
Stabilizing Finite Churn in
Peer-to-Peer Networks?

Dianne Foreback1, Andreas Koutsopoulos2, Mikhail Nesterenko1, Christian
Scheideler2, and Thim Strothmann2

1 Kent State University
2 University of Paderborn

July 18, 2013

Techical report: TR-KSU-CS-2013-02
Department of Computer Science

Kent State University

Abstract. We define and study the Finite Leave Problem which abstracts
churn in peer-to-peer networks. In this problem, a process that leaves the sys-
tem should not disconnect it. We address this problem in the asynchronous
message passing system model. In this model, problem does not have a self-
stabilizing solution. To enable the solution we use oracles. We define NIDEC
oracle and prove it to be necessary to solve the finite leave problem. We then
study a particular case of the Finite Leave Problem: Finite Leave with Lin-
earization (topological sort). In this problem, the remaining processes have to
sort themselves in the increasing order of their identifiers. We present a self-
stabilizing algorithm that solves this problem using NIDEC. With the help
of other oracles we extend the solution to handle system disconnections and
identifiers that are not present in the system.

1 Introduction

Motivation. A peer-to-peer overlay network is formed by nodes, called peers, storing
identifiers of other peers in their memory. The routing is carried out by the underly-
ing network, such as the Internet. So long as such an overlay network is connected,
it can provide effective means of decentralized data storage, exchange and commu-
nication. Due to their popularity, the research literature on peer-to-peer networks is
extensive [1–3, 5, 12, 17, 22–24].

The number of participants in a peer-to-peer network on the Internet may grow
to hundreds of thousands and even millions. Moreover, the peer participation in the
network may be brief and transitory [25]. Hence handling continuous node departures
and arrivals, called churn, is fundamental for peer-to-peer system design. In such large

? The paper is eligible for best student paper award.



scale systems, churn is compounded by faults and misconfigurations of various and
often unexpected kinds.

Despite the importance of the subject, few studies systematically address robust
churn handling. This is in part due to the complexity of the problem. If a peer leaves,
the messages to this peer are lost and the references to it become invalid. If processing
power of the peers and speed of message propagation between them varies, it is difficult
to design a peer-to-peer algorithm which allows a peer to leave the system without
disconnecting it.

In this paper, we study churn in the context of self-stabilization and consider
churn-tolerant linearization [20] which is a fundamental task for peer-to-peer system
construction. We address it in the asynchronous message passing system model.

Tools. Self-stabilization is a holistic approach to fault tolerance: a self-stabilizing
algorithm is designed to recover from an arbitrary initial state. Thus, regardless of
the nature and extent of the fault or misconfiguration, the system is guaranteed to
return to correct operation once the influence of the fault stops. A number of self-
stabilizing peer-to-peer algorithms are proposed [6, 7, 9, 10, 13, 14, 18, 21].

The asynchronous message-passing system is a classic model for exploring the
fundamental properties of algorithms. In such a model, there is no bound on message
propagation delay or on relative process execution speed. This model is well suited to
represent massive peer-to-peer systems on the Internet.

It turns out, it is impossible to design a self-stabilizing program in the asyn-
chronous message-passing system model that solves the Finite Leave Problem. The
reason is that in an arbitrary initial state, the leaving process may not be aware of
other processes either holding its identifier or sending messages to it. The departure
of such a process may disconnect the system. Since the peer-to-peer system is held
together by the peers’ knowledge of each other, once it is disconnected, it is impossible
for the peers to find each other again without outside help.

We circumvent this impossibility through the use of oracles. An oracle is a con-
struct that is itself impossible to implement in an asynchronous system, yet it enables
the solution for a particular problem [8]. In effect, an oracle encapsulates the impos-
sible and shows the bounds of the achievable for the algorithm design.

Related work. Kuhn et al [15] address churn with the idea of stable supernodes
to be maintained by churning peers. In effect, the redundant peers maintain the
stability of the supernodes. Their solution may require a significant number of peers to
maintain system stability. Benter et al [4] consider self-stabilizing solution to churn in
synchronous systems. There are several linearization studies [20, 18, 11]. In particular,
Mohd Nor et al [19] consider peer-to-peer linearization with oracles.

Our contribution. We state the Finite Leave Problem where each process in the
system either has to leave the system or has to stay and form a specified topology.
In particular, the Finite Leave Linearization Problem requires the processes to sort
themselves. We define oracle NIDEC which returns true for a particular process u



if its identifier is not present anywhere in the system and the incoming channel of u
is empty. We prove that this oracle is necessary to solve the Finite Leave Problem.
We then present an algorithm SL which uses NIDEC to solve the Finite Leave
Linearization Problem. We observe that NIDEC is persistent in the sense that once
it evaluates to true for a particular process, it remains in this state regardless of the
actions of the other processes. This enables the programs using NIDEC to remain
correct with low atomicity program actions. We describe how algorithm SL, with the
help from other oracles, can be further extended to handle system disconnections and
identifiers that are not present in the system. We conclude with oracle implementation
details and future research directions.

