
Fault-Tolerance Verification of
 the Fluids and Combustion Facility of

the International Space Station1

Raquel S. Whittlesey-Harris and Mikhail Nesterenko2

Computer Science Department
Kent State University

Kent, OH 44242
rwhittle@kent.edu, mikhail@cs.kent.edu

Abstract

This article describes our experience with fault-tolerance verification of the Fluids and
Combustion Facility (FCF) of the International Space Station (ISS). The FCF will be a
permanent installation for scientific microgravity experiments in the U.S. Laboratory
Module aboard the ISS. The ability to withstand faults is vital for all ISS installations.
Currently, the FCF safety specification requires one-component fault-tolerance. In future
versions, even greater robustness may be required. Faults encountered by ISS modules
vary in nature and extent. Self-stabilization is an adequate approach to tolerance design of
the FCF. However, for systems as complex as the FCF, analytical tolerance verification is
not feasible. We use automated model-checking. We model the FCF in SPIN and specify
stabilization predicates to which FCF must conform. Our model of FCF allows us to
inject component faults as well as hazardous conditions. We use SPIN to automatically
verify the convergence of the FCF model to legitimate states.

1 An expanded version of this article is available as a technical report [21].
2 This research is supported in part by DARPA contract OSU-RF #F33615-01-C-1901 and by NSF

CAREER award 0347485

 1

1 Introduction

The Fluids and Combustion Facility (FCF) is to become a
permanent installation onboard the International Space
Station (ISS). The reliability of ISS facilities is critical. It is
becoming all the more important as budget constraints
increase while safety requirements become even more
central. Unlike relatively short-term space shuttle missions,
the ISS is a permanent facility. Therefore, opportunities for
modifications after the launch are limited.

The adverse environment magnifies reliability concerns.
The system must survive harsh acceleration forces on
launch and reentry. The system is subjected to various kinds
of radiation and airborne contaminants [5]. Protection of
the space station environment presents another distinctive
challenge: ISS has strict requirements to which systems,
such as the FCF, must adhere in order to prevent
contamination of the station. Protection of the crew is
paramount: equipment failure should not harm the crew or
the ISS.

Safety and reliability concerns are further amplified by the
limited access to the system. Crew time is limited: the FCF
is expecting 1.5 hours per month of crew time. Thus,
maintaining a research installation in space, both the
hardware and software components of it, is difficult.
Communication to the ISS is only possible about 30% of the
time. Thus, the opportunities to troubleshoot and correct the
faults from the ground are also limited.

The current FCF system specification requires that the
system must be able to handle a one-component failure [11].
However, an ability to withstand systemic faults is an
anticipated future requirement. Hence, the need for self-
stabilization as a fault-tolerance design approach.

Automating verification of self-stabilization. Tradi-
tionally, the correctness of a self-stabilizing program is
proved analytically. A classic approach is to find an
invariant guaranteeing that a program starting from a state
conforming to this invariant satisfies the specification. The
correctness proof then proceeds by showing that, regardless
of the initial state, the program eventually arrives at a state
that conforms to this invariant. A system may be
purposefully designed to simplify such proofs [20].

However, in a practical distributed system, such as FCF, the
total number of states is large. This makes analytical
verification of stabilization a rather difficult task. Moreover,
the presence of details and particulars of the system
compound the problem: such details frequently result in
special cases that have to be examined individually. Thus,
the analytic proof of stabilization becomes tedious to
construct and verify. As the size and complexity of such
proof increases its validity becomes suspect.

In this paper we propose an alternative approach to
verifying correctness of a fault-tolerant system. We define
the stabilization properties via formal predicates and then
use model-checking tools to exhaustively examine the
system state transitions in the presence of faults to verify the
system stabilization.

Our contribution. The significance of this paper is twofold.
First, we showcase the viability of self-stabilization as an
approach to fault-tolerance by using it in a robust design of
a practical system operating in a particularly adverse
environment. Second, to our knowledge, this work is the
first application of model checking to deterministic
verification of self-stabilization.

