
DRIFT: Efficient Message Ordering in Ad Hoc Networks Using Virtual Flooding

Stefan Pleisch1 Thomas Clouser2 Mikhail Nesterenko2∗ André Schiper1

1Distributed Systems Laboratory (LSR)
Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland

2The Department of Computer Science
Kent State University, Kent, OH 44242, USA

stefan.pleisch@epfl.ch tclouser@kent.edu mikhail@cs.kent.edu andre.schiper@epfl.ch

Abstract

We present DRIFT — a total order multicast algorithm for ad hoc networks with mobile or static nodes. Due to the ad
hoc nature of the network, DRIFT uses flooding for message propagation. The key idea of DRIFT isvirtual flooding— a
way of using unrelated message streams to propagate message causality information in order to accelerate message delivery.
We describe DRIFT in detail. We evaluate its performance in a simulator and in a wireless sensor network. In both cases
our results demonstrate that the performance of DRIFT exceeds that of the simple total order multicast algorithm designed
for wired networks, on which it is based. In simulation at scale, for certain experiment settings, DRIFT achieved speedup of
several orders of magnitude.

1 Introduction
Recent advances in PDA and wireless networked sensor technology enable the ad hoc networks of these devices to handle

increasingly sophisticated tasks. As the reliance on these devices grows, so does the need to bring well-established commu-
nication primitives to such networks. One such primitive is total order multicast. As a motivating example, consider that a
temporary military sensor network is deployed to protect an extended valuable asset. The sensor network does not have any
routing infrastructure: the communication is multi-hop and ad hoc. Several operators move through the field and periodically
issue directives for all sensor nodes to change the mode of surveillance or focus on particular targets of observation. It is
mission-critical that the directives are delivered in the same order at each sensor node. Otherwise, different parts of the network
may start performing conflicting tasks. Thus, the directives need to be sent using total order multicast.

Total order multicast has been studied extensively, predominantly in wired networks. An order is imposed on the multicast
messages and all nodes are expected to deliver them in this order. One ordering approach is to arrange messages according to
causal precedence. Concurrent messages are arranged in some deterministic order, e.g., according to the sender’s identifier. The
nodes buffer the received messages and thendeliver them to the application in this order. Traditionally, total order multicast
algorithms do not consider the routing aspect of message transmission and assume that the network is completely connected
(each node participating in the multicast has a channel to every other node). However, maintaining such routing infrastructure
may not be feasible in ad hoc networks, especially if nodes are mobile, as in the above scenario. Thus, due to node mobility
and large scale of the network either proactive or reactive route maintenance may not be efficient. Hence, traditional total order
multicast algorithms may not be applicable to such networks.

In such networks,flooding is an effective mechanism of reaching all nodes in the network without underlying routing in-
frastructure. In its simple form, a flooding source broadcasts a message to its neighbors and all other nodes rebroadcast the
flooded message exactly once. Note that we distinguish between a network-wide flooding and a(local) radio broadcast, which

∗This research was supported in part by NSF CAREER Award 0347485.

1

is a transmission that is received by all nodes within transmission range of the broadcasting node. The use of flooding requires
nodes to forward messages sent to other nodes. Thus, there is an opportunity to piggyback information on the rebroadcast mes-
sages. We call this techniquevirtual flooding. We apply it to a total order multicast algorithm inspired by Lamport’s algorithm
[19]. The resulting total order multicast algorithm, which we call DRIFT, is optimized for ad hoc networks and enables the re-
cipients to deliver the received messages faster. We present simulation and implementation results that demonstrate significant
performance gains due to virtual flooding.

The remainder of the paper is structured as follows. In Section 2 we introduce the total order multicast problem and survey
existing work. In Section 3 we present virtual flooding. We give a detailed description of DRIFT in Section 4. In Section 5
we present the simulation results of DRIFT’s operation. In Section 6 we describe the implementation of DRIFT in a wireless
sensor network and present the obtained results. We address the extensions of DRIFT to accomodate failures and changes in
network membership in Section 7. We conclude the paper in Section 8.

2 Total Order Multicast and Ad Hoc Networks
Total order multicast (or TO-multicast)1 is a fundamental communication mechanism utilized by a variety of applications.

It has two communication primitives: TO-multicast and TO-deliver. An application program invokesTO-multicastto send a
message to all the nodes of the multicast group. To ensure that the recipients agree on the delivery order, they may buffer and
reorder the received messages. Once the message order is established, a node executesTO-deliverto convey the message to the
application.

2.1 Ad Hoc Network Specifics
The network consists of a set of radio-communication capable nodes. A subset of these nodes aresources— Σ and may

invoke TO-multicast, while another subset aredestinations— ∆ invoking TO-deliver. The two sets, in general, are not related
as a source may not have to TO-deliver messages. Some nodes in the network may be in neither set: they act only as message
forwarders.

Certain properties of ad hoc networks differentiate them from conventional wired networks. Communication between two
nodes is immediate if the two nodes are within transmission range of each other. Otherwise, intermediate nodes may have to
forward the message along multiple hops from the source to the destination. The nodes may potentially be mobile which further
complicates communication. Network and individual node resources such as available bandwidth, battery power, memory size,
etc. may be limited.

In such setting, it may not be feasible to maintain routing infrastructure. Instead, message flooding may be used as a
predominant communication primitive. Hence the need to develop a TO-multicast algorithm specifically optimized to use
flooding. Before we describe the algorithm, we survey TO-multicast algorithms already published in the literature.

2.2 TO-Multicast Algorithms Overview
TO-multicast algorithms typically assume the existence of a reliable message delivery mechanism which guarantees that all

nodes receive the multicast message. A variety of TO-multicast algorithms are described in the literature. Défago et al in their
survey paper [12] classify the algorithms according their ordering techniques:sequencer-based, privilege-based, destination,
and communication history. For brevity, our overview of TO-multicasts in wired networks is deliberately incomplete: we
cite one or two typical examples per technique. For detailed discussion and comparison of TO-multicast algorithms we refer
the reader to the original paper [12]. Few TO-multicast algorithms have been proposed for ad hoc networks. This overview
motivates communication history ordering as a TO-multicast technique of choice for DRIFT.