2 Model and Problem Statement

Peer-to-peer networks. A peer-to-peer overlay network consists of a set of N pro-
cesses with unique identifiers. We refer to processes and their identifiers interchange-
ably. Processes may be ordered on the basis of these identifiers. Processes a and b
are consequent, denoted cnsq(a, b), if (∀c : c ∈ N : (c < a) ∨ (b < c)). That is,
two consequent processes do not have an identifier between them. For the sake of
completeness, we assume that −∞ is consequent with the smallest id process in the
system. Similarly, the largest id process is consequent with +∞.

Processes communicate by passing messages through channels. A link is a pair
of identifiers (a, b) defined as follows: either a message carrying identifier b is in the
incoming channel of process a, or process a stores identifier b in its local memory. We
say that a points to b or has a link to b. Note that the link is directed. When we
define a link we always state the pointing node first. We state node that is pointed
to second. The process connectivity graph CP is the graph formed by the links of the
identifiers stored by the processes. A channel connectivity multigraph CC includes
both locally stored and message-based links. Self-loop links are not considered. By
this definition, CP is a subgraph of CC.

A peer-to-peer network is linearized if and only if each process points to its con-
sequent process, i.e. CP forms a bi-directed sorted list. When discussing a linearized
network, processes with identifiers greater than p are to the right of p, while processes
with identifiers smaller than p are to the left of p. That is, we consider processes ar-
ranged in the increased order of identifiers from left to right.

Communication model. Each program contains a set of variables and actions. A
channel C is a particular variable type whose values are sets of messages. Channel
message capacity is unbounded. Message loss is not considered. The order of message
receipts does not have to match transmission order. That is, we assume non-FIFO
channels. We treat all messages sent to a particular process as belonging to a single
incoming channel.

An action has the form 〈label〉 : 〈guard〉 −→ 〈command〉. label is a name to
differentiate actions. guard can be of several forms. It can detect the presence of
a message in the incoming channel, it can be a predicate over local variables, or it



be just true. In the last case, the corresponding action is timeout. This action is to
be executed periodically by the given process. command is a sequence of statements
assigning new values to the variables of the process or sending messages to other
processes.

Program state is an assignment of a value to every variable of each process and
messages to each channel. A program state may be arbitrary. We assume that all
process identifiers, either in the channels or in process variables, are present in the
system. An action is enabled in some state if its guard is true in this state. It is
disabled in this state otherwise. A timeout action is always enabled. We consider
programs with timeout actions, hence, in every state there is at least one enabled
action.

A computation is an infinite fair sequence of states such that for each state si, the
next sate si+1 is obtained by executing the command of an action that is enabled in
si. This disallows the overlap of action execution. That is, action execution is atomic.
We assume two kinds of fairness of computation: weak fairness of action execution
and fair message receipt. Weak fairness of action execution means that if an action is
enabled in all but finitely many states of the computation then this action is executed
infinitely often. Fair message receipt means that if the computation contains a state
where there is a message in a channel, this computation also contains a later state
where this message is not present in the channel, i.e. the message is received. Besides
these fairness assumptions, we place no bounds on message propagation delay or
relative process execution speeds, i.e. we consider fully asynchronous computations.

A computation suffix is a sequence of computation states past a particular state
of this computation. In other words, the suffix of the computation is obtained by re-
moving the initial state and finitely many subsequent states. Note that a computation
suffix is also a computation.

We consider programs that do not manipulate the internals of process identifiers.
Specifically, a program is copy-store-send if the only operations that it does with pro-
cess identifiers is copying them, storing them in local process memory and sending
them in a message. That is, operations on identifiers such as addition, radix compu-
tation, hashing, etc. are not used. In a copy-store-send program, if a process does not
store an identifier in its local memory, the process may learn this identifier only by
receiving it in a message. A copy-store-send program can not introduce new identifiers
to the system, it can only operate on the ids that are already there.

Oracles. An oracle is a predicate on the global system state to be used in a guard of
an action. Some oracles may not be implementable in an asynchronous system. Such
oracles enable otherwise impossible solutions.

Since the process that uses the oracle is not supposed to implicitly derive infor-
mation about the state of the system from its own state, the oracle predicate may
not contain the local variables of the process either.

However, potentially, the oracle predicate may mention arbitrary variables of the
global system state. The implementation of such oracles may be problematic. An



oracle is minimalistic if for every process u that uses it, it only mentions the incoming
channel of u and the identifiers of u elsewhere in the system.

We define the following minimalistic oracles. Oracle NID evaluates to true for a
particular process u if CC does not contain a link pointing to u. In other words, no
other process stores u in its local variables, neither is u present in the messages of the
incoming channels of other processes. Oracle EC evaluates to true for a particular
process u if the incoming channel of u is empty.

Oracle NIDEC is a conjunction of NID and EC. That is, NIDEC evaluates to
true when both NID and EC evaluate to true. Note that NIDEC is less power-
ful than NID and EC used jointly since the program using NIDEC is not able to
differentiate between the conditions separately reported by NID and EC.

Finite leave problem statement. Each process has a read-only boolean variable
leaving whose value is the same throughout the computation. If this variable is true,
the process is leaving ; the process is staying otherwise. A leaving process may be
in a designated exit state where it may execute no actions. Once a leaving process
moves to the exit state, all the links pointing to this process are removed. That is,
the incoming messages to this process are lost and the identifiers are deleted.

