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Abstract. We evaluate the performance of five of the most well-known self-
stabilizing dining philosophers algorithms in a read/write atomicity model. The
algorithms are evaluated under interleaving, power-set and synchronous execu-
tion semantics. For all algorithms, we compute latency and throughput of criti-
cal section access, as well as the number of safety violations. These metrics are
computed under various load and fault scenarios. On the basis of the evaluation,
we propose a combined algorithm that switches between different algorithms to
achieve optimal performance.

1 Introduction

A self-stabilizing algorithm [9, 23] eventually resumes correct operation even if it starts
from an arbitrary state. Thus, regardless of the nature and extent of a fault, once the
fault’s influence stops, the self-stabilizing algorithm recovers. This property makes self-
stabilization an attractive fault-tolerance technique.

The need to recover from every possible system state makes designing self-stabilizing
algorithms a challenge. One approach is to design such algorithms in an execution
model with limited number of states and then convert the designed algorithm into a
more realistic model. Naturally, such conversion has to preserve correctness as well as
self-stabilization of the original algorithm.

One of the most popular transformation methods is to decrease the atomicity of
actions in the execution model of the self-stabilizing algorithm. The common source
model is combined atomicity (a.k.a. state model, or high-atomicity model) and the tar-
get model is read/write atomicity (a.k.a. low-atomicity model). In the combined model,
the algorithm is allowed to read the variables of its neighbors and update its own vari-
ables in a single atomic action. In the read/write atomicity model, the process can either
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read a single neighbor’s variable (and update its own private variables) or write its pub-
lic variables.

A low-atomicity self-stabilizing solution to the dining philosophers problem [6, 8]
can be used for such a transformation. In dining philosophers, neighbor processes com-
pete for critical section (CS) access and only one process at a time is allowed to execute
this critical section. If the execution of a high-atomicity action is carried out as the
critical section, the combined model program correctly executes in the low-atomicity
model.

With such usefulness of self-stabilizing dining philosophers algorithms, a large
number of them is presented in literature [2–5, 7, 13, 15, 17, 19, 21, 22]. With such a
variety of algorithms, it is unclear which one would be most suitable for a particular
transformation. The research in self-stabilization usually focuses on formally proving
correctness of the algorithms and estimating theoretical performance bounds. The num-
ber of practical performance evaluation studies in self-stabilization is relatively lim-
ited [1, 11, 12, 16, 18, 20, 25]. Probabilistic model checking [11] can be used to assess
the performance evaluation of self-stabilizing protocols with a fine grained view, at the
cost of scalability (only systems of a few nodes can be evaluated). In this work, we
follow the more classical (and scalable) path of simulationbased evaluation [1, 12, 16,
18, 20, 25].

In this study, we set out to compare the performance of five better known self-
stabilizing read/write atomicity dining philosophers algorithms. For the purposes of
presentation we call them LRA [5], Fuzzy [15], Transformation [19], Alternator [17],
and Refinement [22]. The first three algorithms did not quite operate as advertized in
the read/write model so we had to modify them to conform to it.

With performance studies, selecting the simulation environment is tricky. What we
want to achieve is a comparison of the algorithms themselves. Hence, the environment
should be generic not to favor a particular algorithm yet realistic enough so that the
comparison is meaningful for practical system design.

For algorithm comparison, we selected random graph topology. We executed al-
gorithms in three popular action execution semantics: interleaving (serial), power-set
(distributed) and synchronous. We injected faults of varying extent and also varied the
load, i.e. the number of processes requesting critical section access. We evaluated the
algorithms along the following metrics: safety violations — the number of neighbor
processes executing the CS concurrently, latency — the number of actions it takes the
algorithm from submission of CS access till its execution, and throughput — the num-
ber of CS accesses per action. The first metric shows the algorithms’ robustness while
the last two are the functional properties.

Our measurements indicate that besides LRA, the robustness of the algorithms was
adequate. Yet Transformation, Fuzzy and LRA were found to violate safety even if
no faults were injected. This was in part due to the need to adapt the algorithms to
the read/write atomicity model. Considering the functional properties, there was no
clear winner among the remaining two algorithms: Alternator and Refinement. The
throughput of Refinement was better under low load while Alternator outperformed it
under high load.