Sequencer-based ordering. In this approach one node is selected as thesequencer. Every node that wishes to TO-multicast a
message contacts the sequencer and obtains a sequence number which is then used to determine the delivery order. To balance
the load, the sequencer function can be successively performed by multiple nodes. An example of this approach for fixed
networks is described by Navaratnam et al. [22]. Anastati et al. [4] and Bartoli [6] describe a sequencer-based TO-multicast for
single-hop mobile networks. They consider an infrastructure-based network where a set of wired gateways order the multicast
messages and ensure their transmission to the mobile nodes. In contrast, we do not make use of a stationary wired infrastructure
in our algorithm. Moreover, wireless communication in our setting is multihop rather than single hop.

While sequencer-based algorithms may perform well in fixed networks, they may not be applicable to ad hoc networks. In
particular, the sequencer and a routing path to it needs to be known to all the sources. The necessity of a single sequencer
limits the scalability of this approach. Notice also that before a message is TO-multicast to the destinations, an additional
point-to-point message communication from the source to the sequencer is usually required. In an ad hoc network this may
increase message delivery latency and add message overhead.

1Total order multicast is sometimes also calledatomic multicast.

2

Privilege-based ordering. In this type of algorithms, the source TO-multicasts a message when the source is granted an
exclusive privilege to do so. One way to ensure exclusivity is to circulate a single token among sources. A source can TO-
multicast a message only when it holds the token. An example of such algorithms in wired networks is Train [11]. A token-
based algorithm in mobile ad hoc networks is described by Malpani et al. [21]. Token-based algorithms require maintenance
of routing information. They also require token maintenance and recovery. Thus, such algorithms may not always be practical
in ad hoc networks.

Destination ordering. In this approach, the destinations (possibly anagreement subsetof these nodes) agree on the message
delivery order. An example of this class is the TO-multicast algorithm by Chandra and Toueg [10]. This approach requires
extensive communication within the agreement set and between this set and the other destinations. Thus, destination ordering
may not be appropriate for ad hoc networks.

Communication history ordering. The algorithms of this class deliver messages based on the causal order of multicasts.
Causal relation [19] establishes a partial order of messages. This partial order is expanded to total order by delivering concurrent
messages in some deterministic way. There is a number of communication history-based algorithms for wired networks [8, 19,
25]. Prakash et al. [24] describe a communication history-based TO-multicast algorithm for mobile networks. Unlike DRIFT,
their algorithm uses wired infrastructure. Communication history-based ordering is rather promising for ad hoc networks as it
is entirely distributed and it scales well as there is no need for extra ordering messages. DRIFT belongs to this class.

Probabilistic multicast. Luo et al. [20] explore a probabilistic approach to total order multicast in ad hoc networks. Their
algorithm guarantees delivery with a certain probability. In contrast, in this paper we focus on TO-multicast with deterministic
guarantees.

2.3 The Problem of Communication History Ordering in Ad Hoc Networks
As we discussed the advantages of communication-history ordering approach to TO-multicasting for ad hoc networks, we

shall now focus on the specifics of this type of design by presenting Lamport’s algorithm [19, 12] (which is the basis of
DRIFT). This algorithm assumes FIFO communication channels and reliable message delivery. It is based on logical clocks.
Before TO-multicasting a message, the source increments its logical clock and timestamps the message with this new clock
value. Each destination TO-delivers the messages in the increasing order of timestamps. Messages with identical clock values
(these messages have been sent concurrently) are delivered in some deterministic order, e.g., in the order of their senders’
identifiers. Since message receipt is reliable, every node TO-delivers the messages in the same order.

The main difficulty in Lamport’s approach is to delay the message delivery long enough to ensure that messages with
smaller timestamps are not received in the future. This is handled as follows. Note that every source monotonically increases
the timestamps it assigns to the multicast messages. Since messages from the same source are received in FIFO order, once a
destination receives a message with a certain timestamp, all successive messages from this source will bear greater timestamps.
Every destinationn stores the latest received timestamp for each source. The messages are delivered according to the following
rule. Noden can TO-deliver a particular messagem only after it receives a message with a higher timestamp from every source.
Due to the FIFO message delivery, this guarantees that in the futuren will not receive messages with timestamps smaller than
that ofm.

Hence, the delivery rate of all destinations depends on the sending rate of the source that multicasts least frequently. More-
over, as described, Lamport’s algorithm is not terminating: to ensure delivery at all destinations, each source has to continuously
multicast messages. The delivery can be implemented by requiring that each node periodically multicasts a dummy message.
The only purpose for such dummy message is to notify the other destinations of the source’s most recent logical clock value.
However, as this approach introduces extra message overhead it may be impractical. We propose an alternative technique to
propagate recent logical clock values of the sources. Our approach exploits the properties of ad hoc networks. We call this
technique virtual flooding.

3 Virtual Flooding
Virtual floodingdistributes data to every node in the network by attaching it to unrelated messages propagated in the net-

work. Virtual flooding is different fromphysical flooding(or justflooding) as it does not require any extra messages to be sent.
Specifically, to propagate virtually flooded data, a node attaches the data to physically flooded message it has to locally broad-
cast. Consider the example in Fig. 1(i). The network consists of five nodesa throughe in a line. The message transmission
range for each node only covers its immediate neighbors. Nodea physicallyfloods messagem (represented by a black box
in the figure). Nodec virtually floods messagem′ (white box). Whenm reachesc (see Fig. 1(i 3)),c attachesm′ to m and

3

resendsm||m′. Nodesb andd receive the joint message (see (i 4)). Noded resends the joint message again. Thus, with a single
physical flood, the virtually flooded messagem′ reaches all nodes in the network excepta. Another physical flood from any
node in the network results ina receivingm′ (see (i 5)).

The number of physical floods required to propagate a virtually flooded message varies. In the worst case this number is
proportional to the diameter of the network. Consider the example in Fig 1(ii). In the best case nodea contains messages for
both virtual and physical flooding. In this case only one physical flood is required. However, in case the virtually and physically
flooded messages are located at the opposite ends of the network, it takes two floods to propagate them.

(i) Virtual flooding example. (ii) Efficiency of virtual flooding.

Figure 1. Virtual flooding example.

Provided that sufficiently many physical floods occur, virtually flooded messages eventually reach all nodes in the network.
While it increases the size of physically flooded messages, it results in better bandwidth utilization as the virtually flooded data
does not require separate messages. Thus, there is no overhead incurred in acquiring the radio channel and no extra message
headers are required. This advantage is particularly important if the virtually flooded data is relatively small in size like the
causality information virtually flooded by DRIFT as we describe in the next section.