Every computation of a solution to the Finite Leave Problem (FL) should contain
a suffix with the following properties. In every state of the suffix: (i) the process
connectivity graph CP of the staying processes is the same and forms a prescribed
topology while (ii) each leaving process is in the exit state. For example, the Finite
Leave Linearization Problem (FLL) requires the staying processes to linearize.

We consider problems that require single-component topologies. That is, the target
topology of staying processes should remain weakly connected.

Proposition 1. [18, 19] If a computation of a copy-store-send program starts in a
state where the channel connectivity graph CC is disconnected, the graph is discon-
nected in every state of this computation.

Hence, once the departure of a node causes the disconnection of CC, it is impos-
sible to regain connectivity. Thus, a solution to the single-component Finite Leave
Problem has to maintain connectivity throughout its every computation. Therefore,
we assume that computations of self-stabilizing solutions to the single-component FL
start from states where CC is weakly connected.

For oracle-based solutions to FL, we assume that the oracle evaluates to true
when it is safe for this process to leave the system. We also define the solution as
normal if every process may execute the exit action leaving the system while it points
to at least one other process.

3 Necessary Condition

In this section we show that a self-stabilizing program needs the NIDEC oracle to
solve the Finite Leave Problem. Intuitively, without this oracle, a process may not be
able to determine whether its departure disconnects the system.



Lemma 1. If a normal self-stabilizing solution to the single-component Finite Leave
problem is using a minimalistic oracle, then this oracle has to evaluate to true only
if the incoming channel of the process using the oracle does not contain process iden-
tifiers.

Proof: Assume there exists a normal algorithm A that is a self-stabilizing solution
to the Finite Leave Problem that uses a minimalistic oracle O such that it evaluates
to true for some process u in some system state s1 even though its channel contains
a message with process identifier v.

Let us consider the system where v is not present at all. Since A is a normal
solution to FL, there is a computation of A where u is leaving while holding at least
one identifier w. That is, in this computation, u is executing the exit action in some
state s2.

Let us add v back to the system. We construct a system state s3 as follows. The
local state of process u is the same in s3 and in s2. The incoming channel contents
of process u as well as the links pointing to u are the same in s3 and in s1. We link
the rest of the system such that, except for the links to and from u, processes v and
w belong to two disconnected components.

Let us examine the constructed state s3. Since the links pointing to u as well as
the contents of the channel are the same as in s1, oracle O evaluates to true. Since
the state of process u is the same as in s2, the exit action of algorithm A taking the
process out of the system is enabled. We execute this action and then execute the
actions of A in arbitrary fair manner.

Since, by assumption, A is a self-stabilizing solution to the single-component FL,
this computation has to contain a suffix with a single-component system topology.
However, the first action of this computation disconnects the system. By Proposi-
tion 1, the system remains disconnected for the rest of the computation. That is,
this computation may not contain a suffix with a single-component system topol-
ogy. This means that, contrary to our initial assumption, A is not a solution to the
single-component FL. The lemma follows. �

Lemma 2. If a normal self-stabilizing solution to the single-component Finite Leave
Problem is using a minimalistic oracle, then this oracle has to evaluate to true only
if there are no processes pointing to the process using the oracle.

Proof: (Outline) The proof proceeds similarly to the proof of Lemma 1. We assume
that there is a solution to FL that uses an oracle which evaluates to true for some
process u even if there is another process v pointing to u. We then construct a state
with the exit action is enabled and whose execution disconnects the system which,
int turn, invalidates our assumption of the existence of the solution to FL using this
oracle. �

Lemmas 1 and 2 lead to the following theorem.

Theorem 1. Oracle NIDEC is necessary to enable a normal self-stabilizing solution
to the single-component Finite Leave Problem.



4 Solution

Description. In this section we present a self-stabilizing algorithm called SL that
solves the Finite Leave Linearization Problem FLL problem with the help of oracle
NIDEC. The algorithm is shown in Figure 1. The operation of the algorithm is as
follows. Each process p has a read-only variable leaving that is initially set to true
to indicate whether the process needs to leave the system. Each process maintains
variables right and left that store other process identifiers. These variables store
identifiers that are less than and more than p respectively. If such a variable does not
hold an identifier, we assume it stores ∞. To ensure correctness of process leaving,
the algorithm uses NIDEC oracle.

Algorithm SL uses two message types: intro and req. Message intro carries a single
process identifier and serves as a way to introduce processes to one another. Message
req does not carry an identifier. Instead, this message carries a boolean value which
we denote as remright or remleft. This message is a request for the recipient process
to remove the respective left or right identifier from its memory. This lack of identifier
in req allows the leaving process to retrieve its own identifier from the other processes
without re-introducing it with each message.

We now describe the actions of the algorithm. Some of the actions contain mes-
sage sending statements involving identifiers stored in left and right variables. If the
variable contains ∞, the sending action is skipped. To simplify the presentation of
the algorithm, this detail is omitted in Figure 1.

