
Corona: A Stabilizing Deterministic

Message-Passing Skip List

Rizal Mohd Nor1, Mikhail Nesterenko1, and Christian Scheideler2,�

1 Department of Computer Science, Kent State University, Kent, OH, USA
2 Department of Computer Science University of Paderborn,

Paderborn, Germany

Abstract. We present Corona, a deterministic self-stabilizing algorithm
for skip list construction in structured overlay networks. Corona oper-
ates in the low-atomicity message-passing asynchronous system model.
Corona requires constant process memory space for its operation and,
therefore, scales well. We prove the general necessary conditions limiting
the initial states from which a self-stabilizing structured overlay network
in message-passing system can be constructed. The conditions require
that initial state information has to form a weakly connected graph and
it should only contain identifiers that are present in the system. We for-
mally describe Corona and rigorously prove that it stabilizes from an
arbitrary initial state subject to the necessary conditions. We extend
Corona to construct a skip graph.

1 Introduction

In a peer-to-peer overlay network, each process can communicate with any other
peer process over the underlying network as long as the process is aware of the
peer’s identifier. These identifier records form the network topology. Peer-to-peer
networks are effective for distributed information storage, group communication
and large scale computations. The amount of research literature on this subject
is extensive [2,3,4,6,13,16,22,23,25].

The skip list [20] is a popular peer-to-peer topology as it allows efficient search
and quick topology updates. Specifically, both identifier search as well as process
deletion or addition in a skip list take O(log n) steps, where n is the number of
nodes. A skip list may be either randomized or deterministic. While the random-
ized version may be simpler to implement, the deterministic one provides firm
search and topology update bounds as well as greater assurance against failures,
malicious behavior and unfavorable topology changes.

A skip list may not be sufficiently robust against node crashes. Indeed, a
single node failure may disconnect the skip list. Neither is a skip list particu-
larly suitable for concurrent searches. The standard measures of robustness and
concurrency are expansion and congestion [4]. The expansion and congestion of

� Supported in part by DFG awards SCHE 1592/1-1 and SFB 901 (On-the-Fly Com-
puting).

X. Défago, F. Petit, and V. Villain (Eds.): SSS 2011, LNCS 6976, pp. 356–370, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Corona: A Stabilizing Deterministic Message-Passing Skip List 357

the skip list are O(1/n) and Ω(n) respectively. A skip list extension, the skip
graph [3], significantly improves these metrics.

Peer-to-peer systems may include millions of nodes. At such scale, fault-
toleranceand topologymaintenance become amajor concern. Self-stabilization [11]
may be a particularly suitable failure recovery approach for peer-to-peer sys-
tems [1,19] as it is oblivious to the exact nature of the fault. As soon as the
influence of the fault stops, regardless of the state in which this fault leaves the
system, its self-stabilization is guaranteed to return it to a correct state.

Due to the large initial state space, self-stabilization programs require careful
correctness proofs. If practical low atomicity communication models, such as the
message-passing system, are considered such proofs may become difficult both
to construct and to verify. Furthermore, a large initial state space may lead to
excessive process memory demands during stabilization, especially during initial
linearization: topological sorting of the processes [19].

Our Contribution. In this paper we present Corona: a self-stabilizing deter-
ministic skip list construction algorithm in message-passing systems. To the best
of our knowledge Corona is the first such algorithm.

Before describing Corona, we prove two necessary conditions for the existence
of a self-stabilizing solution to any overlay network problem. The conditions
limit the possible initial states in two ways: the state information must form
a weakly connected graph, and the states should not include identifiers that
are not present in the system. Subject to these restrictions, we rigorously prove
Corona to correctly stabilize from an arbitrary initial state.

Instead of struggling to counteract the large state space of message passing
systems, we are able to use the low-atomicity model to our advantage: the chan-
nels are employed as extra identifier storage space. This allows us to keep the
Corona design relatively straightforward and to linearize processes using process
memory that is independent of the system size. We extend Corona to build skip
graphs and to accommodate topology updates.

Related Literature. There is a large body of literature on how to efficiently
maintain peer-to-peer networks. Most of the results focus on preserving the
overlay network in the legal set of states. Relatively few studies address the
self-stabilization of such networks. Due to the topology being part of system
state, the majority of classic self-stabilizing techniques are not applicable to
peer-to-peer networks.

Let us survey the publications in self-stabilization of peer-to-peer networks. A
few papers address simple topologies. The Iterative Successor Pointer Rewiring
Protocol [10] and the Ring Network [24] organize the nodes in a sorted ring.
Onus et al. [18] linearize a network into a sorted linked list. However, they use
a simplified synchronized communication model for their algorithm.