4 DRIFT Description
The key idea of DRIFT is to use virtual flooding to propagate information about the last logical clock values of the other

sources seen by some source. This approach lowers delivery latency. In this section, we describe how virtual flooding is utilized
in DRIFT. We then describe the algorithm, and demonstrate its operation with an example. We conclude the section with the
discussion of how DRIFT is to be efficiently implemented in practical ad hoc networks.

Initially, we assume that destinations are static. Each flooded message is reliably received by every node. Multiple messages
from an individual source are received by each node in FIFO order. Nodes do not crash. The sources do not join or leave the
network (i.e. we considerstaticgroup membership). Furthermore, we assume that at least one source sends an infinite number
of messages. Later we discuss how these assumptions may be relaxed or implemented.

4.1 Virtual Flooding in DRIFT
DRIFT extends Lamport’s TO-multicast. It uses virtual flooding to propagate timestamp information and alleviate the need

for periodic dummy message transmission. The idea is as follows. Suppose nodep receives messagem from sourceq with
timestampts. Observe that to safely deliverm, p does not necessarily need to receive a message with timestampts′ > ts
from another sourcer. It is sufficient thatp learns that it will not receive a message fromr with a timestamp less than or equal
to ts. When a source selects a new timestamp for the message to multicast, the timestamp is chosen such that it exceeds the
timestamps of the messages that the source has received. Thus, ifp learns thatr received a message with a timestampts or
greater, it can safely deliverm. In DRIFT, each source virtually floods its current logical clock value.

Recall that as presented in Section 3, all virtually flooded data reaches every node. Yet, in our case, only the freshest
logical clock values are of significance. Hence, in DRIFT, this information is updated at every node and only the most recent
logical clock information per source is resend with each physical message. This causes the virtually flooded information to be
constantly updated along the way.

Although we assume that the messages multicast by a single source are received by each node in FIFO order, the virtual
flooding information is attached to arbitrary messages. Thus, the timestamps carried by virtual flooding may overtake the ones

4

carried by physical messages. For example, suppose nodep multicasts a message with timestampt1 and later virtually floods
t2 > t1. It may happen that some nodeq receives a message carryingt2 in its virtual flooding part earlier than the message with
t1. If q usest2 to deliver some message with timestampt3 such thatt1 < t3 < t2 the total order is violated. Thus, care must
be taken when delivering a message based on timestamp information received via virtual flooding. In DRIFT we use sequence
numbers to relate physically and virtually flooded timestamps.

4.2 Algorithm Description
The pseudocode of DRIFT for each nodep is shown in Fig. 2. Every source (p ∈ Σ) maintains its logical clocklc as well

as sequence numbersn of the last message that it multicasts. Every node maintains a set of received message information as
well as a setSeento keep track of virtual flooding information. Each destination (p ∈ ∆) also maintains the sets of ready for
delivery —READYand delivered —DLVD message information. In addition, each destination has an arrayRcvdSNto store
the last sequence number of a message received from each respective source. DRIFT contains two actions. The first action —
TO-multicast(m) is invoked when the application requires to multicast a messagem. The second action — message receipt, is
executed whenp receives a message. FunctiongetHighestTimestampis used as a shorthand for repeated operation of selecting
highest-timestamped entries out ofSeenin both actions.

If a sourcep has a messagem to multicast, it executesTO-multicast. By executing this actionp obtains a new timestamp
(lc) and a new sequence number for the message. This information is entered inSeen. Nodep then broadcasts the message
to its neighbors. The freshest virtual flooding information is attached to the message. Specifically,TO-multicast invokes
getHighestTimestampwhich selects fromSeenthe highest timestamped entry for each source.

Whenp receives a message, it performs the following three operations (see Fig. 2): virtual flooding update (vf update),
received message processing (rcpt processing), and message delivery (delivery). Notice that sources that are at the same time
also destinations process their own messages similar to the messages received from other sources. In virtual flooding update
p merges its own virtual flooding data inSeenwith that carried by the received messageqSeen. In the second operationp
checks if the received message is new. If so,p adds the message information toRCVD. If p is a source, it updates it local clock
and virtual flooding information about itself inSeen. If p is a destination, it updates the sequence number of the last received
message from the source inRcvdSN. Thenp rebroadcasts the message. Note that the message is forwarded with the most
up-to-date virtual flooding data. In casep is a destination, after received message processing,p evaluates if any of the buffered
messages are ready for delivery. The procedure is as follows. Destinationp forms a set of candidates for deliveryREADY.
A candidate〈um, u, usn, uts〉 is an undelivered message with the following characteristics: for each sourcei there is an entry
〈i, isn, its〉 in virtual flooding setSeensuch that this entry corresponds to a message already received byp: RcvdSN[i] = is and
the timestamp of the candidate message is less than the timestamp of the sourceuts< its; or, in case the timestamps are equal
(uts= its), the source identifiers are used to break a tie (u ≤ i). After forming the candidate setREADY, p repeatedly examines
the set and select the message with the smallest timestamp. Again, the source identifiers are used to break a tie. The selected
message is TO-delivered.

4.3 Example operation.
We demonstrate the operation of DRIFT with an example (see Fig. 3). The example network has four nodes:{a, b, c, d}

out of which two —a andb are sources and the other two are destinations. Nodea multicasts messagesm1 andm2, while b
multicastsm3. In our example we focus on the delivery of the messages at destinationsc andd and skip unrelated events.

4.4 Implementation Considerations
Optimizing data structures. Some of the wireless ad hoc platforms have limited memory resources (e.g. Crossbow’s MICA2
motes [15]). The data structures used in DRIFT can be optimized to reduce memory at each individual node. We now discuss
some of these optimizations. Observe that there is no need to keep track of messages after they are TO-delivered. Thus, the
function of setsRCVDandDLVD can be modified. SetDLVD can be disposed of altogether. SetRCVDcan only keep the
messages that are not yet delivered. With this modification, the candidate message selection proceeds as before. However,
in the original version of DRIFT,RCVD is used to recognize duplicate messages inrcpt processingoperation. Yet, since we
assume single source FIFO message delivery, arrayRcvdSNcan be used for this purpose. Specifically, if a node receives a
messageqmfrom sourceq with sequence numberqsnandRcvdSN[q] = qsnthen the newly received message is a duplicate and
should be discarded.