Observing this dichotomy, we propose a combined algorithm that estimates the load
and, depending on the load, selects the appropriate algorithm to execute. We propose
a load estimation mechanism to be used by this combined algorithm and evaluate its
performance.

2 Model

Execution model. An algorithm consists of a set of n processes and a neighbor relation
N between them. Processes Pi and Pj are neighbors if the pair (Pi, Pj) belongs to N .
Each process Pi has a unique identifier i. Each process contains a set of variables and a
set of actions. A variable ranges over a fixed domain of values, such as boolean, integer,
etc. A variable can be updated, i.e. written to, only by the process that contains it. A
variable may be read by its neighbors. An action (guarded command) contains a guard
and a command. A guard is a boolean predicate over local and neighbor variables. A
command is a sequence of assignment statements updating the values of local variables.

Atomicity. If the algorithm is high-atomicity, the guards and commands may freely
mention neighbor variables. A low-atomicity algorithm restricts the variables use as
follows. Variables are declared as either private or public. A public variable can be read
by neighbor processes as well as by its own process. A private variable can be read only
by the process that contains it. In effect, the process action can either update its private
variables on the basis of the local variables and neighbor’s public variables, or update
its public variables on the basis of its own variables. In other words, in a low-atomicity
algorithm, a single action is not allowed to read the neighbor’s public variables and
update the process’ own public variables.

Execution semantics. An algorithm state is an assignment of values to variables of all
processes. An action whose guard evaluates to true is enabled. An algorithm computa-
tion is a sequence of steps such that for each state si, the next state si+1 is obtained by
executing the command of an action enabled in si. This disallows the overlap of action
execution. That is, the action execution is atomic.

Multiple actions may be enabled in a single state. The action selection for execution
determines its execution semantics also called scheduler or daemon [10]. In interleaving
(centralized) execution semantics, an arbitrary single enabled action is executed. In
powerset (distributed), an arbitrary subset of enabled actions in non-neighbor processes
are executed. That is, in powerset semantics, if actions are enabled in two neighbor
processes in a single state, either one or the other action may be selected. In (maximally)
synchronous semantics, every non-neighbor enabled action is selected for execution.

Problem Statement. The problem of Dining Philosophers [6, 8] (Local Mutual Exclu-
sion) is defined as follows. Any process Pi may request access to the critical section
(CS) portion of code by setting a read-only boolean requesti to true. A solution to
the dining philosophers problem ensures that (i) no two neighbor processes have ac-
tions executing the CS enabled in the same state; and (ii) a process requesting the CS is
eventually allowed to execute such action.



Stabilization. An algorithm is a (self-)stabilizing solution to the Dining Philosophers
Problem if, regardless of the initial state, it eventually satisfies the problem require-
ments. Due to the arbitrary initial state, the algorithm may allow processes to violate
the safety of the Dining Philosophers. For example, the algorithm may start from a
state where two neighbors are already in the CS. However, there has to be a finite num-
ber of such violations. After the algorithm stabilizes, it has to conform to the problem
requirements.

3 Algorithms.

process Pi

parameter j : (Pi, Pj) ∈ N
variables

public
tsi : integer // in case of LRA, range is (0..n)
readyi : boolean

private
requesti : boolean,
readyi.j : boolean
tsi.j : integer // in case of LRA, range is (0..n)

actions
requesti ∧ ¬readyi −→

readyi := true,
tsi := max(tsi.k | k ∈ N) + 1

readyi ∧ (∀k ∈ N : readyi.j = true : tsi ≺ tsi.k) −→
// critical section
readyi := false
tsi := 0 // LRA action

(tsi.j 6= tsj) ∨ (readyi.j 6= readyj) −→ // added to conform to model
tsi.j := tsj ,
readyi.j := readyj

Fig. 1. Transformation and LRA algorithms.

