for safety-critical embedded systems. In: International Work-
shop on Embedded Software. pp. 306–323. Springer (2001)

26. Sousa, J., Bessani, A., Vukolic, M.: A byzantine fault-tolerant ordering service for the hy-
perledger fabric blockchain platform. In: DSN. pp. 51–58. IEEE (2018)

27. Vaidya, N.H., Tseng, L., Liang, G.: Iterative approximate byzantine consensus in arbitrary
directed graphs. In: PODC. pp. 365–374 (2012)

28. Zamani, M., Movahedi, M., Raykova, M.: Rapidchain: Scaling blockchain via full sharding.
In: CCS. pp. 931–948 (2018)

17

https://doi.org/10.1145/322186.322188

Appendix

Proof of Lemma 4:

Proof. It is sufficient to prove the lemma for adjacent squares. Suppose Aj(Ri) and
Ak(Ri) are adjacent, i.e., k = j + 1. Consider the operation of GSQUARE in slab
Ri covered by Aj(Ri) and Ak(Ri). Area Ak(Ri) only covers the processes that are
not covered by Aj(Ri) and, therefore, to the right of the right side of Aj(Ri). As the
left side of Ak(Ri) is placed on the first such process, there is a gap between the two
squares: Aj(Ri) and Ak(Ri).

Proof of Lemma 8:

Proof. Let kS(Rodd) and kS(Reven) be the number of squares A = `× ` to cover the
slabsRodd andReven respectively.

First, we show that kCopt(R) ≥ max{kS(Rodd), k(RS
even)}. Let us consider the

Aj(Ri) in any slab Ri. By construction, the left side of each square covers a process of
R. Let us consider these processes. Since the length of a side of each square is ` and
squares do not overlap, the distance between any of these processes is greater than `.
This means that it takes at least as many circles of diameter ` to cover these processes as
there are squares Aj(Ri) in Ri. Now, the slabs in Rodd are at least ` apart. This means
that a circle covering a process in one slab, my not cover a process in another. Similar
argument applies to Reven. That is, an optimal solution has to use as many separate
circles as there are squares in Rodd or Reven.

We now prove the upper bound. Since GCIRCLE covers one square area A =
` × ` with 4 circles C of diameter `, GCIRCLE produces the total number of circles
kCgreedy(R) = 4 · (kS(Rodd) + kS(Reven)). Comparing kCgreedy(R) with kCopt(R) as
in Lemma 7, we have:

kCgreedy(R)
kCopt(R)

≤ 4 · (kS(Rodd) + kS(Reven))

max{kS(Rodd), kS(Reven)}
≤ 8 ·max{kS(Rodd), k

S(Reven)}
max{kS(Rodd), kS(Reven)}

≤ 8.

Proof of Lemma 10:

Proof. F can extend, horizontally and vertically, at most
√
2 · `/

√
2 = `. Therefore, F

can overlap no more than two squares A horizontally and two squares A vertically.
The circular F of diameter `/

√
2 can be inscribed in a square of side `/

√
2. This

square can overlap no more than 4 squares of ` × `. Each such square can be covered
by at most 4 circles of diameter `. Therefore, the total number of circles to overlap the
circular fault area F is 4× 4 = 16.

Proof of Lemma 11:

Proof. Since F is a circle of diameter
√
2`, F can span horizontally and vertically at

most
√
2 · `. Arguing similarly to the proof of Lemma 9, F can overlap either at most

3 squares A in top row or 3 on the bottom row. However, if F overlaps 3 squares in the
top row, it can only overlap at most 2 in the bottom row and vice-versa. Therefore, in
total, F overlaps at most 8 distinct squares of side `. Figure 5 provides an illustration.

Since one square of side ` can be completely covered using 4 circles of diameter `,
circular F of diameter

√
2` can cover at most 8× 4 = 32 circles C of diameter `.

18

width(R)

l A1(Ri) A4(Ri)

l A1(Ri+1)

slab Ri

slab Ri+1

A2(Ri) A3(Ri)

l A1(Ri+2) A4(Ri+2)A3(Ri+2)
A2(Ri+2)

A2(Ri+1) A3(Ri+1) A4(Ri+1)

slab Ri+2

Fig. 5: The maximum overlap of a circular fault area F of diameter
√
2` with axis-

aligned cover squares A of side `.

Proof of Theorem 7:

Proof. For the first case, we have that n(F) = 28, when cover set A is of circles of
diameter ` and the fault area F is also a circle of diameter `. Therefore, when |A| ≥
85M , we have that at least |A|−n(F) ≥ 57M circles containing only correct processes.
Since Algorithm 2 reaches consensus using only the values of the leader processes in
each area A, when we have |A| ≥ 85M , it is guaranteed that ≥ 2 · |A|/3 + 1 ≥
2 · n(F)M + 1 leader processes are correct and hence GENERIC can reach consensus.
The fault tolerance guarantee of f ≤ N − 57M can be shown similarly to the proof of
Theorem 5.

For the second result, we have shown that n(F) = 32. Therefore, we need |A| ≥
3 · n(F) + 1 ≥ 97 for one faulty circle F of diameter

√
2`. For M faulty circles, we

need |A| ≥ 97M . Therefore, the fault tolerance bound is f ≤ N − (2 · n(F)M +1) =
N − 65M .

For the third result, we have shown that n(F) = 16 for a single faulty circle of
diameter `/

√
2. Therefore, we need |A| ≥ 49M and f ≤ N − 33M .

Deferred Discussion from Section 6:

Suppose the coordinates of process pi ∈ P are (xi, yi, zi). GCUBE operates as follows.
It first finds xmin, ymin, zmin as well as xmax, ymax, zmax. Then, the smallest axis-
aligned (w.r.t. x-axis) cuboid, i.e. rectangular parallelepiped, R with the left-bottom-
near corner (xmin, ymin, zmin) and the right-top-far corner at (xmax, ymax, zmax) is
constructed such that R covers all N processes in P . Assume that z-axis is away from
the viewer. The depth of R is depth(R) = zmax− zmin; width(R) and height(R) are
similar to GSQUARE.

GCUBE now divides R into a set R of m cuboids R = {R1, · · · , Rm} such that
depth(Ri) = ` but the width(Ri) = width(R) and height(Ri) = height(R). Each
Ri is further divided into a set ofRi of n cuboidsRi = {Ri1, . . . , Rin} such that each
Rij has width(Rij) = width(R) but height(Rij) = ` and depth(Rij) = `. Each
cuboid Rij is similar to the slab Ri shown in Figure 2 but has depth `.

It now remains to cover each axis-aligned cuboid Rij with cubic areas A of side `.
Cube A can be placed in Rij such that the top left corner of A overlaps with the top left
corner of cuboidRij . SlideA on the x-axis to the right so that there is a process covered
by Rij positioned on the left vertical face of A. Fix that area A as one cover cube and

19

name it A1(Rij). Now consider only the processes in Rij not covered by A1(Rij).
Place another A on those processes so that there is a point in Rij positioned on the left
face of A and there is no process on the left of A that is not covered by A1(Rij). Let
that A be A2(Rij). Continue this way to cover all the processes in Rij .

Apply the procedure of coveringRij to allm×n cuboids. Lemma 3 can be extended
to show that no two cuboids Rij , Rkl overlap. Lemma 4 can be extended to show that
no two cubic covers Ao(Rij) and Ap(Rkl) overlap. For each cuboid Rij , Lemma 5 can
be extended to show that no other algorithm produces the number of cubes k′(Rij) less
than the number of cubes k(Rij) produced by algorithm GCUBE.

Since the cover for each cuboidRij is individually optimal, let kopt(R) be the num-
ber of axis-aligned cubes to cover all N processes in R in the optimal cover algorithm.
We now show that kgreedy(R) ≤ 4 · kopt(R), i.e., GCUBE provides 4-approximation.
We do this by combining two approximation bounds. The first is for the m cuboids Ri,
for which we show 2-approximation. We then provide 2-approximation for each cuboid
Ri which is now divided into n cuboids Rij . Combining these two approximations, we
have, in total, a 4-approximation.

As in the 2-dimensional case, divide the m cuboids in the set R into two
sets Rodd snd Reven. Arguing as in Lemma 5, we can show that kopt(R) ≥
max{k(Rodd), k(Reven)} and kgreedy(R) = k(Rodd)+k(Reven). Therefore, the ratio
kgreedy(R)/kopt(R) ≤ 2 while dividing R into m cuboids.

Now consider any cuboid Ri ∈ Rodd (Ri ∈ Reven case is analogous). Ri is di-
vided into a set Ri of n cuboids Rij . Divide n cuboids in the set Ri into two sets
Ri, odd and Ri, even based on odd and even j. Therefore, it can be shown that, simi-
larly to Lemma 5, that kopt(Ri) ≥ max{k(Ri,odd), k(Ri,even)} and kgreedy(Ri) =
k(Ri,odd) + k(Ri,even). Therefore, kgreedy(Ri)/kopt(Ri) ≤ 2. Combining the 2-
approximations each for the two steps, we have the overall 4-approximation.

Let us now discuss the 32-approximation for spheres of diameter `. One cube
Al(Rij) of side ` can be completely covered by 8 spheres of diameter `. The covering
can be done as follows. Put a sphere of diameter ` on each of the 8 corners of the cube
such that the adjacent sides of that corner in all x-, y-, and z-directions are covered at
least half and the diagonal of the cube and the sphere overlap. Since, for cubes, GCUBE
is 4-approximation, we, therefore, obtain that GSPHERE is a 32-approximation. We
omit this discussion but it can be shown that GSPHERE, appropriately extended from
GCIRCLE into 3-dimensions, achieves (2d · dd) = 8 · 27 = 216 approximation.

Now we need to find the overlap number n(F). Cube A of side ` has diameter
D =

√
3`. That means that a cubic fault area F that has the same size as A can overlap

at most 3 cubes Al(Rij) in all 3 dimensions. Therefore, F can cover at most 33 = 27
cubes Al(Rij). For sphere F of diameter `, since one cube Al(Rij) can be completely
covered by 8 spheres of diameter ` and F can be inscribed inside Al(Rij), it overlaps
the total 8 · 27 = 216 spheres Al(Rij). For the the axis-aligned case of cubic fault area
F , it can be shown that n(F) = 8 cubes Al(Rij). This is because it can overlap with
at most 4 cubes Al(Rij) as Figure 3 and, due to depth `, it can go up to two layers,
totaling 8. n(F) = 64 for sphere F is immediate since each cubeAl(Rij) is covered by
8 spheres of diameter `, sphere of diameter ` can be inscribed inside a cube Al(Rij) of
side `, and a faulty cube F of side ` can overlap at most 8 axis-aligned cubes Al(Rij).

20

	Byzantine Geoconsensus