SetSeencan also be optimized. Notice thatSeenonly needs to contain the elements pertaining to undelivered messages.
Once the message is delivered, all virtual flooding information about it can be removed. Moreover, according to the way
the entries inSeenare used, for each node and each sequence number it is sufficient to store only the entry with the highest
timestamp.

The size ofSeencan be further decreased at the expense of message delivery latency. The modification is as follows. Set
Seenkeeps at most two entries per each sourceq. One entry has the highest timestamp for the sequence number of the last

5

nodep
variables

if p ∈ Σ — p is a source
lc — local logical clock, initially 0
sn— sequence number of last message multicast, initially 0

RCVD— received message info, initially∅
Seen— virtual flooding info set, initially∅
if p ∈ ∆ — p is a destination

READY, DLVD — ready for delivery and delivered messages, initially∅
RcvdSN— sequence number of the last received message for eachi, initially all 0-s

actions
TO-multicast(m)

lc := lc + 1
sn := sn+ 1
Seen:= Seen∪ {〈p, sn, lc〉}
broadcast(m, p, sn, lc, getHighestTimestamp(Seen))

when receive(qm, q, qsn, qts, qSeen)
vf update: Seen:= Seen∪ qSeen
rcpt processing: if 〈qm, q, qsn, qts〉 6∈ RCVDthen /* received for the first time */

RCVD:= RCVD∪ {〈qm, q, qsn, qts〉}
if p ∈ Σ then

lc := max(lc, qts) + 1
Seen:= Seen∪ {〈p, sn, lc〉}

if p ∈ ∆ then
RcvdSN[q] := qsn

broadcast(qm, q, qsn, qts, getHighestTimestamp(Seen))
delivery: if p ∈ ∆ then

READY:= {〈um, u, usn, uts〉 ∈ RCVD\ DLVD |
∀i ∈ Σ,∃〈i, isn, its〉 ∈ Seen:
RcvdSN[i] = isn∧ uts≤ its}

DLVD := DLVD∪ READY
while READY 6= ∅ do

let 〈vm, v, vsn, vts〉 ∈ READYbe such that
∀〈um, u, usn, uts〉 ∈ READY: vts< uts∨ (vts= uts∧ v ≤ u)

TO-delivervm
READY:= READY\ {〈vm, v, vsn, vts〉}

function getHighestTimestamp(Seen)
highestSeen= ∅
foreach i ∈ Σ do

let 〈i, isn, its〉 ∈ Seenbe such that∀〈i, isn′, its′〉 ∈ Seen: its′ ≤ its
highestSeen:= highestSeen∪ {〈i, isn, its〉}

return (highestSeen)

Figure 2. DRIFT pseudocode

6

a sends:〈m1, a, 1, 1, {〈a, 1, 1〉}〉
b sends:〈m2, b, 1, 1, {〈b, 1, 1〉}〉
a sends:〈m3, a, 2, 2, {〈a, 2, 2〉}〉
a forwards:〈m2, b, 1, 1, {〈a, 2, 3〉〈b, 1, 1〉}〉
b forwards:〈m3, a, 2, 2, {〈a, 2, 2〉〈b, 1, 2〉}〉
c receivesm1 : RcvdSN= [1, 0], Seen= {〈a, 1, 1〉}

cannot deliverm1 sinceSeendoes not have an entry forb
c receivesm2 via a : RcvdSN= [1, 1], Seen= {〈a, 1, 1〉, 〈a, 2, 3〉, 〈b, 1, 1〉}

deliversm1 since its timestamp ismts = 1 andSeenhas an entry for each source that
allows addition ofm1 to READY; specifically〈a, asn= 1, ats= 1〉 ∈ Seen,
for this entryRcvdSN[a] = asn,mts = ats anda ≤ a, notice that〈a, 2, 3〉 ∈ Seencannot be used
since the message with sequence number 2 is not received yet,
〈b, bsn= 1, bts= 1〉 ∈ Seen, for this entryRcvdSN[b] = bsn, mts = bts anda < b

c receivesm3 via b : RcvdSN= [2, 1], Seen= {〈a, 1, 1〉, 〈a, 2, 2〉, 〈a, 2, 3〉, 〈b, 1, 1〉, 〈b, 1, 2〉}
forwards:〈m3, a, 2, 2, {〈a, 2, 3〉〈b, 1, 2〉}〉 note updated entry fora in qSeen,
deliversm2 andm3

d receivesm2 : RcvdSN= [0, 1], Seen= {〈b, 1, 1〉} cannot deliver messages
d receivesm1 : RcvdSN= [1, 1], Seen= {〈a, 1, 1〉, 〈b, 1, 1〉} deliversm1

d receivesm3 via b andc : RcvdSN= [2, 1], Seen= {〈a, 1, 1〉, 〈a, 2, 3〉〈b, 1, 1〉, 〈b, 1, 2〉}
deliversm2 andm3

Figure 3. DRIFT: example operation. The depicted events happen in sequence. The sequence is from
top to bottom.

received messageRcvdSN[q]. This is the entry that is used in case the node gets virtual flooding data that there is an outstanding
message formq. The other entry inSeenhas the highest timestamp seen (either through message receipt or virtual flooding)
from q. This entry is used if there are no outstanding messages. Notice that there is a potential delivery delay if there are
multiple outstanding messages from the same source. Suppose messagesm1 andm2 from q are in transit and are not received
by nodep. The messages’ sequence numbers are1 and2 respectively. Nodep learns through virtual flooding, thatq had a
timestampts1 and sequence number1. Later, p also learns thatq had timestampts2 and sequence number2. Due to the
limitations that are imposed on modifiedSeen, 〈q, 2, ts2〉 has to replace〈q, 1, ts1〉. However, whenp receivesm1, p cannot use
ts2 if messages are eligible for delivery asm2 is still in transit andp no longer has access tots1. Notice that setREADYis not
necessary for implementation. Each nodep can just maintainRCVDsorted in timestamp order. For delivery evaluation,p can
examine if the message with the smallest timestamp inRDVDpasses delivery conditions. If so, the message is delivered and
the next one is examined. As presented, DRIFT uses unbounded integers to sequence numbers and timestamps. However, they
can be easily bounded by reusing them after some time in a round-robin fashion.