Transformation and LRA. Transformation [19] (see Figure 1), uses timestamps to
order CS access. In this algorithm, processes enter the CS in the order of their times-
tamps. Each process Pi has an integer variable tsi that stores the timestamp of this
process. Once the process receives the request for CS access (requesti is true), the
process selects the timestamp to be the largest among its neighbors and indicates that it
is ready to enter the CS by setting readyi to true. When the process determines that it
has the smallest timestamp among the ready processes, it executes the CS. In timestamp
comparison (denoted �), in case the integer counters are equal, process identifiers are
used to break the tie.

In Transformation, the integer timestamp counter may grow without bound. Such
unbounded variables in self-stabilizing algorithms present unique implementation chal-
lenges. Since they have to be implemented as finite counters, a corrupted initial state
may be such where the counter is close to overflowing. Such overflowing may result in



incorrect algorithm operation. Algorithm LRA [5], modifies the behavior of Transforma-
tion to eliminate the need for infinite counters. In Figure 1, we outlined the modification
introduced by LRA to Transformation. Specifically, once the process executes the CS,
the algorithm resets the counter to zero. This way, the counter value never exceeds the
total number of processes in the system n. To make it easier to compare with Transfor-
mation, we modified the presentation of LRA from its description in the original paper.
In particular, we combined entering the CS and exiting the CS into a single action.

Neither Transformation nor LRA explicitly use the atomicity model we describe in
this paper. To make it comparable with the other algorithms, we modified Transforma-
tion and LRA to differentiate private and public variables as well as actions that update
them. Specifically, for each neighbor Pj , we introduced private variables readyi.j and
tsi.j that store at Pi copies of readyj and tsj respectively. We also introduced an action
that copies from originals to the local copies if their values differ.

Note that in our model, Transformation and LRA violate correctness. Specifically,
each algorithm may infinitely often allow two neighbors to enable their CS executing
actions in one state. For example, consider a system of two processes Pa and Pb where
a < b. Their timestamps are zero. That is, tsa = 0 and tsb = 0. Both processes
request to enter the CS. Process Pa selects its timestamp tsa = 1. So does Pb by
setting tsb = 1. At this point, the actions that execute the CS are enabled at both
processes. The actions remain enabled even if Process Pa copies the new values from
Pb. In this case readya.b = true and tsa.b = 1. However, since Pa has higher priority
than Pb, its CS executing action remains enabled. Despite these correctness issues, we
evaluated the performance of both Transformation and LRA to compare them with the
other algorithms.

process Pi

parameter j : (Pi, Pj) ∈ N
variables

public
ci.j : boolean, link-bit in a color subgraph for process Pj

private
ci.ji : boolean, copy of Pj ’s link-bit

actions
(∀k ∈ N : k < j : ci.ki = ci.k) ∧ (∀k ∈ N : k > j : ci.ki 6= ci.k) −→

// critical section
(∀k ∈ N : ci.k = ¬ci.i)

ci.ji 6= cj .i −→ // added to conform to model
ci.ji = cj .i

Fig. 2. Fuzzy algorithm.

Fuzzy. The Fuzzy [15] solution to the Dining Philosophers uses the following idea. In a
tree, regardless of edge orientation, there exists at least one sink. The algorithm imposes
a read-only set of trees on the system such that every link is covered by at least one tree.
Each tree may be disconnected, i.e. it may be a forest. See Figure 2 for illustration. For
simplicity, we illustrate the operation of the algorithm on a single tree. Every edge of



the tree has a basic orientation. In our illustration, the edges are oriented towards lower-
id processes. Each process Pi, for each neighbor Pj maintains a boolean variable ci.j.
The value of this variable and the corresponding neighbor variable cj .i determine the
orientation of link (Pi, Pj). The orientation is selected such that either Pi or Pj may be
able to change it by flipping the value of its variable. In our illustration, for neighbor
Pk with identifiers lower than j, i.e. k < j the edge is considered oriented towards j
if c.i.k is equal to c.k.i. When a process determines that it is a sink, i.e. all edges are
oriented towards it, the process executes the CS and flips all its link-bits to give priority
to its neighbors. No explicit request for the CS is considered. In a multi-tree algorithm,
the trees have static priorities. To avoid deadlock, each process collects higher priority
tree sinks first while giving up lower-priority sinks without executing the CS.