There are several studies of more sophisticated structures. Hérault et al. [14]
describe a self-stabilizing spanning tree algorithm. Caron et al. [8] present a
Snap-Stabilizing Prefix Tree for Peer-to-Peer systems while Banchi et al. [7]

358 R.M. Nor, M. Nesterenko, and C. Scheideler

show stabilizing peer-to-peer spatial filters. However, none of these structures
approach the congestion and expansion of a skip graph. Clouser et al. [9] pro-
pose a deterministic self-stabilizing skip list for shared register communication
model. Gall et al. [12] discuss models that capture the parallel time complexity of
locally self-stabilizing networks that avoids bottlenecks and contention. Jacob et
al. [21] generalize insights gained from graph linearization to two dimensions and
present a self-stabilizing construction for Delaunay graphs. In another paper, Ja-
cob et al. [15] present a self-stabilizing, randomized variant of the skip graph and
show that it can recover its network topology from any weakly connected state
in O(log2 n) communication rounds with high probability in a simple, synchro-
nized message passing model. In [5] the authors present a general framework for
the self-stabilizing construction of any overlay network. However, the algorithm
requires the knowledge of the 2-hop neighborhood for each node and involves
the construction of a clique. In that way, failures at the structure of the overlay
network can easily be detected and repaired.

2 Model, Notation and Definitions

Peer-to-Peer Networks. A peer-to-peer overlay network program consists of
a set N of n processes with unique identifiers. A process can communicate with
any other process as long as it has a record of its identifier. The communication
is by passing messages through channels.

Peer-to-peer networks often require ordering the processes in a sequence ac-
cording to their identifiers. Two processes a and b are consequent, denoted
cnsq(a, b), if (∀c : c ∈ N : (c < a) ∨ (b < c)). That is, two consequent pro-
cesses do not have an identifier between them. For the sake of completeness,
we assume that −∞ is consequent with the smallest id process in the system.
Similarly, the largest id process is consequent with +∞.

Graph terminology helps us in reasoning about peer-to-peer networks. A link
is a pair of identifiers (a, b) defined as follows: either message message(b) car-
rying identifier b is in the incoming channel of process a, or process a stores
identifier b in its local memory. See Figure 2 for illustration. Note that a thus
defined link is directed. In referring to such a directed link (a, b), we always state
the predecessor process a first and the successor process b second. The length
of a link (a, b) is the number of processes c such that a < c < b. Note that the
length of (a, b) is zero if cnsq(a, b) is true. The length of (−∞, a) is zero if a is
the smallest id in the system, it is n otherwise. Similarly, the length of (b, +∞)
is zero if b is maximum and n otherwise. The process connectivity graph CP is
the graph formed by the links of the identifiers stored by the processes. A chan-
nel connectivity multigraph CC includes both locally stored and message-based
links. Self-loop links are not considered. By this definition, CP is a subgraph
of CC. Note that besides the processes, CC and CP may contain two nodes
+∞ and −∞ and the corresponding links to them. Graph CP captures current
network connectivity information the set of processes possesses. CC reflects the
connectivity data that is stored implicitly in the messages in communication
channels. Again, refer to Figure 2 for an example of both graph types.

Corona: A Stabilizing Deterministic Message-Passing Skip List 359

Computation Model. Each process contains a set of variables and actions.
A channel C is a special kind of variable whose values are sets of messages.
We assume that the only information a message carries is process identifiers.
We further assume that a message carries exactly one identifier. The identifiers
are defined. That is, a message cannot carry ∞. Channel message capacity is
unbounded. Messages cannot be lost. The order of message receipts does not
have to match the order of transmission. That is, the channels are not FIFO.
Due to this, we treat all messages sent to a particular process as belonging to a
single incoming channel.

An action has the form 〈guard〉 −→ 〈command〉. guard is either a predicate
over the contents of the incoming channel or true. In the latter case the predicate
and corresponding action are timeout. command is a sequence of statements
assigning new values to the variables of the process or sending messages to other
processes.

Program state is an assignment of a value to every variable of each process
and messages to each channel. A program state may be arbitrary, the messages
and process variables may contain identifiers that are not present in the network.
An identifier is existing if it is present in the network. An action is enabled in
some state if its guard is true in this state. It is disabled in this state otherwise.
A timeout action is always enabled. We consider programs with timeout actions,
hence, in every state there is at least one enabled action.

A computation is an infinite fair sequence of states such that for each state
si, the next state si+1 is obtained by executing the command of an action that
is enabled in si. This disallows the overlap of action execution. That is, action
execution is atomic. We assume two kinds of fairness of computation: weak
fairness of action execution and fair message receipt. Weak fairness of action
execution means that if an action is enabled in all but finitely many states of the
computation then this action is executed infinitely often. Fair message receipt
means that if the computation contains a state where there is a message in a
channel, the computation also contains a later state where this message is not
present in the channel.