Termination. Observe that for message delivery DRIFT assumes that at least one source continues to multicast messages
indefinitely. This assumption can be lifted as follows. If a destination has undelivered messages and has not received a message
for a certain time, it floods a dummy message. The delivery of this dummy message is not necessary. The other nodes can use
this physical flood to transmit the virtual flooding information required for delivery. Several dummy floods may be required for
termination.

Bounding message size.As described, the amount of virtual flooding data appended to each message is proportional to the
number of sources in the network. However, the message size or bandwidth limitations may not allow to accomodate all this
information in a single message. Observe, however, that the correctness of the algorithm does not depend on the amount
of virtual flooding data put into each individual message. Less virtual flooding data per message results in less bandwidth
overhead, while potentially larger delivery latency. Note that eliminating the virtual information altogether reduces DRIFT to
classic Lamport’s TO-multicast [19]. We explore these trade-offs in our simulation.

7

FIFO and reliable transmission. DRIFT assumes FIFO delivery of messages from single source. However, this assumption
is not difficult to implement as the sequence numbers for each message are available. DRIFT may buffer messages received
out-of-order and process them in sequence number order. Notice that while the out-of-order messages themselves have to be
buffered, the virtual flooding information they carry can be processed without delay. Reliable multicasting is studied extensively
in the literature (e.g., [16, 23]). A scheme that detects missed messages and request a retransmission from neighbors or from
the source can be easily incorporated into DRIFT.

5 Simulation
For our simulation we use JiST/SWANS v1.0.4 — a simulation environment for ad hoc networks [1, 5]. A distinguishing

feature of JiST/SWANS is that it intercepts the calls to the communication layer and dynamically transforms them into calls to
the simulator’s communication package. Thus, Java applications written for real deployment can be ported to this simulation
environment and then placed under a variety of simulation scenarios.

5.1 Setup
Communication between nodes is by broadcast as defined in the 802.11b standard [17]. The communication is subject to

interference and message loss. Messages can be lost because of the hidden terminal effect [3] or node disconnects due to
mobility. The message loss is modeled using JiST/SWANS’RadioNoiseIndeppackage, which employs a radio model identical
to the one used in the popular ns-2 simulator [2]. We simulate a wireless ad hoc network of100 nodes deployed in a square field
of 400 × 400 meters. We used the tranmission range of88 meters which is default in JiST/SWANS. The nodes are stationary
except for the cases in which we measure the impact of mobility (see Section 5.5). Similarly to the transmission range, we also
use the default values of other parameters (such as bandwidth) in JiST/SWANS.

The positions of the nodes in the field are uniformly randomly selected. Sources start TO-multicasting at random times
uniformly distributed between0 seconds and the rate of TO-multicasting. Measurement data is collected only after all nodes
have started invoking TO-multicasts. Every source TO-multicasts at least15 messages with an interval of100 seconds between
messages. The payload size is128 bytes. Unless otherwise specified, each node is both a source and a destination.

DRIFT uses reliable flooding. To simulate reliable flooding in JiST/SWANS, we set the link packet loss to zero. However,
messages are still lost due to hidden terminal effect and node disconnects. To minimize these losses we choose a relatively low
flooding rate. Notice that even with this flooding rate and100 sources, on average, one message per second is TO-multicast.
All results are averaged over at least20 runs in different uniform node distributions. Where significant we indicate the 95%-
confidence intervals.

To evaluate the performance of DRIFT, we measure the impact of virtual flooding by comparing the performance of total
order multicast flooding with virtual flooding (Total Order with Virtual Flooding (TOVF)) and without virtual flooding (Total
Order with Flooding only (TOF)). In what follows, we measure the delivery latency of TOF and TOVF. That is, the time needed
to TO-deliver a message after it is TO-multicast by its source. In our calculations,speedupis the latency of TOF divided by
the latency of TOVF:speedup = latencyTOF /latencyTOV F . The compared measurements for TOVF and TOF are taken in
the same simulation run: for any received message we store the time needed to TO-deliver with and without virtual flooding
— and the results are compared for the same source-destination node pairs. In the following, we measure the performance
gain through the use of virtual flooding, the impact of the source location, scale and node mobility. Unless explicitly stated
otherwise, we use the above default values in our measurements.

5.2 Speedup: The Impact of Virtual Flooding
The delivery latency of TO-multicast depends on rates with which the sources TO-multicast the messages (calledbase rate)

as well as on the relative difference in these rates between the sources. To evaluate the effect of the flooding rate and the relative
rate difference, we vary the multicast rate as follows. Nodei multicasts with ratebaseRate+i∗rateDelay. We setbaseRate at
100 seconds and vary therateDelay. Fig. 4(a) shows the results of these experiments. They-axis shows the average maximum
delivery latency per message. We calculate this latency as follows. For each simulation run we measure the maximum delivery
latency for all the messages for a single source. We then compute the average over all sources and all simulation runs. The
graph in Fig. 4(a) shows the advantage of TOVF over TOF. This advantage grows as the rate delay increases. Notice that the
time to deliver the message by reliable flooding is not shown in Fig. 4(a). However, this delivery latency is in milliseconds and
thus negligible compared to the time needed to TO-deliver a message, even using virtual flooding.

In what follows, the figures only show speedup rather than the absolute performance with and without virtual flooding.
Fig. 4(b) shows the speedup for two base rates:10 and100 seconds. The speedup increases with increasing rate delay. Also,
the speedup is higher with a higher base rate, up to a certain threshold (at a rate delay of approximately 700 milliseconds).
Notice that the graph only shows a rate delay interval between0 and1 seconds for the base rate of10 seconds. At1 second, the
lowest rate is an eleventh of the highest rate, similar to the case of base rate of100 and rate delay of10 seconds. In Fig. 4(c),

8

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 0.2 0.4 0.6 0.8 1

M
ax

 d
el

iv
er

y
la

te
nc

y,
 s

ec
on

ds

Rate delay

With VF
No VF

 0

 10

 20

 30

 40

 50

 60

 70

 0 2 4 6 8 10

S
pe

ed
up

Rate delay, seconds

base rate 100s
base rate 10s

(a) with and without VF: latency as a function (b) speedup as a function of rate delay
of rate delay, seconds

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 20 40 60 80 100

S
pe

ed
up

Base TO-multicast rate

rate delay 0.1s
rate delay 0s

0
2
4
6
8

10
12
14
16
18
20

1 source,
center

1 source,
origin

2 sources 4 sources

Position of source

N
br

 p
hy

si
ca

l f
lo

od
in

gs

be
fo

re
 d

el
iv

er
y

avg
max
min

(c) speedup as a function of flooding base rate, (d) number of floods needed for delivery.