Just like Transformation and LRA, Fuzzy does not explicitly use the atomicity of the
execution model of this paper. Similarly to the previous two, we modified the algorithm
to differentiate public and private variables. We introduced a variable ci.ji that keeps
a private copy of the neighbor’s link bit variable cj .i. We also added an action that
maintains the original and the copy in synch. Just like the other two algorithms, Fuzzy
violates correctness in our execution model.

Indeed, consider the system of two processes Pa and Pb such that a < b. In the
initial state of the computation, let their link-bits ca.b and cb.a be set to false, while
ca.ba = false and cb.ab = true. In this state, the CS-executing actions of both Pa

and Pb are enabled. Assume that the execution semantics is interleaving. Consider the
following action execution. Process Pb executes the CS. This sets cb.a to true. Next, Pb

copies the value of ca.b and sets cb.ab to false. Then Pa executes the CS and sets ca.b to
true. Then, Pa synchronizes the value of ca.ba and sets it to true. Observe that in this
state, the CS executing actions of both Pa and Pb are enabled again. This computation
may proceed in a similar manner indefinitely.

Alternator. Alternator [17] algorithm is shown in Figure 3. In Alternator, each process
Pi maintains a bounded counter xi which signifies the priority of this process. The
process executes the CS when it has the lowest priority among neighbors. Process Pi

examines the priority of each of its neighbors in sequence. It maintains a private variable
v that stores which neighbor to check next. Once that particular neighbor’s priority falls
behind (signified by beh), Pi moves to the next. The priority comparison is modulo
bound B. This bound B is set large enough to keep neighbors priority in range. In case
of incorrect initial state, neighbor priorities may diverge too far for valid comparison. If
Alternator detects that, it sets v to a special value d+1 which forces priority reset. Like
Fuzzy, Alternator does not use explicit request for CS access. Instead, each process is
given the opportunity to execute the CS regardless of need.

Unlike Transformation, LRA, or Fuzzy, Alternator distinguishes between public and
private variables and operates in our atomicity model correctly without modifications.

Refinement. Refinement algorithm [22] is shown in Figure 4. In this algorithm, syn-
chronization between each pair of neighbor processes Pi and Pj is achieved through
a self-stabilizing sequence of variables: ai.j, bj .i, cj .i and di.j. First and last are in
process Pi, the other two are in process Pj . Once Pi learns that there is a request for



process Pi

parameter j : (Pi, Pj) ∈ N
constants

B ≥ n2 + 1, where n is the system size
d = |N |, number of neighbors

variables
public

xi : (0..B − 1)
private

v : (0..d + 1)
operators

(xi beh xj) ≡ ((0 < ((xj − xi) mod B) ≤ n) ∨ (xi = xj ∧ j < i))
(xi far xj) ≡ (¬(xj beh xi) ∧ ¬(xi beh xj))

actions
(xi beh xj) ∧ (j = v) ∧ (v < d) −→

v := v + 1
v = d −→

//critical section
xi := xi + 1 mod B,
v := 0

(∃k : 0 ≤ k < d : ((xi far xk) ∧ (xi > xk))) −→
v := d + 1

v = d + 1 −→
xi := 0,
v := 0

Fig. 3. Alternator algorithm.

CS access (request = true), it increments ai.j. This increment is propagated along
the sequence of variables. Piggybacked on this propagation is synchronization of public
variables of the neighbors with the local private copies at each process. Once di.j holds
the same value as ai.j, process Pi learns that the neighbor has its up-to-date values.

The lower identifier processes have higher priority. The process Pi enters the CS
once it has synchronized with all of its neighbors while higher priority processes are
not requesting CS access (¬ri.k). To ensure fairness, after executing the CS, a process
lets its lower priority neighbors enter the CS once before requesting CS again. Process
Pi uses variable yi.j to keep track of its lower priority neighbor Pj CS access.

Similar to Alternator, Refinement operates correctly in our atomicity model without
modifications.

4 Simulation Model

Topologies. We used the program by Viger and Latapy [24] to generate random con-
nected graph topologies for our system simulation. This program generates graphs that
are sufficiently diverse, yet do not favor a particular algorithm or computing environ-
ment. The parameters for graph generation were as follows. The edge distribution is
by power-law with minimum node degree 1, maximum node degree 15, average degree
3 and α = 2.5. The number of nodes in a graph is 100. Figure 5 shows an example
generated graph.