We focus on programs that do not manipulate the internals of process iden-
tifiers. Specifically, a program is compare-store-send if the only operations that
it does with process identifiers is comparing them, storing them in local process
memory and sending them in a message. That is, operations on identifiers such
as addition, radix computation, hashing, etc. are not used. In a compare-store-
send program, if a process does not store an identifier in its local memory, the
process may learn this identifier only by receiving it in a message. A compare-
store-send program cannot introduce new identifiers to the network, it can only
operate on the ids that are already there. If a computation of a compare-store-
send program starts from a state where every identifier is existing, each state of
this computation contains only existing identifiers.

A state conforms to a predicate if this predicate is true in this state; oth-
erwise the state violates the predicate. By this definition, every state conforms
to predicate true and none conforms to false. Let A and B be predicates over

360 R.M. Nor, M. Nesterenko, and C. Scheideler

program states. Predicate A is closed with respect to the program actions if every
state of the computation that starts in a state conforming to A also conforms to
A. Predicate A converges to B if both A and B are closed and any computation
starting from a state conforming to A contains a state conforming to B.

Problems. The overlay network problem maps each set of identifiers to a set of
acceptable process connectivity graphs. For example, for every set of processes,
the linearization problem specifies exactly one graph where each process is linked
with its consequent processes.

Linearized overlay networks simplify process search. When discussing a lin-
earized network, processes with identifiers greater than p are to the right of p,
while processes with identifiers smaller than p are to the left of p. That is, we
consider processes arranged in the increased order of identifiers from left to right.
See Figure 2 for an illustration.

The process search time in a simple linearized network is proportional to
its size. This may not be acceptable in large-scale networks. Shortcut links are
added to accelerate navigation. In a deterministic skip list, these links are created
recursively by levels. The zero (bottom) level is the linearized list of processes.
In a k-l skip list, a node a has a link to node b at level i if a and b are between k
and l hops away at level i− 1. For example, in a 1-2 skip list, a and b are linked
at level i if they are no more than three and no less than two hops away at level
i − 1. Refer to Figure 4 for an example of a 1-2 skip list.

In the k-l skip list construction problem, a set of processes is mapped to the
set of possible skip lists. Note that in a linearization problem the set of identifiers
uniquely determines the connectivity graph. In case of k-l skip list construction,
depending on which processes participate at each level, the same list of identifiers
may form several possible skip lists. Hence, the skip list construction problem
specifies multiple acceptable CP graphs for a single set of processes.

We define the two problem properties below to aid us in formally stating the
necessary conditions for the existence of a solution. An overlay network problem
is single component if it maps every set of processes to a weakly connected pro-
cess connectivity graph. Intuitively, a single component network overlay problem
prohibits a program from separating the network into multiple components. The
linearization and skip list construction problem are single component.

An overlay network problem PG is disconnecting if there is at least one set
of processes S such that for every channel connectivity graph CP to which PG
maps S, there is a cut set CS such that |CS| < n− 1 which disconnects S. Note
that such a cut set exists for any graph except for a completely connected one.
Essentially, a disconnecting network overlay problem requires that in at least one
case the desired channel connectivity graph is not completely connected. Again,
both the linearization and skip list construction problem are disconnecting.

Problem Solutions. A program PG satisfies or solves a problem PR from
a predicate P if, for every set S, every computation of PG that starts in a
state conforming to P contains a suffix with the following property. The channel
connectivity graph CP is the same in every state of this suffix and this CP is

Corona: A Stabilizing Deterministic Message-Passing Skip List 361

one of the graphs to which PR maps S. That is, starting from the initial state
in P , the solution has to implement at least one of the required CP s.

Program stabilization is graph-identical if every computation of a stabilizing
program contains a suffix where CC contains the same links as CP . Such pro-
gram generates CC links that are already present in CP . If a process of such
program receives a message, this message carries an identifier that the recipient
process already stores and the process ignores the message.

A program is unconditionally stabilizing (or just stabilizing) if it solves the
problem from P ≡ true. That is, every computation of a stabilizing program,
regardless of the initial state, contains a correct suffix. Unconditional stabiliza-
tion may be too strong for a program to possess. A program is conditionally
stabilizing if P
≡ true. That is, such program stabilizes from a limited set P of
states.

We define two special cases of conditionally stabilizing programs. A program
is weakly channel-connectivity stabilizing if it stabilizes only from the initial
states where the channel-connectivity graph is weakly connected. A program is
existing identifier stabilizing if it stabilizes only from states where every identifier
is existing.

3 Necessary Conditions

The necessary conditions stated in this section show that common overlay net-
work topology specifications prohibit the existence of unconditionally stabilizing
solutions. The necessary conditions are that initially the channel connectivity
graphs need to be connected and non-existing identifiers are not present.

The proofs for these conditions rely on the lemma below. Intuitively, the
lemma states that for the processes to form a connected topology they have to
be at least weakly connected initially.