Figure 4. Speedup: delivery latency and number of floods comparison.

we show the dependency of speedup on the base rate. The rate delay is fixed at0.1 and0 seconds. In the latter case all nodes
multicast at the same rate. The results show that the speedup is smaller for the curve with 0 compared to the one with 0.1
seconds rate delay, until a base rate of 75 seconds. As the relative impact of the rate delay decreases with increasing base rate,
the two curves converge. After a base rate of 75 seconds, the speedup for the curve with 0.1 seconds rate delay is smaller.
Because of the rate delay, there may be periods of time during which TO-multicasts are issued within a short time of each other,
thus improving the delivery latency for TOF. Hence, the speedup for the curve with 0.1 seconds rate delay is smaller.

5.3 Dependence of Virtual Flooding on Source Locations
In this subsection we investigate how the positioning of the physical flooding originator affects the efficiency of virtual

flooding. We set a fixed number of sources that originate the physical floods (we call themoriginating sources). These nodes
invoke TO-multicast. We vary their number and positions in the network. The other sources do not originate the floods, they
only use virtual flooding to propagate their messages. Notice that without virtual flooding, no destination is able to TO-deliver
messages. There are the total of1000 messages to send at intervals of1 second. In this experiment the positions of the nodes
are deterministic.100 nodes are positioned in a10 × 10 grid such that each node can only communicate with its adjacent
neighbors in the grid (i.e., either having the samex or y coordinate). Direct communication with other nodes is not possible.
Notice that the diameter of the network is18 hops.

We run the simulation for: (i) one originating source is located in the center in the field (position[315, 315], where the first
and second number indicate thex-coordinatey-coordinates respectively); (ii) one source is located in the origin (position[1, 1]);
(iii) two originating sources are located at coordinates[1, 1] and[629, 629]; and (iv) four originating sources in every corner of
the network. With multiple originating sources, every originating source TO-multicasts one after the other with a fraction of
the base rate such that the overall base rate is still 1 second.

In Fig. 4(d), we show the number of physical floods by originating sources that is needed before all virtually flooded messages

9

 0
 100

 200
 300

 400
 500

 600

x

 100 200 300 400 500 600

y

 9

 10

Avg nbr floodings

 0
 100

 200
 300

 400
 500

 600

x

 100 200 300 400 500 600

y

 10

 11

 12

Max nbr floodings

(a) single source positioned at [350,350], (b) single source positioned at [350,350],

 0
 100

 200
 300

 400
 500

 600

x

 100 200 300 400 500 600

y

 4
 6
 8

 10
 12
 14
 16

Avg nbr floodings

 0
 100

 200
 300

 400
 500

 600

x

 100 200 300 400 500 600

y

 8
 10
 12
 14
 16
 18

Max nbr floodings

(c) single source positioned at [1,1], (d) single source positioned at [1,1],

 0
 100

 200
 300

 400
 500

 600

x

 100 200 300 400 500 600

y

 5

 6

 7

Avg nbr floodings

 0
 100

 200
 300

 400
 500

 600

x

 100 200 300 400 500 600

y

 8

 9

 10

Max nbr floodings

(e) two sources positioned at [1,1] and [629,629], (f) two sources positioned at [1,1] and [629,629],

 0
 100

 200
 300

 400
 500

 600

x

 100 200 300 400 500 600

y

 5

 6

Avg nbr floodings

 0
 100

 200
 300

 400
 500

 600

x

 100 200 300 400 500 600

y

 6

 7

 8

Max nbr floodings

(g) four sources in the four corners, (h) four sources in the four corners.

Figure 5. Source location experiment: 100 nodes positioned on a grid with a single, two, or four
originating sources.

10

are delivered. We show the average, maximum and minimum number of physical floods. The maximum and minimum number
are averaged over all simulation runs. The results indicate that, comparing only the single source simulations, the scenario with
the originating source located in the center of the network leads to the smaller maximum number of required floods while the
source at the origin leads to the smaller average number of required floods. In the first scenario, the maximum is lower because
the number of hops between the source and the farthest node is half that for the source at the origin. In the second scenario, the
reason for the higher average is more subtle. Indeed, if the source is positioned at the origin, then the delivery latency for a large
number of destinations is low because the virtual floodings of other nodes travel with the actual physical flooding (see also the
best case scenario in Fig. 1(b)). This is also the reason why the average minimum latency is smaller for this case. Adding more
sources decreases the average and maximum delivery latency, but not the minimum delivery latency compared to the source at
the origin case.

In Fig. 5, we show the spacial distribution of required floods in our experiment. Thex andy-axis show the coordinates of
a node, while thez-axis shows the average (in the left column figures) and maximum (in the right column) number of floods
needed to deliver a particular message. If the source is positioned at the center, the nodes along the grid line with respect to
the physical source have a slightly lower average. Since they are closer (in hop count) to the source than their equivalents on
diagonals, they can also deliver messages slightly faster. However, this does not significantly affect the maximum latency (see
Fig. 5(b)). If the source is positioned in the origin, the number of required floods is highest close to the source. Indeed, virtual
flooding data is traveling slowest in the direction opposite to the physical floods. In this setup, the virtually flooded data has
to travel across the network in this least advantageous direction. We also run the simulation for two sources positioned at the
origin and at coordinates [629,629] of the field (Figs. 5(e) and (f)), and for four nodes positioned in the corners (sees Fig. 5(g)
and (h)). The results are rather intuitive. These results show that the efficiency of virtual flooding and thus DRIFT depends on
the position of the sources with low TO-multicast rates relative to the position of sources with high flooding rates.