Computations, faults, load. The computations for all of the evaluated algorithms were
1, 000 states. To fairly represent initial state for the recovery, we started with a “zero”



process Pi

parameter j : (Pi, Pj) ∈ N
variables

public
readyi : boolean,
ai.j, ci.j : (0..3)

private
requesti : boolean,
ri.j, yi.j : boolean,
bi.j, di.j : (0..3)

actions
requesti ∧ ¬readyi ∧ (∀k : ai.k = di.k) ∧ (∀k > i : ¬yi.k) −→

readyi := true,
(∀k > i : yi.k := ri.k, ai.k := (ai.k + 1) mod 4)

readyi ∧ (∀k : ai.k = di.k) ∧ (∀k < i : ¬ri.k) −→
// critical section
readyi := false,
(∀k < i : ai.k := (ai.k + 1) mod 4)

ci.j 6= bi.j −→
ci.j := bi.j

ri.j 6= readyj ∨ (bi.j 6= aj .i) ∨ (di.j 6= cj .i) ∨ (j > i ∧ ¬readyj ∧ yi.j) −→
ri.j := readyj ,
bi.j := aj .i,
di.j := cj .i,
if j > i ∧ ¬readyj ∧ yi.j then yi.j := false fi

Fig. 4. Refinement algorithm.

state for each algorithm: each variable holds the lowest value of its range. We then
picked a random state among the 1, 000 states of the computation and introduced a
single fault. A fault is a random perturbation of values of the variables for a particular
process. The extent of the fault varied from zero processes to all 100 modeled processes.
In the case of all processes being subject to the fault, the initial state is in effect random.
We varied the number of CS requests from 1 to 100 and randomly assigned the requests
to processes. For each particular data point, we ran 1, 000 simulated computations. The
computations were done in three execution semantics: interleaving, powerset and syn-
chronous. For interleaving semantics, we randomly selected one of the enabled actions.
For powerset and synchronous, the action selection procedure is more involved as algo-
rithms are proven correct only for the interleaving semantics of execution. Therefore,
the actions of two neighbor processes cannot be executed concurrently. The enabled
action selection is as follows. We randomly choose one of such action. After that, we
eliminate the neighbor process actions from consideration and repeat the selection. For
powerset semantics the number of selected enabled actions is chosen at random between
1 and the total number of enabled actions. For synchronous semantics we continue the
selection until no more actions remain.

Metrics. For the simulated algorithms, we computed two functional and one fault-
tolerance metric. The functional metrics are: latency — average number of states be-
tween request and corresponding CS access, and throughput — average number of CS
access per action. Latency quantifies how long it takes the algorithm to respond to a CS
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Fig. 5. Example random graph.

request, while throughput shows how much computer resources are required to satisfy
a CS request. Two algorithms, Fuzzy and Alternator, do not accept requests for CS.
For these algorithms, we assumed that request arrives at a particular process and then
counted the number of steps for the next CS access by this process. In other words, we
discounted unsolicited CS accesses.

Usually, the fault-tolerance for self-stabilizing algorithms is measured by the time it
takes the algorithm to return to a legitimate state. A state is legitimate if a computation
never violates specification requirements after it arrives at this state. However, Trans-
formation, LRA and Fuzzy were modified to accomodate read/write atomicity model.
Hence, the legitimate states defined in the paper where they were presented no longer
apply. Moreover, three algorithms violate safety requirements of the Dining Philoso-
phers problem even if no faults are present in the system. That is, none of the states of
these algorithms in our model are legitimate.

Therefore, to make a fair comparison, we counted the number of safety violations
for each computation. For that we computed the number of states where at least two
distinct neighbors have their CS executing actions enabled. Depending on the execution
semantics, a certain pair of neighbors may retain their enabled actions across several
consequent states. We counted such a pair as a single safety violation. However, if
the same pair gets one of the CS executing actions disabled and then re-enabled, it is
counted as a separate safety violation.