The algorithm has four actions. The first action is timeout. It is executed period-
ically. If the process is staying, it sends its identifier to its right and left neighbor. If
the process is leaving, it sends messages to the neighbors requesting them to remove
its identifier from their local memory. The second action is introduce. It receives and
handles intro. The operation of this action depends on the relation between the iden-
tifier id carried by the message and identifiers stored in left and right. The process
either forwards id to its left or right neighbor to handle; or, if id happens to be closer
to p than left or right, p replaces the respective identifier and instead sends the old
identifier to id to handle.

The third action, request, handles the neighbors’ requests to leave. If p receives such
a request, it sets the respective variable to ∞ and, to preserve system connectivity,
sends its own identifier to the leaving process. To break symmetry, if p is leaving itself,
it ignores leaving request from its left neighbor.

The last action is exit. If the process is leaving and NIDEC oracle signals that it
is safe to leave, then the process mutually introduces its neighbors to preserve system
connectivity and then exits.

Correctness proof. Once every leaving process exits, SL operates exactly as the
linearization component of Corona [18] and ensures the system linearization. We sum-
marize this claim in the following proposition. See the Appendix for the proof of this
proposition.



constant p // process identifier
variables

leaving : boolean, read only // application level, true when process needs to leave
left : process ids less than p, −∞ if undefined
right : process ids greater than p, +∞ if undefined
NIDEC: no p in the system and empty incoming channel oracle

messages
intro(id), carries process identifier, confirms connectivity
req(direction), requests recipient to remove neighbor

direction may be either remleft or remright

actions
timeout : true −→

if not leaving then
send intro(p) to left ,
send intro(p) to right

else // leaving
send req(remleft) to right
send req(remright) to left

introduce: intro ∈ p.C −→
receive intro(id)
if id < left then

send intro(id) to left
if left < id < p then

send intro(left) to id
left := id

if p < id < right then
send intro(right) to id
right := id

if right < id then
send intro(id) to right

request : req ∈ p.C −→
receive req(direction)
if direction = remleft then

if not leaving then
send intro(p) to left
left := −∞

else // direction is remright
send intro(p) to right
right := +∞

exit : NIDEC and leaving −→
if left 6= −∞ and right 6= +∞ then

send intro(left) to right
send intro(right) to left

exit

Fig. 1. Algorithm SL for process p.



Proposition 2. [18] If every processes in a computation of SL is staying, then the
algorithm linearizes the system.

The proof of correctness of SL contains two parts: safety and liveness. The safety
part demonstrates that the operation of SL does not disconnect the system and the
liveness part shows that all leaving processes exit the system.

Lemma 3. If a computation of SL starts in a state where the communication graph
CC is connected, the graph remains connected in every state of this computation.

Proof: We demonstrate correctness of the lemma by showing that none of the
actions of SL disconnect CC. Action timeout may only send messages. This action
only adds links to CC and cannot disconnect it.

Let us consider action introduce. This action receives intro(id) message from the
incoming channel of process p and thus removes a link (p, id) from CC. This may
potentially disconnect the graph. The operation of introduce depends on the value of
id. If id = p, i.e. the message carries the same identifier as the receiving process, this
message forms a self-loop link (p, p). This link is not included in CC and the message
receipt does not affect CC. We now consider p < id. The case of id < p is similar. If
p < id < right, introduce sets right = id. Let variable right hold identifier q before
the action execution. This action then removes link (p, q) from CC. However, this
action also sends message intro(q) to id. That is, introduce replaces link (p, q) with
two links (p, id) and (id, q). Thus, q is still reachable from p and the connectivity of CC
is preserved. If id = right, action introduce removes the message and does no further
operations. This removes link (p, id) from CC which may potentially disconnect CC.
However, since id = right, link (p, right) is already present in CC and the graph
remains connected after one of the two identical links are removed. If id > right,
action introduce forwards id to right thus replacing link (p, id) with a path (p, right)
and (right, id) and preserving connectivity of CC.

Let us consider action request. This action receives req message. This message
does not carry an identifier. Hence, its receipt does not affect CC. However, request
may force p to set either right or left to infinity thus removing a link from CC.
Let us consider the case of right being set to +∞, the other case is similar. This
operation removes (p, right) from CC. However, request sends message intro(p) to
right. That is, it replaces a link (p, right) with (right, p). In effect, this action changes
the direction of the link in CC, which preserves the weak connectivity of the graph.

The last action is exit. This action makes the process exit the system thus removing
links from CC that contain this process. This action is enabled if NIDEC is true.
This means that identifier p is not present elsewhere in the system and the incoming
channel of process p is empty. That is, CC does not contain links pointing to p and
the only outgoing links are (p, left) and (p, right). Note that if either left or right are
undefined, then p is connected to the rest of the graph through a single link. Hence,
the process’ departure does not disconnect it. Now, if both left and right are defined,
the leaving of p may potentially disconnect them. However, before leaving, p sends
intro(left) to right and intro(right) to left . This replaces links (p, left) and (p, right)



with two links (left , right) and (right, left) preserving the connection between these
two processes.

To summarize, none of the actions of SL disconnect CC. Hence the lemma. �

The liveness part of the correctness proof is somewhat involved. To break symme-
try, each leaving process ignores disconnection requests from its left neighbor. Hence,
it would appear that the rightmost leaving process should leave first. Yet, this may
not be the case. Indeed, process u may have difficulty disconnecting from a left leaving
processes v that is pointing to u. Process u may be pointing to some other process
w to the left of u. Thus, u is requesting disconnection from w instead of v. Since a
leaving process only sends request messages that do not carry identifiers, u may not
be aware of v at all.

x
0

wx
i

vx
k

x
1

Fig. 2. Illustration of a steady chain for the proofs of Lemmas 4 and 5.

