
Ideal Stabilization

Mikhail Nesterenko 
Kent State University

Sébastien Tixeuil
UPMC Sorbonne Universités & IUF

AINA 2011, Singapore, 24 March 2011



Motivation





Distributed System



Legitimate State



Transient Faults



Recovery



Recovery



Legitimate State



Self-stabilization
Nature

Extent

Time

Faults

Stabilization

Legitimate



Self-stabilization
Arbitrary

Legitimate



Ideal Stabilization
Legitimate



Questions

• Existence ?

• Construction ?

• Composition ?

• Implementation vs. Specification ?

• Proof techniques ?



Model



Distributed System



Model
Input Output



Model
Input Output



Model
Input Output

1 0

1 0

1 2

F T

3 4



Model

Input Output



Merge Symmetry
A

B



Merge Symmetry
A

B



Input Completeness

A

B
C

D

E

F

G



Input Completeness

A

B
C

D

E

F

G



Ideal Stabilization to 
Non-ideal Specifications



State Displacement

Implementation Specification



A Necessary Condition

• Ideal stabilization may be possible only 
if the specification contains an input-
complete subset of sequences such that 
every disallowed specification state 
contains at least one process whose 
projection does not occur in the subset.



A Necessary Condition

Implementation Specification



Conflict Managers
CS

CS

CS CS

CS

CS CS

CS CS CS

CS CS



Conflict Managers
F T

T T T

2 1 3

CS CS

F T F

2 1 3

CS

F F F

2 1 3
Mappings

Program



Leader Election
L L L L

L

L

L

L



Leader Election

L

L



Leader Election

L L



Stabilization to 
Ideal Specifications



Ideal Specifications

Implementation Specification



Alternating Bit Protocol

x.p1 = x.p2 −→ x.p1 := ¬x.p1

(x.pj �= x.pj−1) ∧ (x.pj = x.pj+1) −→ x.pj := ¬x.pj

x.pN−1 �= x.pN −→ x.pN := ¬x.pN

Fig. 1. LA program actions. Parameter j ranges from 2 to N − 1.

request : st.p1 = i ∧ st.p2 = i −→ st.p1 := rq
clear : st.p1 = rq ∧ st.p2 = rp −→ st.p1 := i
forward : st.pj−1 = rq ∧ st.pj = i ∧ st.pj+1 = i −→ st.pj := rq
back : st.pj−1 = rq ∧ st.pj = rq ∧ st.pj+1 = rp −→ st.pj := rp
stop : st.pj−1 = i ∧ st.pj �= i −→ st.pj := i
reflect : st.pN−1 = rq ∧ st.pN = i −→ st.pN := rp
reset : st.pN−1 = i ∧ st.pN = rp −→ st.pN := i

Fig. 2. PIF program actions. Actions request and clear belong to the root process; actions forward, back, and stop – to intermediate processes, i.e parameter
j ranges from 2 to N − 1; actions reflect and reset – to the leaf.

either l or m are incremented. If l = N − 1, m = N ,
reflect is enabled that transitions the program into RP (N−1).
Similarly, if the system satisfies RP (k) for k = 2, N − 1,
action back is enabled. The execution of this action keeps the
system in RP (k) but decrements k. If k = 1, clear is enabled.
Its execution moves the program back in RQ(l,m). That is,
the disjunction of the two predicates is closed and a PIF
computation that starts in a state conforming to one of them,
satisfies SPIF . Hence, RQ(l,m)∨RP (k) is an invariant of
SPIF .

Observe that the disjunction RQ�(l,m) ∨ RP �(k) is true.
That is, it contains the program and specification state space.
We show that PIF stabilizes to SPIF from this predicate as
required by IPIF . An argument similar to the above demon-
strates that an action is enabled if PIF satisfies RP �(k).
This action either decrements k or moves the system to
RQ�(l,m). Also, similarly, if PIF satisfies RQ�(l,m), then
an action is enabled that increments either l or m. Moreover,
if l = N − 1, m − N , the execution of reflect transitions
the system to RP (k). That is, PIF moves from RP �(k) to
RQ�(l,m) to RP (k). This means that the program stabilizes
to SPIF and ideally stabilizes to IPIF . �

Alternating bit protocol. Alternating bit protocol is an el-
ementary data-link network protocol. There is a number of
classic stabilizing implementations of the protocol. Refer to
Howell et al [20] for an extensive list of citations. There is
also a snap-stabilizing version [8].