Algorithm configuration. Alternator requires bound B to be at least n2 + 1. We se-
lected it to be exactly equal to this value. Transformation uses unbounded timestamp
counters. To make it comparable to the other algorithms, we used the same bound B



for these counters. Fuzzy requires a set of trees to be configured for each topology. We
generated the trees as follows. We randomly selected a spanning tree. We then removed
the selected edges and randomly selected a spanning tree of the remaining subgraph.
We continued the process until all the edges were covered.

5 Simulation Results

Presentation. First we show the tolerance properties of the algorithms. We plot the
number of safety violations depending on the load and number of injected faults. Fig-
ure 6 demonstrates the number of safety violations with a constant fault rate of 50%
and varying load, i.e. the number of processes requesting CS access. The figure show
the algorithm’s performance under interleaving, powerset and synchronous execution
semantics.

Figure 6 demonstrates safety properties of the algorithm in a different dimension:
safety violations are plotted under varying the extent of the fault while load is held
constant.

Figures 7 and 8 compare the functional properties of the algorithms. This time we
did not introduce faults, varied load and counted latency and throughput for each al-
gorithm. Latency is counted as the average number of action executions from request
till CS access. Throughput is the number of CS accesses per action execution. Latency
measures the synchronization delay induced by the algorithm. Throughput measures
the algorithm’s ability to serve CS requests with maximum efficiency.

Analysis. The safety properties of the five algorithms are comparable except for LRA
which allows significantly greater number of safety violations. The reason is that the CS
access in LRA is based on timestamps that are reset to zero after each CS access. Hence,
the selected timestamps seldom increase past 1 or 2. A fault can relatively easily perturb
processes to have the same timestamps and hence allow the processes to concurrently
enter the CS.

Let us discuss the functional properties of the algorithm. Alternator exhibits the
highest latency among the algorithms followed by Fuzzy. In Alternator, before access-
ing the CS, every process has to sequentially examine the state of each neighbor. This
induces the considerable delay. In Fuzzy, each process enters the CS only after it is a
sink in every color tree; this tree-based synchronization induces the delay.

Throughput plot demonstrates interesting properties of the algorithms. For Alterna-
tor and Fuzzy the throughput grows linearly with load. This is due to the fact that the
two algorithms execute CS actions regardless of requests. That is, they keep serving
CS access whether the application program needs it or not. We only counted solicited
CS accesses. Hence, as the load increases, the operation of the two algorithms becomes
more efficient since more of the produced CS accesses are needed.

The performance of LRA and Transformation is interesting. Even though the dif-
ference in their code is minor, the results that the two algorithms demonstrate differ
significantly. While Transformation’s throughput grows linearly, LRA’s stays nearly
stable as the load increases. Let us discuss the performance of Transformation first. In
this algorithm, to enter the CS, each process selects a new timestamp and waits until



 0

 0.5

 1

 1.5

 2

 2.5

 0  10  20  30  40  50  60  70  80  90  100

V
io

la
ti
o

n
s
, 

n
u

m
b

e
r

Load, number of requesting processes

Transformation
Alternator

Refinement
LRA

Fuzzy

(a) Interleaving semantics (Constant fault
rate of 50%)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0  10  20  30  40  50  60  70  80  90  100

V
io

la
ti
o

n
s
, 

n
u

m
b

e
r

Faults, number

Transformation
Alternator

Refinement
LRA

Fuzzy

(b) Interleaving semantics (Constant load
rate of 50%)

 0

 0.5

 1

 1.5

 2

 2.5

 0  10  20  30  40  50  60  70  80  90  100

V
io

la
ti
o

n
s
, 

n
u

m
b

e
r

Load, number of requesting processes

Transformation
Alternator

Refinement
LRA

Fuzzy

(c) Powerset semantics (Constant fault rate
of 50%)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0  10  20  30  40  50  60  70  80  90  100

V
io

la
ti
o

n
s
, 

n
u

m
b

e
r

Faults, number

Transformation
Alternator

Refinement
LRA

Fuzzy

(d) Powerset semantics (Constant load rate
of 50%)