To proceed with the proof, we need to introduce additional notation. A steady
chain xk, . . . , x0 of leaving processes for a particular computation is defined as follows.
The first process x0 is the rightmost leaving process. Each subsequent process xi

points to process xi−1 and does not remove this link until xi leaves. See Figure 2 for
illustration. A steady chain is maximal if it cannot be further extended to the left.
That is, either no leaving process to the left of xk points to it, or such process removes
this link before leaving. Multiple steady chains may be present in a computation.
However, a steady chain of at least one process x0 is present in every computation of
the algorithm.

Lemma 4. In every computation of SL, if processes x0 and xk are respectively the
first and last in a maximal steady chain, then eventually staying processes to the right
of x0 stop pointing to x0 and staying processes to the left of xk stop pointing to xk.

Proof: (Outline) We prove the lemma for x0. The argument for xk is similar.
By definition, x0 is the rightmost leaving process. Thus, processes to its right are
staying. No leaving process sends messages with its own identifier. Thus, once the
initial messages with its identifier are received, the message with x0 may be sent only
by a process forwarding this identifier towards x0. Let v be the staying process with
the largest identifier among right processes pointing to x0. If v removes x0’s identifier,
it never points to x0 again. Thus, we need to show that v eventually does so.

Since x0 is the rightmost leaving processes, all processes to the right of x0 are
staying. Therefore, none of them sends req(remright). Hence, after initial such mes-
sages are received, once defined, right variable of process x0 never becomes undefined



again. Moreover, if it changes, it can only hold processes progressively closer to x0.
Thus, if x0 ever points to v and then points to some other process, this other process
is closer to x0 than v. Process v is staying. Therefore, it periodically sends intro(v)
to x0. When x0 receives this message, its actions depend on the contents of its right
variable. If right is undefined or greater than v, then right is set to v. If right is less
than v then v is forwarded to right.

Now, if right is defined, x0 periodically sends request messages to right. If right
holds v, then such message is sent to v. Once v receives such a request, v stops pointing
to x0.

If right holds an identifier less than v, once x0 receives intro(v), it forwards it to
right. The process right may forward v’s identifier further. Eventually, this forwarding
stops at some process u. Since u is to the right of x0, u is staying. Process u holds
v in its right variable and periodically sends intro(u) to v. Since u is to the right of
x0, once v receives this message, it starts pointing to u and stops pointing to x0.

To summarize, in every computation, eventually v stops pointing to x0. Hence,
the lemma. �

Lemma 5. In every computation of SL, if a process xi such that i > 0 belongs to a
steady chain, then eventually no process, staying or leaving, to the right of xi points
to xi.

Proof: (Outline) Let us consider an arbitrary computation of SL with any process
xi in a steady chain of leaving processes. Let xi be such that there are processes to the
right of xi that point to xi. Let v be the rightmost such process. Since xi is leaving,
it does not send messages with its own identifier. Hence, once initial messages are
received, if v stops pointing to xi it will not point to xi again.

If v is leaving, it periodically sends req(remright) to xi. If xi receives such a
message, it removes its right link. However, by the definition of steady chain, xi does
not remove its right link before exiting the system. This means that v removes the
identifier of xi before sending a request.

If v is staying, it periodically sends intro(v) to xi. The processing of this message
depends on the value of right at xi. The identifier of v cannot be less than the identifier
held in right. Otherwise, the value of right changes once xi receives intro(v). However,
by the definition of steady chain, xi does not change this until xi leaves. Hence, v
must be greater than right. In this case, once intro(v) is received, v is forwarded to
right. By using an argument similar to the proof of Lemma 4, we can show that v
eventually stops pointing to xi. �

Lemma 6. In every computation of SL, each leaving process exits the system.

Proof: We prove the lemma by showing that in every computation, at least one
leaving process eventually exits. Let us consider the leftmost process xk in a maximal
steady chain of the leaving processes. Since this chain is maximal, every leaving process
to the left of xk eventually stops pointing to it. By Lemma 4 every staying processes
to the left of xk eventually does so as well.



Lemmas 5 and 4 indicate that every process to the right of xk eventually stops
pointing to it as well. In other words, eventually, no process in the system points
to xk. In this case, no process sends messages to xk. Once xk receives all incoming
messages, the guard of the exit action is enabled which allows xk to leave the system.
�

Proposition 2 as well as Lemmas 3 and 6 lead to the following theorem.

Theorem 2. Algorithm SL and oracle NIDEC provide a self-stabilizing solution to
the Finite Leave Linearization Problem FLL.

5 Extensions

Persistency. If a persistent oracle for a process u is true in a system state, then
the actions of processes other than u cannot change the output of the oracle. An
oracle that detects that it is safe for a process to leave does not have to be persistent.
For example, an oracle may detect that the removal of all the incoming links to the
departing process u preserves the weak connectivity of the remaining graphs due to
alternative paths connecting the other processes. However, in general, such an oracle
is not persistent because the departures of the processes in the alternative paths may
make it unsafe for u to leave.