The problem is stated as follows. There are two processes:
sender — p, and receiver — q. The processes maintain
boolean sequence numbers ns.p and nr.q. The processes ex-
change messages over communication channels. The channels
are reliable and their capacity is one. That is, if the channel
is empty, the message is reliably sent. If the channel already
contains a message, an attempt to send another message leads
to the loss of the new message. The processes exchange two
types of messages: data and ack. Both carry the sequence
numbers.

The specification SABP prescribes infinite sequences of
states where there is exactly one message in the two channels.
The message carries the sequence number of the sender. The
state transitions are such that p changes the value of ns. This
change is followed by the change of the value in nr that
matches the value of ns.

The ideal specification of IABP is that for every state in
the state space there is a sequence that starts in it and every
sequence contains a sequence of SABP as a suffix. Moreover,
the non-SABP prefix of a sequence of IABP contains no
more than five steps.

The program ABP uses only external variables as described
by SABP and IABP . The mapping from program to specifi-
cation states is identical. ABP actions are shown in Figure 3.
The sender has two actions: next and timeout. Action next
is enabled if there is a message from q in the channel. The
timeout action is enabled if there are no messages in either
channel. Upon receiving a message from q with matching
sequence number, p increments the sequence number and
sends the next message. If p times out, it resubmits the same
message. The receiver has a single action. When q, receives a
message, it sends an acknowledgment back to p. If the message
bears a sequence number different from rn, q increments rn
signifying the successful receipt of the message.

next: receive ack(nm) −→
if nm = ns then

ns := ¬ns
send data(ns)

timeout: timeout() −→ send data(ns)
reply: receive data(nm) −→

if nm �= nr then
nr := nm

send ack(nm)

Fig. 3. ABP actions.

Theorem 6: ABP classically stabilizes to SABP and ide-
ally stabilizes to IABP .



Alternating Bit Protocol
ack(ns) data(ns)

data(ns)

∅

ack(¬ns)

∅

ack(¬ns)

data(¬ns)

ack(ns)data(¬ns)

ns=nr ns≠nrnext

reply
reply timeout

next

reply

timeout

next

reply

next

x.p1 = x.p2 −→ x.p1 := ¬x.p1

(x.pj �= x.pj−1) ∧ (x.pj = x.pj+1) −→ x.pj := ¬x.pj

x.pN−1 �= x.pN −→ x.pN := ¬x.pN

Fig. 1. LA program actions. Parameter j ranges from 2 to N − 1.

request : st.p1 = i ∧ st.p2 = i −→ st.p1 := rq
clear : st.p1 = rq ∧ st.p2 = rp −→ st.p1 := i
forward : st.pj−1 = rq ∧ st.pj = i ∧ st.pj+1 = i −→ st.pj := rq
back : st.pj−1 = rq ∧ st.pj = rq ∧ st.pj+1 = rp −→ st.pj := rp
stop : st.pj−1 = i ∧ st.pj �= i −→ st.pj := i
reflect : st.pN−1 = rq ∧ st.pN = i −→ st.pN := rp
reset : st.pN−1 = i ∧ st.pN = rp −→ st.pN := i

Fig. 2. PIF program actions. Actions request and clear belong to the root process; actions forward, back, and stop – to intermediate processes, i.e parameter
j ranges from 2 to N − 1; actions reflect and reset – to the leaf.

either l or m are incremented. If l = N − 1, m = N ,
reflect is enabled that transitions the program into RP (N−1).
Similarly, if the system satisfies RP (k) for k = 2, N − 1,
action back is enabled. The execution of this action keeps the
system in RP (k) but decrements k. If k = 1, clear is enabled.
Its execution moves the program back in RQ(l,m). That is,
the disjunction of the two predicates is closed and a PIF
computation that starts in a state conforming to one of them,
satisfies SPIF . Hence, RQ(l,m)∨RP (k) is an invariant of
SPIF .