 0

 1

 2

 3

 4

 5

 6

 7

 0 5 10 15 20 25 30 35 40 45 50
 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

S
pe

ed
up

M
es

sa
ge

 o
ve

rh
ea

d,
 M

by
te

s

Number of transmitted virtual flooding tuples

Speedup
Message overhead ->

Figure 6. Varying number of virtual flooding entries per physical message.

5.4 Scalability: The Impact of the Number of Sources
In this experiment we investigate how well DRIFT scales with respect to the number of sources. With the increase of the

number of sources, the amount of virtual flooding information each message carries may also increase. This adversely affects
the performance of DRIFT. To mitigate this effect, the number of virtual flooding entries per message can be limited. Such
limit, however, may delay delivery. We investigate the performance of DRIFT under different limits on the number of flooding
entries. The results are shown in Fig. 6. In this graph, thex-axis denotes the limit of virtual flooding entries per message.
The maximum limit is the whole network of50 nodes. All nodes act as sources and TO-multicast every10 seconds. The
y-axis shows the speedup while the secondy-axis (indicated by an arrow in the legend of Fig. 6) the message overhead. In
the calculation of the overhead, the message payload of128 bytes is included. The message overhead increases linearly with
an increasing amount of virtual flooding information. Interestingly, the speedup increases only sub-linearly with the increased
virtual flooding information. Thus, the implementers can select the most appropriate settings for the desired speedup and
message overhead.

5.5 The Impact of Mobility
To measure the impact of mobility on delivery latency we use the random way-point model [18]. In our model the speed

is fixed and the pause time is zero. This removes the instability caused by varying speeds and pause times.2 In this model,
2Note that it is shown [26] that the random way-point model possesses certain shortcomings. However, for our purposes these shortcomings are unimportant.

11

each node selects an arbitrary location in the field and moves there in a direct line with constant speed. When it reaches the
selected location, it then selects a new location. The flooding base rate is10 seconds. All other parameters are the same as
in the experiment in Fig. 4(a). The results are shown in Fig. 7(a). The results indicate that mobility within the selected speed
range does not have significant impact on speedup.

 0

 2

 4

 6

 8

 10

 0 5 10 15 20

S
pe

ed
up

Speed, m/s

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 10 20 30 40 50 60 70

S
pe

ed
up

Number of mobile sources

(a) Varying speed, all nodes are mobile. (b)Varying number of sources.

Figure 7. Speedup with mobile sources.

The last experiment studies the effect of the number of sources in the network on speedup. All nodes except for sources are
stationary. We vary the number of mobile sources while the overall number of nodes (including sources) stays constant. The
results are shown in Fig. 7(b). Interestingly, the speedup increases with increasing number of sources. Thus, virtual flooding,
appears to perform better if the number of sources increases.

6 Wireless Sensor Network Implementation
To verify the applicability of DRIFT to practical ad hoc networks, we implemented it on Crossbow’s MICA2 motes [15, 14].

The motes are a sensor network platform popular in both academia and industry.

Experimental setup. We used16 motes arranged in a4 × 4 grid. The motes were instrumented with a wired backchannel.
The motes run TinyOS v.1.1.15 [14] operating system. As DRIFT assumes single source reliable FIFO delivery, we did not
focus on the implementation of this mechanism. To emulate reliable delivery, instead of the radio, the messages are transmitted
over the backchannel. Each mote reliably communicates with the adjacent neighbors in the grid. That is, each mote can have
up to4 neighbors and the network’s diameter is6 hops.

To conserve memory and minimize computation overhead on the motes, we implemented the data structure optimizations
discussed in Section 4. As the number of messages multicast by each source during the run was known a priori, we further
optimized the code. Specifically, we used a two-dimensional array that stored the highest seen timestamp for each source and
message sequence number. We implemented TOF and TOVF separately.

The impact of rate delay on latency and speedup. There were4 sources located in the interior of the grid. Each source
multicast10 messages. Message size was36 bytes. We used a base rate of30 seconds. In our experiment we varied the rate
delay from0 to 10 seconds, one measurement was taken at each data point. The results of the experiments are shown in Fig. 8.
The observed results coincide with those obtained in the simulation (see Fig. 4). Notice that in our experiments TOVF was
up to20 times faster than TOF. Our experimental results lend greater credibility to the simulation measurements and show the
applicability of DRIFT in practice.

7 Handling Dynamic Groups and Failures
So far we assumed that the set of sources is static. However, in some applications, the nodes may join and leave the network.

In this case the nodes have to adjust their logical clock entries and other accounting information. Notice that arrival and
departure of non-sources does not affect the algorithm. They may simply leave or start TO-delivering messages respectively.
In case of sources, the situation is more complicated. If a source intends to leave the network it TO-multicasts a message
announcing its departure. It can then immediately leave the network. Upon delivery of this message, the destinations remove
this source and adjust their data structures accordingly.

12

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 2 4 6 8 10

M
ax

 d
el

iv
er

y
la

te
nc

y,
 s

ec
on

ds

Rate delay, seconds

With VF
No VF

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10

S
pe

ed
 u

p

Rate delay, seconds

Base rate 10s

(a) latency as function of rate delay (b) speedup as a function of rate delay

Figure 8. Speedup in implementation: delivery latency comparison.

The procedure of joining the network is as follows. A new sourced contacts one of the existing sources (e.g., by using
simple, geographically bounded flooding). The existing source then TO-multicasts a join message ond’s behalf. Every existing
source addsd and updates its data structures accordingly. A special case arises if the network has no existing sources. This
special bootstrap case can be handled as described by Cavin et al [9].

Let us now consider crash-faults and un-announced node departures. The latter occurs if the node fails to notify the others
when leaving the network. It is handled similar to crashes. Notice again that the crash for a non-source does not affect DRIFT. If
a source crashes, the other nodes have to be able to detect this crash. Crash detection can be implemented using simple flooding
or other techniques. However, the discussion of fault-detection mechanisms is outside the scope of this paper; the interested
reader is referred, for instance, to work of Friedman and Tcharny [13]. Upon detection of a source crash, the detecting source
TO-multicasts a message informing the network of the departure of the faulty source.