Our approach. We examine the behavior of the FCF as a
collection of components. We assume that each component
is capable of internally isolating the fault. External to the
component, the failure manifests itself as a transition to an
arbitrary state. In addition, we define a number of hazardous
conditions from which FCF must recover.

We use SPIN [1], [2], [7], [9] to examine the behavior of the
FCF. We code an FCF SPIN model. We debug the model in
the SPIN’s simulator that allows us to run through a number
of simulated test runs. We then inject the faults and hazards
in the model and ascertain its stabilization through
exhaustive state search.

Related work. PRISM [4], [15] is used for probabilistic
model checking of randomized distributed algorithms,
including self-stabilizing algorithms. As a case study,
PRISM is used to verify the correctness of a randomized
self-stabilizing token passing program on a ring. Another
probabilistic model checking tool being used for self-
stabilizing algorithms is APMC [16].

Programs that are resilient to both systemic and local faults
have been studied. For example Arora and Gouda [17]
examine the general approaches to proving correctness of
programs subject to various fault types. Beauquier and
Kekkonen-Moneta [18] study the programs that combine
tolerance to crashes and transient faults. Ghosh et al [19]
consider the programs that quickly stabilize from a minor
fault while retaining the ability to stabilize from an
extensive state corruption.

The rest of the paper is organized as follows. We outline the
FCF architecture and operation in Sections 2 and 3
respectively. In Section 4, we describe the FCF model
verified with SPIN. We describe the experiments performed
and state the results in Section 5. In Section 6, we conclude
the paper by a discussion of the benefits of our experiments
for the Fluids and Combustion Facility’s design team and
our future research plans.

 2

2 Architecture Overview

The FCF consists of the Combustion Integrated Rack (CIR)
and the Fluids Integration Rack (FIR). The CIR and FIR
provide resources for Principal Investigators (PIs) to
conduct scientific experiments in a microgravity
environment. A potential configuration of the FCF is shown
in Figure 3.

Combustion integrated rack. The CIR is shown in Figure
1. It will provide support for sustained combustion physics
research.

There are a number of diagnostic packages in CIR. They
provide high-resolution high-frame rate recording of the
experiments with focusing, magnification and filtering
capabilities. The recording can be done in color or
monochrome and under various radiance conditions
including ultraviolet light. A separate package controls
illumination of the experiments with monochrome light,
laser, etc.

Figure 1. Combustion integrated rack

Fluids integrated rack. The Fluids Integrated Rack (FIR),
shown in Figure 2, will provide support for sustained fluids
physics research. The FIR provides common services
(diagnostics) required by most fluid physics researchers to
minimize the design and development for each experiment.

Component description. In our model we focus on the
command and data management facilities of the FCF. We
chose not to model communication with hardware, i.e.,
lasers. We assume that such communication is internal to
the components.

Figure 2. Fluids integrated rack

The Input/Output Processor (IOP) is the rack and system
controller. The IOP is responsible for processing and
transmitting telemetry to and from the ISS; monitoring and
coordinating rack and inter-rack operations, such as health
and status monitoring; and time synchronization between
components.

CIR FIR

IOP IOP
IPSUIPSU

LLL-UV HiBMs

HFR/HR Illumination

MDSU

FSAP

Color
Camera

White Light YAG Laser

PI-FSAP Diagnostics

EPCU

ECS
EPCU

ECS

IPSU IPSU

Figure 3. FCF subsystems in a potential configuration

The Image Processing and Storage Unit (IPSU) is
responsible for image acquisition, processing and
management typically required for fluids physics and
combustion experiments. There are two types of IPSUs.
One provides support for a wide range of digital cameras
common to both the FIR and CIR. This IPSU stores video
data in digital format. The acquired data can be compressed
to reduce memory and transfer bandwidth. The IPSU can
process digitized images to support closed loop control
scenarios. The other type of IPSU (IPSU-A) provides
image acquisition from analog cameras. These images can
be digitized and stored, processed and downlinked similarly
to the images produced by digital cameras. The CIR can
accommodate up to six IPSUs while the FIR can

 3

accommodate up to two IPSUs. The FCF as a whole (FIR
and CIR) has been designed to utilize IPSUs located in the
other rack (virtual IPSU) if extra processing power is
required.