Lemma 1. If a computation of a compare-store-send program starts in a state
where the channel connectivity graph CC is disconnected, the graph is discon-
nected in every state of this computation.

Proof: Let us consider, without loss of generality, a program state where the
connectivity graph contains two components C1 and C2. Assume the opposite:
the computation starting from this state contains states where the two compo-
nents of CC are connected. Let us consider the first such state s1. In this state
there must be two process a ∈ C1 and b ∈ C2 that are neighbors. Assume the
link is from a to b. That is, (a, b) ∈ CC.

Since si is the first connected state, this link does not belong to CC in the
preceding state si−1. Since the program is compare-store-send, the new link can
not appear in the process memory, it must be due to a message sent to a by
another process c in state si−1. A message to a carrying b can only be sent by a
process c that has links to both a and b in si−1.

Since (c, a) ∈ CC, c belongs to the same component C1 as a in si−1, and since
(c, b) ∈ CC, c belongs to the same component C2 as b in si−1. This means that

362 R.M. Nor, M. Nesterenko, and C. Scheideler

C1 and C2 are weakly connected in a state si−1 that precedes si. However, we
assumed that si is the first state where the two components are connected. This
contradiction proves the lemma. �

Theorem 1. If a compare-store-send self-stabilizing program is a solution to a
single-component overlay network problem, this program must be weakly channel-
connectivity stabilizing.

Proof: Assume the opposite. That is, there is a self-stabilizing program PG
that solves a single-component overlay network problem PR and it is not weakly
channel-connectivity stabilizing.

Since PG is a solution to PR, for each set S, every computation of PG
contains a suffix with the prescribed CP . Since PG is not necessarily weakly
channel-connectivity stabilizing, this holds true for computations starting from
a state where CC is disconnected. Program PG is a compare-store-send pro-
gram. According to Lemma 1, if its computation starts from a state where CC
is disconnected, it is disconnected in every state of this computation. Since CP
is a subgraph of CC, it has to be disconnected in every state of this computa-
tion as well. However, PR is single-component. Since PR is single component,
it maps every set of processes S to a weakly connected process CP . This means
that, contrary to our initial assumption, PR is not a solution to PG. Hence the
theorem. �

Theorem 2. If a graph-identical compare-store-send program is a stabilizing so-
lution to a single-component disconnecting overlay network problem, this program
must be existing identifier stabilizing.

Proof: Assume the opposite. Let PG be a compare-store-send program that
is a graph-identical self-stabilizing solution to a single-component disconnecting
overlay network problem PR. Since PR is disconnecting, there is a set of pro-
cesses S such that for every connectivity graph, there is a cut set that disconnects
this graph.

Consider a computation σ of PG with set S. Let CP be the process connec-
tivity graph to which this computation converges. Let CS be the cut set that
separates S into two subsets S1 and S2. Since PG is graph-identical, σ contains
a suffix where, in every state, CC has the same links as CP . Let s1 be the first
state of this suffix.

We examine a set of processes S1 ∪ S2 and construct a state of the program
for this set as follows. The state of every process in S1 ∪ S2 and its incoming
channel is the same as in the initial state of σ. In addition, the incoming channels
of each process a belonging to S1 ∪ S2 in this state contain the messages that
are sent to a by processes in CS. From this state, we execute the actions of PG
for processes S1 ∪ S2 in the same sequence as in σ. The presence of messages
from processes in CP allows us to do that. After this procedure we arrive at
a state s2. We then execute the actions of PG in arbitrary fair manner. Thus
constructed sequence is a computation of PG.

Corona: A Stabilizing Deterministic Message-Passing Skip List 363

Note that each process of S1 ∪ S2 has the same state in s1 and s2. Since CS
was a cut set of CP in s1, there are no links between processes of S1 and S2

in either s1 or s2. This means that CP is disconnected in s2. Graph CC has
the same links as CP in s1. This means that CC is disconnected in s2 as well.
According to Lemma 1, both CC and CP are disconnected in every state of this
computation past s2.

However, PG is supposed to be a solution to PR. Problem PR is single
component. This means our constructed computation has to contain a suffix
where CP is weakly connected in every state. This contradiction proves the
theorem. �

4 Linearization

Problem Statement. In the linearization problem, each set of processes is
mapped to the following process connectivity graph CP . Each process p in CP
contains exactly two outgoing links: p.r and p.l. The links conform to the fol-
lowing predicate LP :

(∀a, b ∈ N : a < b : cnsq(a, b) ⇔ ((a.r = b) ∧ (b.l = a)))

The predicate states that two processes are neighbors if and only if they are
consequent.

l-Corona Description. Each process p maintains two variables r and l as
required by the problem specification. The range of each variable are the process
identifiers respectively to the left and to the right of p. That is, r can only
store identifiers that are greater than p, while l – less than p. The value of
each variable may be undefined. In this case it is equal to respectively −∞ and
+∞. If non-existent identifiers are not present in the initial state of the program
computation, the l variable of the smallest id process and the r variable of the
largest id process are always set to −∞ and +∞ respectively.

Each process p of l-Corona contains two actions: a receive-action and a time-
out action. The receive action is enabled when there is a message in the incoming
channel p.C. The operation of the action depends on the id carried by the mes-
sage. If id is greater than p, it is compared to r. If id is less than r, then p
discovered a closer right neighbor. Process p then forwards the old right neigh-
bor identifier to the new process and reassigns its variable r. However, if the
received id is no less than r, then the current right neighbor of p is no further
away than id. In this case p sends id for process r to process. If r is not ini-
tialized, it is assigned the received id. The identifier that is smaller than p is
handled similarly. The timeout action sends the process identifier to its left and
right neighbors. An example computation of l-Corona is shown in Figure 2.

Correctness Proof. Due to the lack of space the actual proofs in this section
are relegated to the technical report [17].

Observe that due to the operation of the algorithm, in case a < b, link (a, b)
can only be replaced by a link (a, c) such that a < c < b. Likewise, link (b, a)

364 R.M. Nor, M. Nesterenko, and C. Scheideler

process p
variables

r, // right identifier, greater than p
l // left identifier, less than p

actions
message(id) ∈ p.C −→

receive message(id)
if id > p then

if id < r then
if r < +∞ then

send message(r) to id
r := id

else
send message(id) to r

if id < p then
if id > l then

if l > −∞ then
send message(l) to id

l := id
else

send message(id) to l
true −→

if r < +∞ then send message(p) to r
if l > −∞ then send message(p) to l

Fig. 1. Linearization component of Corona (l-Corona)

can only be replaced by (b, c) such that a < c < b. That is, a link in CP can
only be shortened. An example of CP link shortening is shown in Figure 2: the
link (b, d) is shortened to (b, c) in transition from 2(a) to 2(b). Note that every
process in CP contains exactly two outgoing links. One is pointing to the left,
the other — to the right.

Similarly, in case a < b, a link (a, b) ∈ CC \CP can be replaced only by a link
(c, b) such that a < c < b. In the other direction, a link (b, a) ∈ CC \ CP can
be replaced only by a link (c, a) such that a < c < b. Again, the link in CC can
only be shortened. For example, link (c, a) ∈ CC \ CP in Figure 2 is shortened
to (b, a) in transition from 2(c) to 2(d). Note that unlike CP , a process may
contain more than two outgoing links in CC \ CP . And, while some links are
shortened, longer ones may be added by timeout actions.

Lemma 2. If a computation of l-Corona starts from a state where CC contains
a path from process a to b, then in every state of this computation, there is a
path from a to b as well.

Lemma 3. If a computation of l-Corona starts in a state where for some process
a there are two links (a, b) ∈ CP and (a, c) ∈ CC \CP such that a < c < b, then
this computation contains a state where there is a link (a, d) ∈ CP where d ≤ c.

Similarly, if the two links (a, b) ∈ CP and (a, c) ∈ CC \CP are such that b <
c < a, then this computation contains a state where there is a link (a, d) ∈ CP
where d ≥ c.

Intuitively, Lemma 3 states that if there is a link in the incoming channel of a
process that is shorter than what the process already stores, then, the process’
links will eventually be shortened. The proof is by simple examination of the
algorithm.

Corona: A Stabilizing Deterministic Message-Passing Skip List 365

CC \ CP

CP

a′ b′ c′ d′

a b c d

(a) initial state

a′ b′ c′ d′

a b c d

(b) b receives message
with c, updates b.r, and
forwards d to c

a′ b′ c′ d′

a b c d

(c) d receives message
with b, updates d.l

CC \ CP

CP

a′ b′ c′ d′

a b c d

(d) c receives message with a, for-
wards it to b; c receives d, updates
c.r

a′ b′ c′ d′

a b c d

(e) b receives message
with a, updates b.l; b
times out and sends its
id to a; c times out and
sends it id to d

a′ b′ c′ d′

a b c d

(f) a receives message
with b, updates a.r,
forwards c to b; d re-
ceives message with c,
updates d.l, forwards b
to c; when these mes-
sages are received, the
network is linearized

Fig. 2. Example computation of l-Corona. To simplify the picture each process is rep-
resented by two nodes. The primed nodes are the process’ incoming channel. Solid lines
denote identifiers stored in l and r of each process. Dashed lines are identifiers in the
incoming channel.

Lemma 4. If a computation of l-Corona starts in a state where for some process
a there is an edge (a, b) ∈ CP and (a, c) ∈ CC \ CP such that a < b < c, then
the computation contains a state where there is a link (d, c) ∈ CP , where d ≤ b.

Similarly, if the two links (a, b) ∈ CP and (a, c) ∈ CC \CP are such that c <
b < a, then this computation contains a state where there is a link (d, c) ∈ CP ,
where d ≥ b.

Intuitively, the above lemma states that if there is a longer link in the channel,
it will be shortened by forwarding the id to its closer successor.

Lemma 5. If a computation of l-Corona starts in a state where for some pro-
cesses a, b, and c such that a < c < b (or a > c > b), there are edges (a, b) ∈ CP
and (c, a) ∈ CC, then the computation contains a state where either some edge
in CP is shorter than in the initial state or (a, c) ∈ CP .

Lemma 6. If a computation starts in a state where there is a link (a, b) ∈ CP ,
then the computation contains a state where some link in CP is shorter than in
the initial state or there is a link (b, a) ∈ CP .

Lemma 7. If the computation is such that if (a, b) ∈ CP then (b, a) ∈ CP in
every state of the computation, then this computation contains a suffix where
((a, b) ∈ CP) ⇒ ((a, b) ∈ CC)

366 R.M. Nor, M. Nesterenko, and C. Scheideler

Lemma 7 states that if CP does not change in a computation then eventually,
the links in CP contain all the links of CC.

Lemma 8. Let CP is strongly connected in some state of the system. Let also
for every pair of processes a and b in this state, if (a, b) ∈ CP then also (b, a) ∈
CP . In this case, this state satisfies LP .

Theorem 3. Program l-Corona is a weakly channel-connectivity existing iden-
tifier stabilizing solution to the linearization problem.

5 Skip List Stabilization

Problem Statement. The problem maps each set of processes to a set of valid
1-2 skip lists. In each skip list the bottom level is linearized and for each level
i > 0, the following predicate SL holds: any two processes a and b are neighbors
at level i if the distance between a and b at level i − 1 is no less than 2 and no
more than 3 hops.

s-Corona Description. Each level of s-Corona has two sub-levels: status deci-
sion sublevel — sd-Corona, and neighbor linking sublevel sn-Corona.

sd-Corona of level i uses neighborhood information of level i− 1 to determine
the status of a process at level i. Depending on whether the process participates
at level i, the process status is either up or down. If a process is down at level i
it is down at all levels above i. On the basis of this information sn-Corona links p
with its left and right neighbor at level i. sn-Corona of level i does not influence
the operation of sd-Corona at level i. If process p is up, sn-Corona inspects
i − 1 neighbors three hops away from p to determine the nearest up neighbor
and connects it to p. To ensure overall CC connectivity preservation sn-Corona
sends itself the link to the previous neighbor at level 0 for l-Corona to handle.
The stabilizing implementation of sn-Corona is relatively straightforward. We,
therefore, do not present it and focus on sd-Corona instead.

sd-Corona Description. sd-Corona operates similarly at each level. At every
level it maintains a set of variables that belong to only this level. At level i,
process p of sd-Corona makes use of the identities p.(i−1).l and p.(i−1).r of its
respective left and right neighbors at level i − 1. sd-Corona at level i does not
change these identities. Therefore, they are assumed constant for the operation
of sd-Corona at this level.

At level i, process p of sd-Corona maintains two status variables: p.i.st and
p.i.str. The values for both are up and down. Variable p.i.st stores the status
of p itself. Variable p.i.str keeps the status of the right neighbor of p. The status
of the rightmost and leftmost process at level i are fixed as up and down
respectively and are considered constant.

The idea of sd-Corona is to ensure that no two consequent neighbors are up
and no three of them are down. To break symmetry in deciding who of the
neighbors should change status, the decision of the right neighbor is favored.

Corona: A Stabilizing Deterministic Message-Passing Skip List 367

process p
constants

p.(i − 1).r, p.(i − 1).l // identifiers of right and left neighbors at level i − 1
variables

p.i.st, // own status at level i, either up or down
// constant and set to up for process with highest id
// constant and set to down for process with lowest id

p.i.str // status of right neighbor
actions

message(status) ∈ p.C from p.(i − 1).r −→
receive message(status),
p.i.str := status,
if (p.i.st = up) ∧ (p.i.str = up) then

p.i.st := down

message(status) ∈ p.C from p.(i − 1).l −→
receive message(status),
if (status = down) ∧ (p.i.st = down) ∧ (p.i.str = down) then

p.i.st := up

true −→
if p.(i − 1).r < +∞ then send message(p.i.st) to p.(i − 1).r,
if p.(i − 1).l > −∞ then send message(p.i.st) to p.(i − 1).l

Fig. 3. Status decision component of skip list part of Corona (sd-Corona)

sd-Corona has three guards. The timeout guard sends the status of p to its
neighbors. The two receive guards process messages from the left and right neigh-
bors of p. If p receives a status value from its right neighbor, it updates p.i.str
and its own status. If both p and its right neighbor are up then p changes its
status to down. If p receives a message from its left neighbor and discovers that
its neighbors and itself are down, it changes its own status to up. The operation
of s-Corona is illustrated in Figure 4.

a b c d e f g h i

(a) initial state

a b c d e f g h i

(b) at level 0, processes d and

h receive messages that their

right neighbors are up, they

change their statuses to down

a b c d e f g h i

(c) at level 0, e receives mes-

sage from f that its status is

up and changes its own status

to down; f and i are linked at

level 1

a b c d e f g h i

(d) at level 0, d receives mes-

sages that both c and e are

down and changes its status to

up, links with neighbors at level

1

a b c d e f g h i

(e) at level 1, i receives message

from f that its status is down,

updates its own status to up

a b c d e f g h i

(f) at level 2, i links with b

Fig. 4. Example computation of s-Corona. For simplicity, neighbor links are always
assumed bidirectional.

368 R.M. Nor, M. Nesterenko, and C. Scheideler

Correctness Proof. Due to the lack of space the actual proofs in this section
are relegated to the technical report [17].

Lemma 9. If process a at level i of sd-Corona changes its status st only a finite
number of times in the computation, then this computation contains a suffix
where every message in the outgoing channel of a carries the same value as
a.i.st and b.i.str = a.i.st for the left neighbor b of a.

Proposition 1. If, in some computation, none of the processes at some level i
change their status, then this computation also contains a suffix where for each
process a, a.i.r and a.i.l point to the nearest up process at this level and do not
change.

Lemma 10. If in some computation none of the processes at some level i − 1
change their right and left neighbors, then this computation also contains a suffix
where none of the processes at level i change their status.

Lemma 11. In each computation of s-Corona, every process p changes its status
and its left and right neighbors only finitely many times.

Theorem 4. s-Corona is a weakly channel-connectivity existing identifiers sta-
bilizing solution to the 1-2 skip list construction problem.

6 Skip Graph

In closing we would like to describe the extension of Corona to skip-graph. The
skip list may not be robust or convenient for concurrent searches. Indeed, a
failure of a single top-level node may disconnect the system. A k-l skip graph [3],
the processes at level i− 1 that do not participate at level i, form an alternative
list at level i. The process continues recursively both at the main as well as at
the alternative list. That is, each list splits into several at each level. This way,
most nodes have links at all levels of the skip graph. This property makes skip
graphs more robust and better suited for concurrent searchers than skip lists.

Corona can be extended to construct a skip-graph. For that, Corona has to
run two instances of sn-corona at each level i. The main instance operates as
before, while the alternative instance constructs an alternative list out of the
nodes that do not participate in the main list. Note that in the 1-2 skip list,
one alternative list can always be constructed. An instance of sd-Corona at level
i+1 runs each of the lists. The process of splitting into main and alternative list
continues iteratively on each thus formed list. No changes are required in either
l-Corona or sd-Corona.

References

1. Alima, L.O., Haridi, S., Ghodsi, A., El-Ansary, S., Brand, P.: Position paper: Self-
.properties in distributed k-ary structured overlay networks. In: Proceedings of
SELF-STAR: International Workshop on Self-* Properties in Complex Information
Systems. LNCS, vol. 3460. Springer, Heidelberg (2004)

Corona: A Stabilizing Deterministic Message-Passing Skip List 369

2. Andersen, D., Balakrishnan, H., Kaashoek, F., Morris, R.: Resilient overlay net-
works. In: SOSP 2001: Proceedings of the Eighteenth ACM Symposium on Oper-
ating Systems Principles, pp. 131–145. ACM, New York (2001)

3. Aspnes, J., Shah, G.: Skip graphs. ACM Transactions on Algorithms 3(4), 37:1–
37:25 (2007)

4. Awerbuch, B., Scheideler, C.: The hyperring: a low-congestion deterministic data
structure for distributed environments. In: SODA 2004: Proceedings of the Fif-
teenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 318–327. So-
ciety for Industrial and Applied Mathematics, Philadelphia (2004)

5. Berns, A., Ghosh, S., Pemmaraju, S.V.: Brief announcement: a framework for build-
ing self-stabilizing overlay networks. In: Proc. of the 29th ACM Symp. on Principles
of Distributed Computing (PODC), pp. 398–399 (2010)

6. Bhargava, A., Kothapalli, K., Riley, C., Scheideler, C., Thober, M.: Pagoda: a dy-
namic overlay network for routing, data management, and multicasting. In: SPAA
2004: Proceedings of the Sixteenth Annual ACM Symposium on Parallelism in
Algorithms and Architectures, pp. 170–179. ACM, New York (2004)

7. Bianchi, S., Datta, A., Felber, P., Gradinariu, M.: Stabilizing peer-to-peer spatial
filters. In: ICDCS 2007: Proceedings of the 27th International Conference on Dis-
tributed Computing Systems, p. 27. IEEE Computer Society Press, Washington,
DC, USA (2007)

8. Caron, E., Desprez, F., Petit, F., Tedeschi, C.: Snap-stabilizing prefix tree for peer-
to-peer systems. Parallel Processing Letters 20(1), 15–30 (2010)

9. Clouser, T., Nesterenko, M., Scheideler, C.: Tiara: A Self-stabilizing Deterministic
Skip List. In: Kulkarni, S.S., Schiper, A. (eds.) SSS 2008. LNCS, vol. 5340, pp.
124–140. Springer, Heidelberg (2008)

10. Cramer, C., Fuhrmann, T.: Self-stabilizing ring networks on connected graphs.
Technical Report 2005-5, System Architecture Group, University of Karlsruhe
(2005)

11. Dijkstra, E.W.: Self-stabilization in spite of distributed control. Communications
of the ACM 17(11), 643–644 (1974)

12. Gall, D., Jacob, R., Richa, A., Scheideler, C., Schmid, S., Täubig, H.: Time com-
plexity of distributed topological self-stabilization: The case of graph linearization,
pp. 294–305 (2010)

13. Harvey, N.J.A., Jones, M.B., Saroiu, S., Theimer, M., Wolman, A.: Skipnet: a
scalable overlay network with practical locality properties. In: USITS 2003: Pro-
ceedings of the 4th Conference on USENIX Symposium on Internet Technologies
and Systems, p. 9. USENIX Association, Berkeley (2003)

14. Hérault, T., Lemarinier, P., Peres, O., Pilard, L., Beauquier, J.: Brief Announce-
ment: Self-stabilizing Spanning Tree Algorithm for Large Scale Systems. In: Datta,
A.K., Gradinariu, M. (eds.) SSS 2006. LNCS, vol. 4280, pp. 574–575. Springer, Hei-
delberg (2006)

15. Jacob, R., Richa, A., Scheideler, C., Schmid, S., Täubig, H.: A distributed polylog-
arithmic time algorithm for self-stabilizing skip graphs. In: Proc. of the 28th ACM
Symp. on Principles of Distributed Computing (PODC), pp. 131–140 (2009)

16. Malkhi, D., Naor, M., Ratajczak, D.: Viceroy: a scalable and dynamic emulation of
the butterfly. In: PODC 2002: Proceedings of the Twenty-First Annual Symposium
on Principles of Distributed Computing, pp. 183–192. ACM, New York (2002)

17. Nor, R., Nesterenko, M., Scheideler, C.: Corona: A stabilizing deterministic
message-passing skip list. Technical Report TR-KSU-2011-01, CS Dept., Kent
State University (May 2011)

370 R.M. Nor, M. Nesterenko, and C. Scheideler

18. Onus, M., Richa, A., Scheideler, C.: Linearization: Locally self-stabilizing sorting
in graphs. In: Proc. 9th Workshop on Algorithm Engineering and Experiments
(ALENEX). SIAM, Philadelphia (2007)

19. Onus, M., Richa, A., Scheideler, C.: Linearization: Locally self-stabilizing sorting in
graphs. In: ALENEX 2007: Proceedings of the Workshop on Algorithm Engineering
and Experiments. SIAM, Philadelphia (2007)

20. Pugh, W.: Skip lists: A probabilistic alternative to balanced trees. Communications
of the ACM 33(6), 668–676 (1990)

21. Scheideler, C., Jacob, R., Ritscher, S., Schmid, S.: A self-stabilizing and local de-
launay graph construction. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009.
LNCS, vol. 5878, pp. 771–780. Springer, Heidelberg (2009)

22. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Schenker, S.: A scalable content-
addressable network. In: SIGCOMM 2001: Proceedings of the 2001 Conference on
Applications, Technologies, Architectures, and Protocols for Computer Communi-
cations, pp. 161–172. ACM, New York (2001)

23. Rowstron, A.I.T., Druschel, P.: Pastry: Scalable, Decentralized Object Location,
and Routing for Large-Scale Peer-to-Peer Systems. In: Liu, H. (ed.) Middleware
2001. LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001)

24. Shaker, A., Reeves, D.S.: Self-stabilizing structured ring topology P2P systems. In:
Proc. 5th IEEE International Conference on Peer-to-Peer Computing, pp. 39–46
(2005)

25. Stoica, I., Morris, R., Liben-Nowell, D., Karger, D.R., Kaashoek, M.F., Dabek,
F., Balakrishnan, H.: Chord: a scalable peer-to-peer lookup protocol for Internet
applications. IEEE / ACM Transactions on Networking 11(1), 17–32 (2003)

	Corona: A Stabilizing Deterministic Message-Passing Skip List
	Introduction
	Model, Notation and Definitions
	Necessary Conditions
	Linearization
	Skip List Stabilization
	Skip Graph

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