Oracle persistency is a useful property for a practical distributed system where it
may take time to gather oracle information and then execute the dependent command.
We capture this with the following discussion.

The low atomicity message passing system is a message passing system where
the algorithm actions are restricted as follows. The action can either use oracles and
receive messages, or send messages. This low atomicity model reflects the delay of
possible command execution since message receipt and message sending actions may
be interleaved by actions of other processes.

Two action executions are causally related [16] if (i) they happen in the same
process, (ii) one is sending a message and the other is receiving the same message,
(iii) one action uses an oracle that mentions the process of the other action. Two
action executions are concurrent if they are not causally related. Two computations
are equivalent if they only differ by the order of their concurrent actions.

Proposition 3. If a message-passing asynchronous system algorithm uses persistent
oracles only, then for every low-atomicity computation of this algorithm, there is an
equivalent high-atomicity computation.

Observe that NIDEC is persistent. Hence, the following theorem.

Theorem 3. Algorithm SL and NIDEC oracle provide a self-stabilizing solution
to the Finite Leave Linearization Problem FLL in the low atomicity asynchronous
message passing system.



Connectivity oracle and non-existent id detector. Algorithm SL fails to oper-
ate correctly if the system starts in a disconnected state or if the system contains links
to the identifiers that are not present in the system. To make a complete system, we
may introduce the following oracles. Oracle CONNECT detects that the system is
disconnected and injects an identifier from one disconnected component to the other
thus reconnecting it. Oracles DET ECT RIGHT and DET ECT LEFT return true if
the respective right and left identifiers are non-existent. We summarize the addition
of these oracles in the following proposition.

Proposition 4. Algorithm SL with NIDEC as well as CONNECT , DET ECT RIGHT
and DET ECT LEFT oracles provide a self-stabilizing solution to the finite leave lin-
earization problem FLL if the initial state is disconnected and it contains non-existent
identifiers.

Oracle implementation. Let us discuss the implementation of the oracles intro-
duced in this paper. Oracles NIDEC, DET ECT RIGHT and DET ECT LEFT may
be implemented in a synchronous system using timeouts. For example, each process
periodically sends a heartbeat message containing its identifier to its right and left
neighbor. If process u does not receive such messages for a specified period of time,
it assumes that no process points to u. If no process points to u, after some time, the
incoming channel of u is empty and oracle NIDEC at u can be set to true.

Oracle CONNECT requires a bootstrap service to which every process is con-
nected. This service would keep track of some unique property of a weakly connected
component, e.g. the largest identifier. Once the bootstrap service observes that there
are two sets of nodes that report different identifiers as their largest, the service de-
tects system disconnect and injects the largest identifier of one component into the
other.

Observe that all four of the above oracles are persistent. Hence, the correctness
of their implementation is not affected by the delay in reporting of the detected
condition. This simplifies their implementation. On the other hand, these oracles are
to be used by self-stabilizing algorithms. Therefore, their own implementation has to
be self-stabilizing. Such implementation is left for future research.

6 Conclusion

In conclusion we would like to address future research directions. Linearization, ad-
dressed in this paper is an elementary task of peer-to-peer network construction. It
would be interesting to study whether our algorithm can be extended to more effi-
cient structures such as skip-list or skip-graph as some other self-stabilizing algorithms
were [9, 18, 21].

In this paper, we showed that NIDEC is necessary to enable a self-stabilizing
solution to the Finite Leave Problem. This means that only NIDEC allows the sys-
tem to stabilize from an arbitrary state. However, it would also be interesting to



study the power of individual components of NIDEC: no-identifier oracle NID and
empty channel oracle EC. Specifically, it would be interesting to consider from what
topologies and initial states these oracles allow recovery.

Finally, in this paper, we formally addressed finite churn. The difficulty of this
problem was to ensure that all leaving processes safely depart before staying pro-
cesses attempt to construct the required topology such as a linear sorted list. A more
challenging task, to be addressed in the future, is to deal with infinite churn where
arbitrary many processes may join and leave the system. In this case, the system
cannot wait until all leaving processes depart. Instead, the system has to stabilize
despite ongoing churn.

References

1. David Andersen, Hari Balakrishnan, Frans Kaashoek, and Robert Morris. Resilient over-
lay networks. In SOSP ’01: Proceedings of the eighteenth ACM symposium on Operating
systems principles, pages 131–145, New York, NY, USA, 2001. ACM.

2. James Aspnes and Gauri Shah. Skip graphs. ACM Transactions on Algorithms,
3(4):37:1–37:25, 2007.

3. Baruch Awerbuch and Christian Scheideler. The hyperring: a low-congestion determinis-
tic data structure for distributed environments. In SODA ’04: Proceedings of the fifteenth
annual ACM-SIAM symposium on Discrete algorithms, pages 318–327, Philadelphia, PA,
USA, 2004. Society for Industrial and Applied Mathematics.

4. Markus Benter, Mohammad Divband, Sebastian Kniesburges, Andreas Koutsopoulos,
and Kalman Graffi. Ca-re-chord: A churn resistant self-stabilizing chord overlay network.
In NetSys, pages 27–34, 2013.