 0

 0.5

 1

 1.5

 2

 2.5

 0  10  20  30  40  50  60  70  80  90  100

V
io

la
ti
o

n
s
, 

n
u

m
b

e
r

Load, number of requesting processes

Transformation
Alternator

Refinement
LRA

Fuzzy

(e) Synchronous semantics (Constant fault
rate of 50%)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0  10  20  30  40  50  60  70  80  90  100

V
io

la
ti
o

n
s
, 

n
u

m
b

e
r

Faults, number

Transformation
Alternator

Refinement
LRA

Fuzzy

(f) Synchronous semantics (Constant load
rate of 50%)
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it is the smallest among neighbors. In low atomicity, for each CS access, the neighbor
processes have to copy the newly selected timestamp to their local variables. As the
load increases, the neighbors may be able to delay this copy and thus spread it across
multiple CS accesses. This leads to a linear increase in performance with load increase.

For LRA, the situation is even more curious. There, the timestamps are reset to zero
once the process is done accessing the CS. Thus, if the load is low, a neighbor may
not notice timestamp change at all and thus save on the action execution. This opera-
tion offsets the gradual efficiency increase with load that is similar to Transformation.
Overall, the throughput of LRA appears not to change significantly with load increase.

6 Combined Algorithm

Among the algorithms that do not violate safety without faults, our simulation results
indicate that there is no single algorithm that always outperforms the others. For the
throughput metric, Refinement performs better than Alternator under low load. Then,
as the load increases, Alternator becomes more efficient. The break-even load point is
slightly above 60%.

To take advantage of these differences in performance, we propose a combined
algorithm that switches from Refinement to Alternator and back depending on the load.
For this algorithm to work, the system has to be able to estimate the load.

We propose a simple local load estimation procedure. Every process maintains a
boolean variable vote to determine whether the load in the system is high. Each process
determines whether itself and its neighbors are requesting the CS. If the number of CS
requests in the neighborhood is greater than the threshold point of 60%, the process
sets vote to yes. Otherwise, the process sets it to no. This vote is averaged across the
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Fig. 8. Throughput under interleaving semantics and no faults.

computation of a particular algorithm. Figure 9 plots the number of votes depending on
the actual system load for Alternator and Refinement. Our simulation results indicate
that such voting can be used to predict the system load quite accurately. For example,
for 60% load, the number of processes voting yes for Alternator and Refinement is 15%
and 5% respectively. Hence, this voting procedure can be used for algorithm switching
in the combined algorithm.

Note that to prevent jitter, there should be an insensitivity range around the break-
even point and, depending on the specifics of the system, the combined algorithm should
switch to Alternator somewhere above the threshold load of 60%, for example at 65%,
and switch back to Refinement somewhere below the threshold, for example at 55%.
Note that efficiency gains of using combined algorithms are offset by the overhead of
gathering the vote information and switching between algorithms. The actual imple-
mentation of vote gathering and reset is left for future research.

7 Conclusions

In conclusion, we would like to stress the importance of performance evaluation for
self-stabilizing algorithms as it quantifies their robustness and efficiency in a practical
setting. Moreover, it often exposes algorithm features that are not covered in theoretical
studies. For example, as it was observed for LRA, the limited variable range may lead to
greater possibility of a fault making the corrupting state appear legitimate and leading
to safety violations.

The efficiency evaluations have lead us to propose the combined algorithm that
switches between two best performing algorithms depending on the load. However, this
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combined algorithm implementation is not complete. The mechanism of load informa-
tion gathering and algorithm switching is to be developed.

In other possible future work, we would like to suggest testing the self-stabilizing
dining philosophers solutions in a greater variety of specific execution models. One
interesting testing model might be wireless radio communication model, for which ex-
isting probabilitically correct solutions [14] that are worth comparing using our metrics.
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7. Praveen Danturi, Mikhail Nesterenko, and Sébastien Tixeuil. Self-stabilizing philosophers
with generic conflicts. ACM Trans. Auton. Adapt. Syst., 4(1):7:1–7:20, February 2009.

8. E. Dijkstra. Cooperating Sequential Processes. Academic Press, 1968.
9. Shlomi. Dolev. Self-stabilization. MIT Press, March 2000.
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