8 Conclusion
In conclusion, we would like to observe a salient property of DRIFT. While convenient for total order multicast, virtual

flooding is applicable to efficient information propagation of any type. For example, time synchronization is frequently re-
quired in sensor networks. This application needs to periodically exchange messages between the sensor nodes. The period is
rather well defined. Moreover, the time synchronization information is rather compact. Thus, virtual flooding can be used to
piggyback other data (e.g. sensor data) on time synchronization messages. Similarly, the virtual flooding required for delivery
in DRIFT does not have to be carried by TO-multicast messages only. Any other messages present in the network (e.g. time
synchronization messages) can also be suitable. Hence, DRIFT can leverage existing traffic in the network to minimize delivery
latency for TO-multicast.

DRIFT and virtual flooding are based on physical flooding as basic communication primitive. However, in other settings
message dissemination can be implemented using techniques other than flooding. For example, a minimal connected domi-
nating set [7] or tree-structured routing scheme can be used. DRIFT and virtual flooding can be adapted to work over these
topologies as well.

In this paper we studied a TO-multicasting algorithm that is specifically designed to perform well in ad hoc networks. The
resultant algorithm acquired new noteworthy qualities. We believe that this is a propitious path of discovery, which may help
to re-evaluate other classic solutions for efficient applications in such networks.

Acknowledgments
The authors thank Ken Birman for letting us run our simulations on a computing cluster at Cornell University and M. Kazim

Khan of Kent State University for a consultation on statistical aspects of our experiments.

References
[1] JiST/SWANS. http://jist.ece.cs.cornell.edu.
[2] The network simulator - ns-2. http://www.isi.edu/nsnam/ns.
[3] D. Allen. Hidden terminal problems in wireless LAN’s. InIEEE 802.11 Working Group Papers, 1993.

13

[4] G. Anastasi, A. Bartoli, and F. Spadoni. Group multicast in distributed mobile systems with unreliable wireless network. InProceedings
of the 18th IEEE Symposium on Reliable Distributed Systems (SRDS ’99), pages 14–23, Washington - Brussels - Tokyo, Oct. 1999.
IEEE.

[5] R. Barr. An efficient, unifying approach to simulation using virtual machines. PhD thesis, Cornell University, Ithaca, NY, 14853, May
2004.

[6] A. Bartoli. Group-based multicast and dynamic membership in wireless networks with incomplete spatial coverage.Mobile Networks
and Applications, 3(2):175–188, 1998.

[7] V. Bharghavan and B. Das. Routing in ad hoc networks using minimum connected dominating sets. InProc. of the Int. Conference on
Communications, Montreal, Canada, June 1997.

[8] K. Birman, A. Schiper, and P. Stephenson. Lightweight causal and atomic group multicast.ACM Transactions on Computer Systems,
9(3):272–314, Aug. 1991.

[9] D. Cavin, Y. Sasson, and A. Schiper. Consensus with unknown participants or fundamental self-organization. InProc. of the 3rd Int.
Conference on AD-HOC Networks & Wireless (ADHOC-NOW), pages 135–148, Vancouver, BC, Canada, 2004.

[10] T. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems.J ACM, 43(2):225–267, Mar. 1996.
[11] F. Cristian. Asynchronous atomic broadcast.IBM Technical Disclosure Bulletin, 33(9):115–116, Feb. 1991.
[12] X. Défago, P. Urb́an, and A. Schiper. Total order broadcast and multicast algorithms: Taxonomy and survey.ACM Computing Surveys,,

36(4):372–421, Dec. 2004.
[13] R. Friedman and G. Tcharny. Evaluating failure detection in mobile ad-hoc networks.Int. Journal of Wireless and Mobile Computing,

1(8), 2005.
[14] J. Hill and D. Culler. Mica: A wireless platform for deeply embedded networks.IEEE Micro, 22(6):12–24, Nov./Dec. 2002.
[15] J. Hill, R. Szewczyk, A. Woo, D. Culler, S. Hollar, and K. Pister. System architecture directions for networked sensors.ACM SIGPLAN

Notices, 35(11):93–104, Nov. 2000.
[16] J. W. Hui and D. Culler. The dynamic behavior of a data dissemination protocol for network programming at scale. InSenSys ’04:

Proceedings of the 2nd international conference on Embedded networked sensor systems, pages 81–94, New York, NY, USA, 2004.
ACM Press.

[17] IEEE. 802.11 specification (part 11): Wireless LAN medium access control (MAC) and physical layer (PHY) specifications, June 1997.
[18] D. Johnson and D. Maltz. Dynamic source routing in ad hoc wireless networks. In Imielinski and Korth, editors,Mobile Computing,

volume 353. Kluwer Academic Publishers, 1996.
[19] L. Lamport. Time, clocks, and the ordering of events in a distributed system.Communications of the ACM, 21(7):558–565, July 1978.
[20] J. Luo, P. T. Eugster, and J.-P. Hubaux. PILOT: ProbabilistIc Lightweight grOup communication sysTem for Mobile Ad Hoc Networks.

IEEE Transactions on Mobile Computing, 3(2):164–179, 2004.
[21] N. Malpani, Y. Chen, N. H. Vaidya, and J. L. Welch. Distributed token circulation in mobile ad hoc networks.IEEE Transactions on

Mobile Computing, 4(2):154–165, 2005.
[22] S. Navaratnam, S. Chanson, and G. Neufeld. Reliable group communication in distributed systems. InProc. of the 8th Int. Conference

on Distributed Computing Systems (ICDCS’88), pages 439–446, San Jose, CA, USA, 1988.
[23] K. Obraczka, K. Viswanath, and G. Tsudik. Flooding for reliable multicast in multi-hop ad hoc networks.Wireless Networks: The

Journal of Mobile Communication, Computation and Information, 7(6):627–634, 2001.
[24] R. Prakash, M. Raynal, and M. Singhal. An efficient causal ordering algorithm for mobile computing environments. InICDCS ’96:

Proceedings of the 16th International Conference on Distributed Computing Systems (ICDCS ’96), pages 744–751, Washington, DC,
USA, 1996. IEEE Computer Society.

[25] A. Schiper, J. Eggli, and A. Sandoz. A new algorithm to implement causal ordering. In J.-C. Bermond and M. Raynal, editors,3rd
International Workshop on Distributed Algorithms, volume 392 ofLecture Notes in Computer Science, pages 219–232, Nice, France,
26–28 Sept. 1989. Springer.

[26] J. Yoon, M. Liu, and B. Noble. Random waypoint considered harmful. InINFOCOM 2003, Apr. 2003.

14