Observe that the disjunction RQ�(l,m) ∨ RP �(k) is true.
That is, it contains the program and specification state space.
We show that PIF stabilizes to SPIF from this predicate as
required by IPIF . An argument similar to the above demon-
strates that an action is enabled if PIF satisfies RP �(k).
This action either decrements k or moves the system to
RQ�(l,m). Also, similarly, if PIF satisfies RQ�(l,m), then
an action is enabled that increments either l or m. Moreover,
if l = N − 1, m − N , the execution of reflect transitions
the system to RP (k). That is, PIF moves from RP �(k) to
RQ�(l,m) to RP (k). This means that the program stabilizes
to SPIF and ideally stabilizes to IPIF . �

Alternating bit protocol. Alternating bit protocol is an el-
ementary data-link network protocol. There is a number of
classic stabilizing implementations of the protocol. Refer to
Howell et al [20] for an extensive list of citations. There is
also a snap-stabilizing version [8].

The problem is stated as follows. There are two processes:
sender — p, and receiver — q. The processes maintain
boolean sequence numbers ns.p and nr.q. The processes ex-
change messages over communication channels. The channels
are reliable and their capacity is one. That is, if the channel
is empty, the message is reliably sent. If the channel already
contains a message, an attempt to send another message leads
to the loss of the new message. The processes exchange two
types of messages: data and ack. Both carry the sequence
numbers.

The specification SABP prescribes infinite sequences of
states where there is exactly one message in the two channels.
The message carries the sequence number of the sender. The
state transitions are such that p changes the value of ns. This
change is followed by the change of the value in nr that
matches the value of ns.

The ideal specification of IABP is that for every state in
the state space there is a sequence that starts in it and every
sequence contains a sequence of SABP as a suffix. Moreover,
the non-SABP prefix of a sequence of IABP contains no
more than five steps.

The program ABP uses only external variables as described
by SABP and IABP . The mapping from program to specifi-
cation states is identical. ABP actions are shown in Figure 3.
The sender has two actions: next and timeout. Action next
is enabled if there is a message from q in the channel. The
timeout action is enabled if there are no messages in either
channel. Upon receiving a message from q with matching
sequence number, p increments the sequence number and
sends the next message. If p times out, it resubmits the same
message. The receiver has a single action. When q, receives a
message, it sends an acknowledgment back to p. If the message
bears a sequence number different from rn, q increments rn
signifying the successful receipt of the message.

next: receive ack(nm) −→
if nm = ns then

ns := ¬ns
send data(ns)

timeout: timeout() −→ send data(ns)
reply: receive data(nm) −→

if nm �= nr then
nr := nm

send ack(nm)

Fig. 3. ABP actions.

Theorem 6: ABP classically stabilizes to SABP and ide-
ally stabilizes to IABP .



Alternating Bit Protocol

x.p1 = x.p2 −→ x.p1 := ¬x.p1

(x.pj �= x.pj−1) ∧ (x.pj = x.pj+1) −→ x.pj := ¬x.pj

x.pN−1 �= x.pN −→ x.pN := ¬x.pN

Fig. 1. LA program actions. Parameter j ranges from 2 to N − 1.

request : st.p1 = i ∧ st.p2 = i −→ st.p1 := rq
clear : st.p1 = rq ∧ st.p2 = rp −→ st.p1 := i
forward : st.pj−1 = rq ∧ st.pj = i ∧ st.pj+1 = i −→ st.pj := rq
back : st.pj−1 = rq ∧ st.pj = rq ∧ st.pj+1 = rp −→ st.pj := rp
stop : st.pj−1 = i ∧ st.pj �= i −→ st.pj := i
reflect : st.pN−1 = rq ∧ st.pN = i −→ st.pN := rp
reset : st.pN−1 = i ∧ st.pN = rp −→ st.pN := i

Fig. 2. PIF program actions. Actions request and clear belong to the root process; actions forward, back, and stop – to intermediate processes, i.e parameter
j ranges from 2 to N − 1; actions reflect and reset – to the leaf.

either l or m are incremented. If l = N − 1, m = N ,
reflect is enabled that transitions the program into RP (N−1).
Similarly, if the system satisfies RP (k) for k = 2, N − 1,
action back is enabled. The execution of this action keeps the
system in RP (k) but decrements k. If k = 1, clear is enabled.
Its execution moves the program back in RQ(l,m). That is,
the disjunction of the two predicates is closed and a PIF
computation that starts in a state conforming to one of them,
satisfies SPIF . Hence, RQ(l,m)∨RP (k) is an invariant of
SPIF .