5. Ankur Bhargava, Kishore Kothapalli, Chris Riley, Christian Scheideler, and Mark
Thober. Pagoda: a dynamic overlay network for routing, data management, and mul-
ticasting. In SPAA ’04: Proceedings of the sixteenth annual ACM symposium on Par-
allelism in algorithms and architectures, pages 170–179, New York, NY, USA, 2004.
ACM.

6. Silvia Bianchi, Ajoy Datta, Pascal Felber, and Maria Gradinariu. Stabilizing peer-to-
peer spatial filters. In ICDCS ’07: Proceedings of the 27th International Conference on
Distributed Computing Systems, page 27, Washington, DC, USA, 2007. IEEE Computer
Society.

7. Eddy Caron, Frédéric Desprez, Franck Petit, and Cédric Tedeschi. Snap-stabilizing prefix
tree for peer-to-peer systems. Parallel Processing Letters, 20(1):15–30, 2010.

8. Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable dis-
tributed systems. Journal of the ACM, 43(2):225–267, 1996.

9. Thomas Clouser, Mikhail Nesterenko, and Christian Scheideler. Tiara: A self-stabilizing
deterministic skip list and skip graph. Theoretical Computer Science, 428:18–35, 2012.

10. Danny Dolev, Ezra Hoch, and Robbert van Renesse. Self-stabilizing and byzantine-
tolerant overlay network. In OPODIS 2007: Proceedings of the 11th International Con-
ference on the Principles of Distributed Systems, volume 4878 of Lecture Notes in Com-
puter Science, pages 343–357. Springer, December 2007.

11. Dominik Gall, Riko Jacob, Andréa W. Richa, Christian Scheideler, Stefan Schmid, and
Hanjo Täubig. Time complexity of distributed topological self-stabilization: The case of



graph linearization. In Alejandro López-Ortiz, editor, LATIN 2010: Theoretical Infor-
matics, 9th Latin American Symposium, Oaxaca, Mexico, April 19-23, 2010. Proceedings,
volume 6034 of Lecture Notes in Computer Science, pages 294–305. Springer, 2010.

12. Nicholas J. A. Harvey, Michael B. Jones, Stefan Saroiu, Marvin Theimer, and Alec Wol-
man. Skipnet: a scalable overlay network with practical locality properties. In USITS’03:
Proceedings of the 4th conference on USENIX Symposium on Internet Technologies and
Systems, pages 9–9, Berkeley, CA, USA, 2003. USENIX Association.

13. Thomas Hérault, Pierre Lemarinier, Olivier Peres, Laurence Pilard, and Joffroy
Beauquier. Brief announcement: Self-stabilizing spanning tree algorithm for large scale
systems. In SSS, pages 574–575, 2006.

14. R. Jacob, A. Richa, C. Scheideler, S. Schmid, and H. Täubig. A distributed polyloga-
rithmic time algorithm for self-stabilizing skip graphs. In Proc. of 28th ACM Symp. on
Principles of Distributed Computing, pages 131–140, 2009.

15. Fabian Kuhn, Stefan Schmid, and Roger Wattenhofer. Towards worst-case churn resis-
tant peer-to-peer systems. Distributed Computing, 22(4):249–267, 2010.

16. Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Com-
munications of the ACM, 21(7):558–564, July 1978.

17. Dahlia Malkhi, Moni Naor, and David Ratajczak. Viceroy: a scalable and dynamic em-
ulation of the butterfly. In PODC ’02: Proceedings of the twenty-first annual symposium
on Principles of Distributed Computing, pages 183–192, New York, NY, USA, 2002.
ACM.

18. Rizal Mohd Nor, Mikhail Nesterenko, and Christian Scheideler. Corona: A stabilizing de-
terministic message-passing skip list. In 13th International Symposium on Stabilization,
Safety, and Security of Distributed Systems (SSS), pages 356–370, October 2011.

19. Rizal Mohd Nor, Mikhail Nesterenko, and Sebastien Tixeuil. Linearizing peer-to-peer
systems with oracles. Technical Report TR-KSU-CS-2012-02, Dept. of Computer Sci-
ence, Kent State University, July 2012.

20. Melih Onus, Andréa W. Richa, and Christian Scheideler. Linearization: Locally self-
stabilizing sorting in graphs. In ALENEX 2007: Proceedings of the Workshop on Algo-
rithm Engineering and Experiments. SIAM, January 2007.

21. Rajmohan Rajaraman and Friedhelm Meyer auf der Heide, editors. SPAA 2011: Pro-
ceedings of the 23rd Annual ACM Symposium on Parallelism in Algorithms and Ar-
chitectures, San Jose, CA, USA, June 4-6, 2011 (Co-located with FCRC 2011). ACM,
2011.

22. Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Schenker.
A scalable content-addressable network. In SIGCOMM ’01: Proceedings of the 2001
conference on Applications, technologies, architectures, and protocols for computer com-
munications, pages 161–172, New York, NY, USA, 2001. ACM.

23. Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, decentralized object loca-
tion, and routing for large-scale peer-to-peer systems. In Middleware ’01: Proceedings of
the IFIP/ACM International Conference on Distributed Systems Platforms Heidelberg,
pages 329–350, London, UK, 2001. Springer-Verlag.