The Environmental Control System (ECS) is responsible for
regulating the temperature of the FCF during experiments
through air and water cooling; detecting and eliminating
fires in the FCF; and coordinating gas introduction and
removal from the FCF.

The Fluids Science Avionics Package (FSAP) is specific to
the FIR. It is a multi-purpose data acquisition and control
system that provides the capability to interact with a wide
variety of fluids experiments. The Principal Investigator
Fluids Science and Avionics Package (PI-FSAP) provides
an enclosure with a microprocessor, communication
interfaces, and card slots available for PI use. The PI has
the ability to configure the PI-FSAP on the ground with
science-specific circuit boards.

The other components control cameras, lasers, supply fuel
and oxidizers, collect and digitize experiment images,
isolate the experiments from mechanical disturbances that
occur in FCF; measure the acceleration of the station in
space; provide feedback to the crew, and provide power and
cooling to the equipment. We do not describe these
components in detail.

The FCF software. The FCF Flight Software System is a
distributed real-time multitasking embedded system. The
main components are running VxWorks [8].
Communication between components is achieved through
Ethernet, Fiber-Optic, CANBus, Analog, MIL-STD-1553
and Serial Data links.

All main component communication is carried out through
the primary rack controller the IOP. In addition,
communication to the ISS is done through a Medium Rate
Data Link – an 802.3 interface running at 10 Mbps; a Low
Rate Data Link – a MIL-STD-1553 interface running at 1
Mbps; and a High Rate Data Link – Fiber Optic Data
Distributed Interface running at 100 Mbps. There is also
analog video (RS170) and Ethernet (100BaseT) interfaces to
the on board station computer for crew interface.

3 Operation

The rack manager is a process running on the IOP. It
maintains the overall rack state and monitors component
states as well as component health and status. The
components communicate their current state to the rack
manager with every telemetry packet sent. The FCF states
and state transitions are shown in Figure 4.

Component states. Each component is in one of the
following states:

good-off the component has either never been powered
on or has been shut down due to a nominal circumstance;
bad-off the component is powered off due to an
anomaly; initialization the component has been powered
on and is performing system Power-On-Self-Test (POST)
and initializing hardware and software sub-components.
The component is not yet ready to communicate with the
rack manager; off-nominal the component has
encountered an anomaly that must be addressed before
further operations take place; safed the component is
ready for power-down (all hardware and software
components have been put in a state that will not damage
the component or cause lost of data), only power-down
command is accepted, communication with rack manager
continues; and operational.

There are several operational states: operational-idle the
component has completed initialization, it is operating
nominally and is ready to perform experiment operations;
operational-uplink/downlink the component is ope-
rating nominally and is ready to receive or transmit data;
operational-maintenance the component is in
troubleshooting or non-scripted event execution mode;
operational-experiment the component is operating
nominally and in a state to perform experiment operations;

We classify the states of the entire FCF into three sets:
operational, safe and unsafe. The operational states allow
the FCF to perform nominal operations. If the FCF is in a

Initialization Safed (S)

Maintenance (M) Experiment (E)

Idle (I)

Mixed

Operational (OP)

Maintenance (M) Experiment (E)

Idle (I)

Mixed

Off-Nominal

OP to S

Off-Nom to S

power on/

suc cess /
e rro r/

e rror/

e rro r/

power off/

safed cmd/

safed cmd/

operational cmd/

maintenance cmd to all packages/

idle cmd to all packages/ experiment cmd to all packages/

idle cmd to all packages/

entry /

succ ess /

e rro r/

suc cess /

e rro r/

e rro r/ e rro r/

safed cmd/

unsynchronize package states/

synchronize package states/unsynchronize package states/

synchronize package states/

unsynchronize package states/

synchronize package states/

e rro r/

power off/

Figure 4. FCF rack states

 4

safe state (such as safed and good-off), the FCF is off-
nominal but does not violate hazard specifications. The rest
of the states are unsafe. From the stabilization perspective
operational and safe states are legitimate while unsafe ones
are not.

Rack manager actions. Depending on the state of the
system the rack manager may execute corrective actions
such as powering off a component, subcomponent or
hazardous equipment or commanding the component to go
to the off-nominal state article (see [21] for complete
description).

FCF state transitions example. As an example, we
describe the actions of the IPSU and rack manager while
performing a power up, command processing and then
power down sequence.

1. Power-on. The rack manager initiates a power-on of an
IPSU. The IOP reads the configuration information for
the component that it wants to power-on. The Power-on
task of the rack manager is executed

2. Component initialization. The component determines its
own function. It determines that it is an IPSU 1 (out of
six available). It initializes the appropriate state variables.
The Power-on task of the IPSU is executed to power-on
any subcomponents. A Power-on Self Test (POST) is
executed. This test conducts the health check of internal
systems upon component power-up. If the POST is
successful, the component enters operational-idle. In this
case, commanding and telemetry handlers are initiated.

3. Component health monitoring. The component begins to
monitor its own health and status, process commands,
send regular communications to the IOP, and monitor the
IOP status.

4. Command processing. During operations the IOP
determines a system component to be in off-nominal. All
powered-on components are therefore sent to
operational-idle. A command is transmitted from the
IOP to the IPSU. The IPSU determines the packet to be a
command and invokes the command handler to decipher
it. The command handler determines the command is for
the correct IPSU, checks the command’s validity, and
determines that the command is a state-change request.
The command handler forwards the command to the
component’s state manager for further processing.

5. State request processing. The component’s state manager
receives the request to change the current state to
operational-idle. The state manager determines from
which component the request originates and verifies it is a
valid requestor: the rack manager. The state manager
then determines if the transition is legal. If so, the state
manager sets the component state to operational-idle.

6. Component power-down. The rack manager determines
that it needs to power-down the IPSU. A command is
sent to the IPSU to transition to safed. The rack manager
looks up the configuration information for the component
and sends commands to the EPCU to power-down any
sub-components that are powered on. Following the
power-down of sub-components, the component is
powered down via the EPCU.

Hazards. The FCF monitors hundreds of out-of-tolerance
scenarios. In this study we focused on nine critical hazards.
We describe three example hazards in this article (see [21]
for complete description). They represent the most critical
system failures or hazards.

1. Rack door is open. The open rack door may expose the
astronauts to the hazardous items (e.g. lasers). If the IOP
detects that the rack door is open, it should power off all
hazardous items.

2. IOP loses communication with ECS via CANBus. The
ECS provides thermal (air and water) control. The system
cannot safely operate with a faulty ECS and must be
powered down.

3. IOP loses communication with a component. In this case,
the IOP sends the component to safed.

4 SPIN Model

Note that we use terms “model” and “process” in model-
checking sense. The model of a system means the
representation of the states and behavior of the real system
in the model checking tool. In our case we coded the model
of the FCF in PROMELA (SPIN’s modeling language).
PROMELA is a non-deterministic, guarded command
language. It enables the dynamic creation of concurrent
processes and communication between processes via
message channels.

We model an FCF component as several processes running
on a single processor. The FCF model includes a simplified
communication protocol to simulate the interaction between
components and processes. This includes events,
commands and state information.

Component model. In our model, each component consists
of several processes. See Figure 6 (shown in UML notation
[12]) for illustration. Each process runs in parallel and
implements the main functionality of the component. The
main process handles initialization, communication
direction, health and status checks, and nominal shutdown.
The component command handler validates commands and
initiates processing of a valid command. The component
state manager manages the component’s state transitions.

 5

Rack manager model. Since the IOP acts as the rack
manager, besides the processes that other components have,
the IOP model has processes that implement extra
functionality (see Figure 7).

Rack M anager

Com m and
Handler

State
M anager

Initialization

P ower On

P ower Off

M ain

«include»

«include»

«include»

«extend»

«extend»

«extend»

Figure 6. Component model

The IOP has a rack manager, an action handler, health
monitor, processes for each action, and several utility
processes for jobs such as turning off and on components
and determining what hazardous items are operating. In our
model, there is one IOP managing all of the components in
both racks. The action handler process of the IOP
implements the seven rack manager safety actions described
in Section 3.

R ack M anager

Com m and
H and ler

S tate
M anager

Initia lization

P ower On

P ow er O ff

M ain

Rack
M anager

Action
H andle rsH ea lth M onito r

U tility
P rocesses

«inc lude»

« inc lude»

« inc lude»

«inc lude»

«inc lude»

«include»

«inc lude»

«extend»

«extend»

«extend»

Figure 7. IOP model

Fault injection. There is a fault simulation process that
injects faults into the system. This process introduces state
faults and hazardous situations at random. A fault occurs
when a component is moved into an arbitrary state or one of
the hazardous conditions described in Section 3 is elected.

Note that the fault injections at each component are not
coordinated. Thus, multiple components can have faults
simultaneously. Moreover, a fault injector may introduce a
hazard and an arbitrary state change at the same time.

Verification predicates. SPIN formally checks a model’s
compliance with the specification expressed in the form of
LTL predicates [2]. Below, we show three of the predicates
we used to specify the faults (out-of-tolerance conditions)
and hazards handling described in Section 3. Each predicate
specifies the corresponding hazard/fault.

When the rack door is open, the system will power off any
hazardous items:

 ml �� (1)

where l represents the rack door is open and m means all
hazardous items are powered off.

When there is a loss of communication with the ECS over
CANBus, all packages must be shut down (sent either to
good-off or bad-off):

))__(
)__(

)__(
)6_6_(
)5_5_(
)4_4_(
)3_3_(
)2_2_(

)1_1_(
(

PIPtPIPs
FSAPtFSAPs
FCUtFCUs

IPSUtIPSUs
IPSUtIPSUs
IPSUtIPSUs
IPSUtIPSUs
IPSUtIPSUs
IPSUtIPSUs

n

∨
∧∨

∧∨
∧∨
∧∨
∧∨
∧∨
∧∨

∧∨
��

 (2)

where n – the IOP loss of communication on the ECS
CANBus, s – package in good-off and t – a component in
bad-off.

When the IOP loses communication with a component, the
component is sent to safed.

)__(
)__(
)__(

)6_6_(
)5_5_(
)4_4_(
)3_3_(
)2_2_(

)1_1_(

PIPrPIPo
FCUrFSAPo
FCUrFCUo

IPSUrIPSUo
IPSUrIPSUo
IPSUrIPSUo
IPSUrIPSUo
IPSUrIPSUo
IPSUrIPSUo

��

∧��

∧��

∧��

∧��

∧��

∧��

∧��

∧��

 (3)

where o – the IOP loses communication with the component
and r – the component is in safed.

 6

5 Experiments

In the initial stages of the FCF fault-tolerance verification
project we tried to apply the traditional analytical proof
techniques. However, we found that the number of states,
transitions and special cases prevented us from constructing
a convincing correctness proof for our design. We then
considered automating the verification process using SPIN.

Our experiments had two phases: simulation and
verification. During the simulation phase, we ascertained
that our SPIN model is functioning and it complies with the
expected behavior of the FCF. In the verification phase, we
formally verified the stabilization of the model.

Simulation. The SPIN simulator allows a randomized,
guided and interactive execution of the SPIN model. Rather
than provide exhaustive verification, the simulator aids in
debugging and evaluating the model.

We developed and debugged our model incrementally.
Initially, we coded the FCF model without the fault
generator and executed it in the simulator. Our model only
transitioned through operational states. We used the
Windows version of the simulator to take advantage of real-
time graphical displays for a quick debug cycle. After
debugging and accepting the implementation of the fault-
free FCF Model, we added the random fault generator
process to the model. We executed this model over 100
simulation runs.

We ran the model with the fault generator in both the
Windows and Linux platforms. We used Windows NT 4.0
on a PC with a Pentium 4 processor, 256 MB RAM and
4GB of virtual memory. The average run-time of the model
in this environment with several other tasks running was 1
hour and 45 minutes. We also used RedHat Linux
Enterprise 3 on a PC with 4 Intel Zeon 2.8 Gigahertz
processors, 4 Gigabytes of RAM and 8 Gigabytes of swap
space. The average run time of the model in this
environment was negligible.

Verification. This part is the main purpose of our study.
Through verification, via exhaustive search we were able to
ascertain that an arbitrary combination of faults and state
transitions does not force the FCF to violate the state safety
predicates and still allow the FCF to stabilize to a legitimate
state. Initially, we ran the FCF model in the verifier to
confirm there were no acceptance cycles or invalid end
states. We then proceeded to the main part of the
verification procedure: confirming that the FCF model
complies with verification predicates stated in Section 4.
Due to the size and complexity of the final model, we
verified this compliance separately for each predicate. We
compiled and executed these models on four Linux
machines described above. To accommodate the verification

process, the swap space on the machines had to be extended
to 8 Gigabytes. All verification runs were successful
indicating that our FCF model complies with the
verification predicates.

6 Conclusion

In this project we demonstrated the power of the approach
of self-stabilization in the verifying the robustness of a
practical complex scientific installation that is to operate in
difficult fault-averse environment.

This FCF verification project and the development of the
actual FCF system itself proceeded in parallel. Thus, the
FCF design team at the NASA Glenn Research Center was
able to benefit from the insight provided by our work. Our
verification added assurance of the soundness of the FCF
design. The FCF design team did not have the luxury of
verifying the fault-tolerance of the FCF to such an extent.
Moreover, our project provided the opportunity for the
design team to clearly think through the fault-tolerance
aspects of the FCF as it was modeled, simulated, debugged
and verified. During the modeling process we found several
unsafe behaviors and transitions. For example, we found
that one of the transitions of the rack to the off-nominal
state may lead to invalid state transition requests. On our
suggestions the corrections were made in the actual design
of the FCF to prevent the problems.

Moreover, the flexibility of the SPIN model allowed us to
test design changes that are not currently implemented in the
actual system. For example, we added and verified the
capability of the IOP to control the power to all components.
Additionally, we enabled the components to notice the
communication loss with the IOP and act on it.

Future work. We see two possible avenues of extending
this work: enhancing the fault-tolerance of the FCF itself
and modeling the FCF more precisely.

Our project has already made an impact in enhancing the
fault-tolerance of the FCF. However, other modifications to
the FCF design can further improve the ability of the FCF to
withstand faults. For example, crash-failure tolerance in the
FCF design is beneficial. Currently the crash of an IOP
renders the FCF non-functional. Allowing IOP failover
between racks will alleviate this problem.

To further the assurance of the correctness of FCF design,
the system components can be modeled in a greater detail. A
verification tool that incorporates real-time constraints, such
as RT-SPIN [14] or UPPAAL [10] allows more precise
modeling of reactive systems. For example, we would be
able to specify the required speed of fault recovery.
Verifying FCF using such a tool would be beneficial.

 7

References

[1] J.G. Holzmann, and D. Peled, An Improvement in

Formal Verification. AT&T Bell Laboratories, 1994.

[2] J.G. Holzmann, The Model Checker SPIN. IEEE
Transactions on Software Engineering, 23(5):279-295,
May 1997.

[3] S. Chandra, An Evaluation of the Recovery-Related
Properties of Software Faults. Department of Computer
Science and Engineering, University of Michigan,
2000.

[4] Probabilistic Symbolic Model Checker:
www.cs.bham.ac.uk/~dxp/prism/index.html

[5] NASA, Strategic Program Plan for Space Radiation
Health Research. National Aeronautics Space
Administration, 1998.

[6] Simple PROMELA Interpreter: www.spinroot.com

[7] J.G. Holzmann, The SPIN Model Checker: Primer and
Reference Manual. Addison-Wesley Professional,
2003.

[8] VxWorks: www.wrs.com/products/html/vxworks.html

[9] S. Merz, Model Checking: A Tutorial Overview. Institut
fur Informatik, Universitat Munchen, 2001.

[10] UPPAAL: www.uppaal.com/

[11] R.S. Whittlesey-Harris, Flight Software Requirements,
Fluids and Combustion Facility. National Aeronautics
Space Administration, FCF-REQ-0063A.

[12] B. Douglass, Real-Time UML: Developing Efficient
Objects for Embedded Systems. Addison Wesley
Longman, Inc. 1998.

[13] S. Tripakis, and C. Courcoubetis, Extending
PROMELA and Spin for Real-Time. Department of
Computer Science, University of Crete and Institute of
Computer Science, FORTH.

[14] D. Bosnacki, and D. Dams, Integrating Real Time into
Spin: A prototype Implementation. Department of Math
and Computer Science, Eindhoven University of
Technology.

[15] M. Kwiatkowska, G. Norman, and D. Parker,
Probablilistic Model Checking in Practice: Case
Studies with PRISM. School of Computer Science,
University of Birhmingham, 2005.

[16] Approximate Probabilistic Model Checker:
http://apmc.berbiqui.org/

[17] A. Arora and M. Gouda. Closure and Convergence: A
foundation of Fault-Tolerant Computing. IEEE
Transactions on Software Engineering, 19(11):1015-
1027, November 1993.

[18] J. Beauquier and S. Kekkonen-Moneta. On FTSS-
solvable distributed problems. In Proceedings of the

Third Workshop on Self-Stabilizing Systems, pages 64-
79, Carleton University Press, 1997.

[19] S. Ghosh, A. Gupta, T. Herman, and S.V. Pemmaraju.
Fault-Containing Self-Stabilizing Algoirthms. In
Proceedings of the Fifteenth ACM Symposium on
Distributed Computing, pages 45-54, 1996.

[20] M. Seigel. Formal Verification of Stabilizing Systems.
In Proceedings of the 5th International Symposium on
Formal Techniques in Real Time and Fault Tolerant
Systems (FTRTFTS'98), pages 158-172, Lyngby,
Denmark, September 1998.

[21] R.S. Whittlesey-Harris, and M. Nesterenko, Fault-
Tolerance Verfication of the Fluids and Combustion
Facility of the International Space Station, technical
report TR-KSU-CS-2005-02, Kent State University,
2005,
http://www.cs.kent.edu/techreps/TR-KSU-CS-2005-
02.pdf

 8

APPENDIX A: List of Acronyms

ARIS – Active Rack Isolation System
ATCS – Air Thermal Control System
ATCU – Air Thermal Control Unit
CIR – Combustion Integrated Rack
ECS – Environmental Control System
FCU – FOMA Control Unit
FIR – Fluids Integrated Rack
FSAP – Fluids Science Avionics Package
FOMA – Fuel Oxidizer and Management Assembly
IOP – Input/Output Processor
IPSU – Image Processing and Storage Unit
PI – Principal Investigator
PRISM – Probabilistic Symbolic Model Checker
RT – Real Time
SPIN – Simple PROMELA Interpreter
WTCS – Water Thermal Control System

 YAG – Yttrium Aluminum Garnet

Appendix B: Terminology.

 Some of the terminology used in the paper is included below. Downlink – data transmitted from the
flight system to the ground system; Flight Segment - The FIR, CIR and SAR on the ISS; Flight
Segment Software – The software component of the Flight Segment; FSSS- Flight Segment Support
System - The GUI and Telescience support required to meet the objectives of the on-orbit mission;
Health and Status - Data originating within the FCF Rack that is monitored by the Primary Processor
to assure the safe and correct operation of the FCF and FCF Payloads, as well as assurance of ISS
safety, as specified by safety guidelines; Linear Temporal Logic Formulae – technique for the
specification of temporal rules; Near Real Time - The time the actual event occurs plus the time to
process the data. Note, this time will vary with the situation to be performed. This time is usually in
the order of seconds after the event occurred; Uplink – data transmitted from the ground system to the
flight system.