Observe that the disjunction RQ�(l,m) ∨ RP �(k) is true.
That is, it contains the program and specification state space.
We show that PIF stabilizes to SPIF from this predicate as
required by IPIF . An argument similar to the above demon-
strates that an action is enabled if PIF satisfies RP �(k).
This action either decrements k or moves the system to
RQ�(l,m). Also, similarly, if PIF satisfies RQ�(l,m), then
an action is enabled that increments either l or m. Moreover,
if l = N − 1, m − N , the execution of reflect transitions
the system to RP (k). That is, PIF moves from RP �(k) to
RQ�(l,m) to RP (k). This means that the program stabilizes
to SPIF and ideally stabilizes to IPIF . �

Alternating bit protocol. Alternating bit protocol is an el-
ementary data-link network protocol. There is a number of
classic stabilizing implementations of the protocol. Refer to
Howell et al [20] for an extensive list of citations. There is
also a snap-stabilizing version [8].

The problem is stated as follows. There are two processes:
sender — p, and receiver — q. The processes maintain
boolean sequence numbers ns.p and nr.q. The processes ex-
change messages over communication channels. The channels
are reliable and their capacity is one. That is, if the channel
is empty, the message is reliably sent. If the channel already
contains a message, an attempt to send another message leads
to the loss of the new message. The processes exchange two
types of messages: data and ack. Both carry the sequence
numbers.

The specification SABP prescribes infinite sequences of
states where there is exactly one message in the two channels.
The message carries the sequence number of the sender. The
state transitions are such that p changes the value of ns. This
change is followed by the change of the value in nr that
matches the value of ns.

The ideal specification of IABP is that for every state in
the state space there is a sequence that starts in it and every
sequence contains a sequence of SABP as a suffix. Moreover,
the non-SABP prefix of a sequence of IABP contains no
more than five steps.

The program ABP uses only external variables as described
by SABP and IABP . The mapping from program to specifi-
cation states is identical. ABP actions are shown in Figure 3.
The sender has two actions: next and timeout. Action next
is enabled if there is a message from q in the channel. The
timeout action is enabled if there are no messages in either
channel. Upon receiving a message from q with matching
sequence number, p increments the sequence number and
sends the next message. If p times out, it resubmits the same
message. The receiver has a single action. When q, receives a
message, it sends an acknowledgment back to p. If the message
bears a sequence number different from rn, q increments rn
signifying the successful receipt of the message.

next: receive ack(nm) −→
if nm = ns then

ns := ¬ns
send data(ns)

timeout: timeout() −→ send data(ns)
reply: receive data(nm) −→

if nm �= nr then
nr := nm

send ack(nm)

Fig. 3. ABP actions.

Theorem 6: ABP classically stabilizes to SABP and ide-
ally stabilizes to IABP .

ack(ns) data(ns)

data(ns)

∅

ack(¬ns)

∅

ack(¬ns)

data(¬ns)

ack(ns)data(¬ns)

ns=nr ns≠nrnext

reply
reply timeout

next

reply

timeout

next

reply

next



Conclusion
Weaker Guarantees

Complexity 
Guarantees

Stronger Guarantees

Self-
stabilization

Pseudo 
stabilization

Weak 
stabilization

Fault-
tolerant 

stabilization

Strong 
stabilization

k- 
stabilization

time- 
adaptive

k-time- 
adaptive

Predicate-
preserving 

stabilization

Probabilistic 
stabilization

Snap-
stabilization

Probable
stabilization

Strict 
stabilization

Fault-
containment

Ideal 
Stabilization?



Conclusion
Weaker Guarantees

Complexity 
Guarantees

Stronger Guarantees

Self-
stabilization

Pseudo 
stabilization

Weak 
stabilization

Fault-
tolerant 

stabilization

Strong 
stabilization

k- 
stabilization

time- 
adaptive

k-time- 
adaptive

Predicate-
preserving 

stabilization

Probabilistic 
stabilization

Snap-
stabilization

Probable
stabilization

Strict 
stabilization

Fault-
containment

Ideal 
Stabilization



Ideal Stabilization

• New way of reasoning about distributed 
fault-tolerance

• Abitrary degree of precision when 
specifying the system behavior after 
transient faults occur

• Composition is easy

• Assertional vs. operational proofs



Thank You