24. Ion Stoica, Robert Morris, David Liben-Nowell, David R. Karger, M. Frans Kaashoek,
Frank Dabek, and Hari Balakrishnan. Chord: a scalable peer-to-peer lookup protocol for
Internet applications. IEEE/ACM Transactions on Networking, 11(1):17–32, February
2003.

25. Daniel Stutzbach and Reza Rejaie. Understanding churn in peer-to-peer networks. In
Proceedings of the 6th ACM SIGCOMM Conference on Internet Measurement, pages
189–202, October 2006.



Appendix

The proofs of Proposition 2 and supporting lemmas are adopted from [18].

Lemma 7. If a computation of SL starts in a state where for some process a there
are two links (a, b) ∈ CP and (a, c) ∈ CC \ CP such chat a < c < b, then this
computation contains a state where there is a link (a, d) ∈ CP where d ≤ c.

Similarly, if the two links (a, b) ∈ CP and (a, c) ∈ CC\CP are such that b < c < a,
then this computation contains a state where there is a link (a, d) ∈ CP where d ≥ c.

Intuitively, Lemma 7 states that if there is a link in the incoming channel of a
process that is shorter than what the process already stores, then, the process’ links
will eventually be shortened. The proof is by simple examination of the algorithm.

Lemma 8. If a computation of SL starts in a state where for some process a there is
an edge (a, b) ∈ CP and (a, c) ∈ CC \CP such that a < b < c, then the computation
contains a state where there is a link (d, c) ∈ CP , where d ≤ b.

Similarly, if the two links (a, b) ∈ CP and (a, c) ∈ CC\CP are such that c < b < a,
then this computation contains a state where there is a link (d, c) ∈ CP , where d ≥ b.

Intuitively, the lemma states that if there is a longer link in the channel, it will be
shortened by forwarding the id to its closer successor.

Lemma 9. If a computation of SL starts in a state where for some processes a, b,
and c such that a < c < b (or a > c > b), there are edges (a, b) ∈ CP and (c, a) ∈ CC,
then the computation contains a state where either some edge in CP is shorter than
in the initial state or (a, c) ∈ CP .

Proof: The timeout action in process c is always enabled. When executed, it adds
message(c) to the incoming channel of process a. Then, the lemma follows from
Lemma 7. �

Lemma 10. If a computation starts in a state where there is a link (a, b) ∈ CP , then
the computation contains a state where some link in CP is shorter than in the initial
state or there is a link (b, a) ∈ CP .

Proof: Assume without loss of generality that a < b. Once a executes its always
enabled timeout action, link (b, a) is added to CC. We need to prove that either some
link in CP is shortened or this link is added to CP .

Let us consider a link (b, c) ∈ CP such that c < b. There can be three cases with
respect to the relationship between a and c. In case c < a, the lemma follows from
Lemma 7. In case c = a, the claim of the lemma is already satisfied. The case of c > a
is the most involved.

According to Lemma 8, if c > a, the computation contains a state where a shorter
link to a belongs to CC. That is, there is a process d such that a < d ≤ c and
(a, d) ∈ CC. Let us consider link (e, d) ∈ CP such that e < d.



If e < a, then, according to Lemma 7, some link in CP shortens. If e = a, then
some link in CP shortens according to Lemma 9. In both cases the claim of this
lemma is satisfied.

Let us now consider the case where e > a. According to Lemma 8, the link to
process a in CC shortens. The same argument applies to the new shorter link to a in
CC. That is, either some link in CP shortens or a link to a shortens. Since the length
of the link to a is finite, some link in CP eventually shortens. Hence the lemma. �

Lemma 11. If the computation is such that if (a, b) ∈ CP then (b, a) ∈ CP in every
state of the computation, then this computation contains a suffix where ((a, b) ∈
CP )⇔ ((a, b) ∈ CC)

Lemma 11 states that if CP does noes not change in a computation then eventu-
ally, the links in CP contain all the links of CC.
Proof: (of the lemma)

That is, there is a pair of consequent processes u and v that are not neighbors. By
condition of the lemma, CP is strongly connected. This means that there is a path
from u to v.

Let us consider the shortest such path. Since u and v are not neighbors, the path
has to include processes to the left or to the right of both u and v. Assume without
loss of generality u < v and the path includes processes to the right of u and v. Let
us consider the rightmost process in this path w. Let x and y be the processes that
respectively precede and follow w in this path. Since w is the rightmost, both x and
w are to the left of w.

Note that each process in CP can have at most one outgoing left and one outgoing
right neighbor. By the condition of the lemma the outgoing neighbor of a process is
also its incoming neighbor. Since x precedes w in the path from u to v and y follows
w, x is the incoming and y is the outgoing neighbors of w. Yet, x and y are both
to the left of w. This means that x = y. However, this also means that w can be
eliminated from the path from u to v and can be this way shortened. However, we
considered the shortest path from u and v. It cannot be further shortened. We arrived
at a contradiction that proves the if part of the lemma.

The only if part follows form the observation that each process can only have a
single right and single left neighbor. That is, a process is already a neighbor with the
consequent process it cannot be a neighbor with any other process. �


