Corona: A Stabilizing Deterministic
Message-Passing Skip List

Rizal Mohd Nor!, Mikhail Nesterenko!, and Christian Scheideler?

! Department of Computer Science, Kent State University, Kent, OH, USA
2 Department of Computer Science University of Paderborn, Paderborn, Germany

Department of Computer Science
Kent State University
Technical Report: TR-KSU-CS-2011-01

Abstract. We present Corona, a deterministic self-stabilizing algorithm for skip list construction in
structured overlay networks. Corona operates in the low-atomicity message-passing asynchronous sys-
tem model. Corona requires constant process memory space for its operation and, therefore, scales
well. We prove the general necessary conditions limiting the initial states from which a self-stabilizing
structured overlay network in message-passing system can be constructed. The conditions require that
initial state information has to form a weakly connected graph and it should only contain identifiers
that are present in the system. We formally describe Corona and rigorously prove that it stabilizes
from an arbitrary initial state subject to the necessary conditions. We extend Corona to construct a
skip graph and to deal with topology updates.

1 Introduction

In a peer-to-peer overlay network, each process can communicate with any other peer process over the under-
lying network as long as the process is aware of the peer’s identifier. These identifier records form the network
topology. Peer-to-peer networks are effective for distributed information storage, group communication and
large scale computations. The amount of research literature on this subject is extensive [2-4,6,14,17,22,
23, 25].

The skip list [20] is a popular peer-to-peer topology as it allows efficient search and quick topology
updates. Specifically, both identifier search as well as message deletion or addition in a skip list take O(logn)
steps, where n is the number of nodes. A skip list may be either randomized or deterministic. While the
randomized version may be simpler to implement, the deterministic one provides firm search and topology
update bounds as well as greater assurance against failures, malicious behavior and unfavorable topology
changes.

A skip list may not be sufficiently robust against node crashes. Indeed, a single node failure may disconnect
the skip list. Neither is a skip list particularly suitable for concurrent searches. The standard measures of
robustness and concurrency are expansion and congestion [4]. The expansion and congestion of the skip
list are O(1/n) and £2(n) respectively. A skip list extension, the skip graph [3], significantly improves these
metrics.

The scale of peer-to-peer systems may reach millions of nodes. At such scale, fault-tolerance and topology
maintenance become a major concern. Self-stabilization [12] may be a particularly suitable failure recovery
approach for peer-to-peer systems [1,19] as it is oblivious to the exact nature of the fault. As soon as the
influence of the fault stops, regardless of the state in which this fault leaves the system, its self-stabilization
is guaranteed to return it to a correct state.

Due to the large initial state space, self-stabilization programs require careful correctness proofs. If
practical low atomicity communication models, such as the message-passing system, are considered such
proofs may become difficult both to construct and to verify. Furthermore, a large initial state space may lead

to excessive process memory demands during stabilization, especially during initial linearization: topological
sorting of the processes [19].

Our contribution. In this paper we present Corona: a self-stabilizing deterministic skip list construction
algorithm in message-passing systems. To the best of our knowledge Corona is the first such algorithm.

Before describing Corona, we prove two necessary conditions for the existence of a self-stabilizing solution
to any overlay network problem. The conditions limit the possible initial states in two ways: the state
information must form a weakly connected graph, and the states should not include identifiers that are not
present in the system. Subject to these restrictions, we rigorously prove Corona to correctly stabilize from
an arbitrary initial state.

Instead of struggling to counteract the large state space of message passing systems, we are able to
use the low-atomicity model to our advantage: the channels are employed as extra identifier storage space.
This allows us to keep the Corona design relatively straightforward and to linearize processes using process
memory that is independent of the system size. We extend Corona to build skip graphs and to accommodate
topology updates.

Related literature. There is a large body of literature on how to efficiently maintain peer-to-peer networks.
Most of the results focus on preserving the overlay network in the legal set of states. Relatively few studies
address the self-stabilization of such networks. Due to the topology being part of system state, the majority
of classic self-stabilizing techniques are not applicable to peer-to-peer networks.

Initially, researchers addressed simple topologies. The Iterative Successor Pointer Rewiring Protocol [11]
and the Ring Network [24] organize the nodes in a sorted ring. Onus et al. [18] linearize a network into a
sorted linked list. However, they use a simplified synchronized communication model for their algorithm.

There are several studies of more sophisticated structures. Hérault et al. [15] describe a self-stabilizing
spanning tree algorithm. Caron et al. [8] present a Snap-Stabilizing Prefix Tree for Peer-to-Peer systems while
Banchi et al. [7] show stabilizing peer-to-peer spatial filters. However, none of these structures approach the
congestion and expansion of a skip graph. Clouser et al. [10] propose a deterministic self-stabilizing skip list for
shared register communication model. Gall et al. [13] discuss models that capture the parallel time complexity
of locally self-stabilizing networks that avoids bottlenecks and contention. Jacob et al. [21] generalize insights
gained from graph linearization to two dimensions and present a self-stabilizing construction for Delaunay
graphs. In another paper, Jacob et al. [16] present a self-stabilizing, randomized variant of the skip graph and
show that it can recover its network topology from any weakly connected state in (9(log2 n) communication
rounds with high probability in a simple, synchronized message passing model. In [5] the authors present
a general framework for the self-stabilizing construction of any overlay network. However, the algorithm
requires the knowledge of the 2-hop neighborhood for each node and involves the construction of a clique.
In that way, failures at the structure of the overlay network can easily be detected and repaired.

2 Model, Notation and Definitions

Peer-to-peer networks. A peer-to-peer overlay network program consists of a set N of n processes with
unique identifiers. A process can communicate with any other process as long as it has a record of its
identifier. The communication is by passing messages through channels.

Peer-to-peer networks often require ordering the processes in a sequence according to their identifiers.
Two processes a and b are consequent, denoted cnsq(a,b), if (Ve:c € N : (¢ < a)V (b < ¢)). That is, two
consequent processes do not have an identifier between them. For the sake of completeness, we assume that
—o0 is consequent with the smallest id process in the system. Similarly, the largest id process is consequent
with +o0.

Graph terminology helps us reasoning about peer-to-peer networks. A link is a pair of identifiers (a, b)
defined as follows: either message message(b) carrying identifier b is in the incoming channel of process a, or
process a stores identifier b in its local memory. See Figure 2 for illustration. Note that a thus defined link
is directed. In referring to such a directed link (a, b), we always state the predecessor process a first and the

successor process b second. The length of a link (a,b) is the number of processes ¢ such that a < ¢ < b. Note
that the length of (a,b) is zero if cnsq(a,b) is true. The length of (—o0,a) is zero if a is the smallest id in
the system, it is n otherwise. Similarly, the length of (b, +00) is zero if b is maximum and n otherwise. The
process connectivity graph C'P is the graph formed by the links of the identifiers stored by the processes.
A channel connectivity multigraph C'C includes both locally stored and message-based links. Self-loop links
are not considered. By this definition, C'P is a subgraph of C'C. Note that besides the processes, CC and
CP may contain two nodes +00 and —oo and the corresponding links to them. Graph C'P captures current
network connectivity information the set of processes possesses. C'C' reflects the connectivity data that is
stored implicitly in the messages in communication channels. Again, refer to Figure 2 for an example of both
graph types.

Computation model. Each process contains a set of variables and actions. A channel C' is a special kind of
variable whose values are sets of messages. We assume that the only information a message carries is process
identifiers. We further assume that a message carries exactly one identifier. The identifiers are defined. That
is, a message cannot carry co. Channel message capacity is unbounded. Messages cannot be lost. The order
of message receipts does not have to match the order of transmission. That is, the channels are not FIFO.
Due to this, we treat all messages sent to a particular process as belonging to a single incoming channel.

An action has the form (guard) — (command). guard is either a predicate over the contents of the
incoming channel or true. In the latter case the predicate and corresponding action are timeout. command
is a sequence of statements assigning new values to the variables of the process or sending messages to other
processes.

Program state is an assignment of a value to every variable of each process and messages to each channel.
A program state may be arbitrary, the messages and process variables may contain identifiers that are not
present in the network. An identifier is existing if it is present in the network. An action is enabled in some
state if its guard is true in this state. It is disabled in this state otherwise. A timeout action is always enabled.
We consider programs with timeout actions, hence, in every state there is at least one enabled action.

A computation is an infinite fair sequence of states such that for each state s;, the next state s;41 is
obtained by executing the command of an action that is enabled in s;. This disallows the overlap of action
execution. That is, action execution is atomic. We assume two kinds of fairness of computation: weak fairness
of action execution and fair message receipt. Weak fairness of action execution means that if an action is
enabled in all but finitely many states of the computation then this action is executed infinitely often. Fair
message receipt means that if the computation contains a state where there is a message in a channel, the
computation also contains a later state where this message is not present in the channel.

We focus on programs that do not manipulate the internals of process identifiers. Specifically, a program
is compare-store-send if the only operations that it does with process identifiers is comparing them, storing
them in local process memory and sending them in a message. That is, operations on identifiers such as
addition, radix computation, hashing, etc. are not used. In a compare-store-send program, if a process does
not store an identifier in its local memory, the process may learn this identifier only by receiving it in a
message. A compare-store-send program cannot introduce new identifiers to the network, it can only operate
on the ids that are already there. If a computation of a compare-store-send program starts from a state
where every identifier is existing, each state of this computation contains only existing identifiers.

A state conforms to a predicate if this predicate is true in this state; otherwise the state wviolates the
predicate. By this definition, every state conforms to predicate true and none conforms to false. Let A and
B be predicates over program states. Predicate A is closed with respect to the program actions if every state
of the computation that starts in a state conforming to A also conforms to A. Predicate A converges to B
if both A and B are closed and any computation starting from a state conforming to A contains a state
conforming to B.

Problems. The overlay network problem maps each set of identifiers to a set of acceptable process connec-
tivity graphs. For example, for every set of processes, the linearization problem specifies exactly one graph
where each process is linked with its consequent processes.

Linearized overlay networks simplify process search. When discussing a linearized network, processes with
identifiers greater than p are to the right of p, while processes with identifiers smaller than p are to the left of
p. That is, we consider processes arranged in the increased order of identifiers from left to right. See Figure 2
for an illustration.

The process search time in a simple linearized network is proportional to its size. This may not be
acceptable in large-scale networks. Shortcut links are added to accelerate navigation. In a deterministic skip
list, these links are created recursively by levels. The zero (bottom) level is the linearized list of processes.
In a k-l skip list, a node a has a link to node b at level ¢ if @ and b are between k and [hops away at level
i — 1. For example, in a 1-2 skip list, a and b are linked at level i if they are no more than three and no less
than two hops away at level i — 1. Refer to Figure 4 for an example of a 1-2 skip list.

In the k-1 skip list construction problem, a set of processes is mapped to the set of possible skip lists. Note
that in a linearization problem the set of identifiers uniquely determines the connectivity graph. In case of
k-1 skip list construction, depending on which processes participate at each level, the same list of identifiers
may form several possible skip lists. Hence, the skip list construction problem specifies multiple acceptable
CP graphs for a single set of processes.

We define the two problem properties below to aid us in formally stating the necessary conditions for
the existence of a solution. An overlay network problem is single component if it maps every set of processes
to a weakly connected process connectivity graph. Intuitively, a single component network overlay problem
prohibits a program to separate the network into multiple components. The linearization and skip list
construction problem are single component.

An overlay network problem PG is disconnecting if there is at least one set of processes S such that for
every channel connectivity graph C'P to which PG maps S, there is a cut set C'S such that |C'S| < n—1 which
disconnects S. Note that such a cut set exists for any graph except for a completely connected one. Essentially,
a disconnecting network overlay problem requires that in at least one case the channel connectivity graph is
not completely connected. Again, both the linearization and skip list construction problem are disconnecting.

Problem solutions. A program PG satisfies or solves a problem PR from a predicate P if, for every set S,
every computation of PG that starts in a state conforming to P contains a suffix with the following property.
The channel connectivity graph C'P is the same in every state of this suffix and this C'P is one of the graphs
to which PR maps S. That is, starting from the initial state in P, the solution has to implement at least
one of the required CPs.

Program stabilization is graph-identical if every computation of a stabilizing program contains a suffix
where C'C contains the same links as C'P. Such program generates C'C links that are already present in C'P.
If a process of such program receives a message, this message carries an identifier that the recipient process
already stores and the process ignores the message.

A program is unconditionally stabilizing (or just stabilizing) if it solves the problem from P = true.
That is, every computation of a stabilizing program, regardless of the initial state, contains a correct suffix.
Unconditional stabilization may be too strong for a program to possess. A program is conditionally stabilizing
if P # true. That is, such program stabilizes from a limited set P of states.

We define two special cases of conditionally stabilizing programs. A program is weakly channel-connectivity
stabilizing if it stabilizes only from the initial states where the channel-connectivity graph is weakly connected.
A program is existing identifier stabilizing if it stabilizes only from states where every identifier is existing.

3 Necessary Conditions

The necessary conditions stated in this section show that common overlay network topology specifications
prohibit the existence of unconditionally stabilizing solutions. The necessary conditions are that initially the
channel connectivity graphs need to be connected and non-existing identifiers are not present.

The proofs for these conditions rely on the lemma below. Intuitively, the lemma states that for the
processes to form a connected topology they have to be at least weakly connected initially.

Lemma 1. If a computation of a compare-store-send program starts in a state where the channel connectivity
graph C'C' is disconnected, the graph is disconnected in every state of this computation.

Proof: Let us consider, without loss of generality, a program state where the connectivity graph contains
two components C7 and Cy. Assume the opposite: the computation starting from this state contains states
where the two components of CC are connected. Let us consider the first such state s;. In this state there
must be two process a € C; and b € Cy that are neighbors. Assume the link is from a to b. That is,
(a,b) € CC.

Since s; is the first connected state, this link does not belong to C'C' in the preceding state s;_1. Since
the program is compare-store-send, the new link can not appear in the process memory, it must be due to a
message sent to a by another process ¢ in state s;_1. A message to a carrying b can only be sent by a process
¢ that has links to both a and b in s;_1.

Since (¢, a) € CC, ¢ belongs to the same component Cy as a in s;_1, and since (¢, b) € CC, ¢ belongs to
the same component C5 as b in s;_1. This means that C'; and Cs are weakly connected in a state s;_; that
precedes s;. However, we assumed that s; is the first state where the two components are connected. This
contradiction proves the lemma. (I

Theorem 1. If a compare-store-send self-stabilizing program is a solution to a single-component overlay
network problem, this program must be weakly channel-connectivity stabilizing.

Proof: Assume the opposite. That is, there is a self-stabilizing program PG that solves a single-component
overlay network problem PR and it is not weakly channel-connectivity stabilizing.

Since Pg is a solution to PR, for each set S, every computation of PG contains a suffix with the prescribed
CP. Since PG is not necessarily weakly channel-connectivity stabilizing, this holds true for computations
starting from a state where C'C' is disconnected. Program PG is a compare-store-send program. According
to Lemma 1, if its computation starts from a state where C'C' is disconnected, it is disconnected in every
state of this computation. Since C'P is a subgraph of C'C, it has to be disconnected in every state of this
computation as well. However, PR is single-component. Since PR is single component, it maps every set of
processes S to a weakly connected process C'P. This means that, contrary to our initial assumption, PR is
not a solution to PG. Hence the theorem. |

Theorem 2. If a graph-identical compare-store-send program is a stabilizing solution to a single-component
disconnecting overlay network problem, this program must be existing identifier stabilizing.

Proof: Assume the opposite. Let PG be a compare-store-send program that is a graph-identical self-
stabilizing solution to a single-component disconnecting overlay network problem PR. Since PR is discon-
necting, there is a set of processes S such that for every connectivity graph, there is a cut set that disconnects
this graph.

Consider a computation o of PG with set S. Let C'P be the process connectivity graph to which this
computation converges. Let CS be the cut set that separates S into two subsets S; and S;. Since PG is
graph-identical, o contains a suffix where, in every state, CC' has the same links as CP. Let s; be the first
state of this suffix.

We examine a set, of processes S; U Sy and construct a state of the program for this set as follows. The
state of every process in S U S5 and its incoming channel is the same as in the initial state of ¢. In addition,
the incoming channels of each process a belonging to S7 U.Sy in this state contain the messages that are sent
to a by processes in CS. From this state, we execute the actions of PG for processes S; U Sy in the same
sequence as in ¢. The presence of messages from processes in C'P allows us to do that. After this procedure we
arrive at a state so. We then execute the actions of PG in arbitrary fair manner. Thus constructed sequence
is a computation of PG.

Note that each process of S; U Sy has the same state in s; and so. Since C'S was a cut set of CP in sy,
there are no links between processes of S and S5 in either s; or s;. This means that C'P is disconnected in
$2. Graph CC has the same links as CP in s1. This means that C'C is disconnected in sy as well. According
to Lemma 1, both CC and C'P are disconnected in every state of this computation past ss.

However, PG is supposed to be a solution to PR. Problem PR is single component. This means our con-
structed computation has to contain a suffix where C'P is weakly connected in every state. This contradiction
proves the theorem. O

4 Linearization

Problem statement. In the linearization problem, each set of processes is mapped to the following process
connectivity graph C'P. Each process p in CP contains exactly two outgoing links: p.r and p.l. The links
conform to the following predicate LP:

(Va,b€ N :a <b:cnsqa,b) < ((a.r =0b) A (bl =a)))

The predicate states that two processes are neighbors if and only if they are consequent.

I-Corona description. Each process p maintains two variables r» and [as required by the problem speci-
fication. The range of each variable are the process identifiers respectively to the left and to the right of p.
That is, r can only store identifiers that are greater than p, while [— less than p. The value of each variable
may be undefined. In this case it is equal to respectively —oco and 4oco. If non-existent identifiers are not
present in the initial state of the program computation, the [variable of the smallest id process and the r
variable of the largest id process are always set to —oo and 400 respectively.

process p
variables
r, // right identifier, greater than p
1 // left identifier, less than p
actions
message(id) € p.C —
receive message(id)
if id > p then
if id < r then
if r < 400 then
send message(r) to id
ri=1d
else
send message(id) to r
if id < p then
if id > [then
if | > —oco then
send message(l) to id
l:=1d
else
send message(id) to |
true —
if r < 400 then send message(p) to r
if I > —oo then send message(p) to [

Fig. 1. Linearization component of Corona (I-Corona).

Each process p of 1-Corona contains two actions: a receive-action and a timeout action. The receive action
is enabled when there is a message in the incoming channel p.C'. The operation of the action depends on the

id carried by the message. If id is greater than p, it is compared to r. If id is less than r, then p discovered
a closer right neighbor. Process p then forwards the old right neighbor identifier to the new process and
reassigns its variable r. However, if the received id is no less than 7, then the current right neighbor of p is no
further away than id. In this case p sends id for process r to process. If r is not initialized, it is assigned the
received id. The identifier that is smaller than p is handled similarly. The timeout action sends the process
identifier to its left and right neighbors. An example computation of 1-Corona is shown in Figure 2.

! / / !
’ ’ / 7 ’ ’ / 7 a b C d
a b c d a b C d ° ° °
cc\cp ° o A ° A /,’A\
- . N . N
- _ - - a,. -~ b c d
a b, -7 d a,-" b,-"c ~d Ap 2 ¢ g

(b) b receives message
with ¢, updates b.r, and
forwards d to ¢

(c) d receives message with
b, updates d.l

/ / U ! ’ / / ! / / U !
a b c d a b c d a b c d
CC\CP ° o ° ° ° ° 2 ° o yl °
K N K S
7/ AY 7/
oP ay b c d a N Cy gi a Q,/ ¢ gi

(A S

(d) ¢ receives message with a, forwards it (e) b receives message with (f) a receives message with

to b; ¢ receives d, updates c.r

a, updates b.[; b times out
and sends its id to a; ¢
times out and sends it id
tod

b, updates a.r, forwards c
to b; d receives message
with ¢, updates d.l, for-
wards b to ¢; when these

messages are received, the
network is linearized

Fig. 2. Example computation of I-Corona. To simplify the picture each process is represented by two nodes. The
primed nodes are the process’ incoming channel. Solid lines denote identifiers stored in [and 7 of each process.
Dashed lines are identifiers in the incoming channel.

Correctness proof. We prove that 1-Corona is weakly-channel connected and existing identifier stabilizing
to the linearization problem. Therefore, throughout this subsection we assume that in every initial state,
only existing identifiers are present and the channel connectivity graph is weakly connected.

Observe that due to the operation of the algorithm, in case a < b, link (a,b) can only be replaced by a
link (a, ¢) such that a < ¢ < b. Likewise, link (b, a) can only be replaced by (b, ¢) such that a < ¢ < b. That
is, a link in C'P can only be shortened. An example of C'P link shortening is shown in Figure 2: the link
(b, d) is shortened to (b,c) in transition from 2(a) to 2(b). Note that every process in C'P contains exactly
two outgoing links. One is pointing to the left, the other — to the right.

Similarly, in case a < b, a link (a,b) € CC'\ CP can be replaced only by a link (¢, b) such that a < ¢ < b.
In the other direction, a link (b,a) € CC \ C'P can be replaced only by a link (¢,a) such that a < ¢ < b.
Again, the link in CC' can only be shortened. For example, link (¢,a) € CC\ CP in Figure 2 is shortened to
(b,a) in transition from 2(c) to 2(d). Note that unlike C'P, a process may contain more than two outgoing
links in CC' \ CP. And, while some links are shortened, longer ones may be added by timeout actions.

Lemma 2. If a computation of I-Corona starts from a state where CC' contains a path from process a to b,
then in every state of this computation, there is a path from a to b as well.

Proof: We show that the execution of every action of I-Corona either adds a link, retains all links, or
replaces a link by a path. Therefore, none of the paths that contain these links before the action execution
are disconnected by it.

Let us consider the receive-action and focus on the identifier that the message carries. The self-loops are
not considered in C'C'. Therefore, the case of id = p is not applicable. We will only discuss the case of id > p,
the case of id < p is similar. If » = 400, the link is retained by p, and C'C does not change.

Otherwise, this action of the program depends on the value of r. If id > r, then p forwards id to process
r. That is, the link (p,id) is replaced by the path (p,r) and (r,id) in CC. Now, if id is between p and r,
then p sends the value of r to id and updates the value of its right link to id. In other words, the link (p,id)
is not changed in CC but link (p,r) is replaced by the path (p,id) and (id,r). Thus, the receive-action of
I-Corona does not disconnect paths in CC.

The case of the timeout action is straightforward as it only adds links to C'C' and thus cannot disconnect
paths in CC. |

Lemma 3. If a computation of I-Corona starts in a state where for some process a there are two links
(a,b) € CP and (a,c) € CC\ CP such that a < ¢ < b, then this computation contains a state where there is
a link (a,d) € CP where d < c.

Similarly, if the two links (a,b) € CP and (a,c) € CC\CP are such that b < ¢ < a, then this computation
contains a state where there is a link (a,d) € CP where d > c.

Intuitively, Lemma 3 states that if there is a link in the incoming channel of a process that is shorter
than what the process already stores, then, the process’ links will eventually be shortened. The proof is by
simple examination of the algorithm.

Lemma 4. If a computation of I-Corona starts in a state where for some process a there is an edge (a,b) €
CP and (a,c) € CC\ CP such that a < b < ¢, then the computation contains a state where there is a link
(d,c) € CP, where d <b.

Similarly, if the two links (a,b) € CP and (a,c) € CC\CP are such that c < b < a, then this computation
contains a state where there is a link (d,c) € CP, where d > b.

Intuitively, the above lemma states that if there is a longer link in the channel, it will be shortened by
forwarding the id to its closer successor.

Lemma 5. If a computation of I-Corona starts in a state where for some processes a, b, and ¢ such that
a<c<b(ora>c>b), there are edges (a,b) € CP and (¢c,a) € CC, then the computation contains a state
where either some edge in C'P is shorter than in the initial state or (a,c) € CP.

Proof: The timeout action in process c is always enabled. When executed, it adds message(c) to the
incoming channel of process a. Then, the lemma follows from Lemma 3. O

Lemma 6. If a computation starts in a state where there is a link (a,b) € CP, then the computation contains
a state where some link in CP is shorter than in the initial state or there is a link (b,a) € CP.

Proof: Assume without loss of generality that a < b. Once a executes its always enabled timeout action,
link (b, a) is added to CC. We need to prove that either some link in C'P is shortened or this link is added
to CP.

Let us consider a link (b, ¢) € C'P such that ¢ < b. There can be three cases with respect to the relationship
between a and c. In case ¢ < a, the lemma follows from Lemma 3. In case ¢ = a, the claim of the lemma is
already satisfied. The case of ¢ > a is the most involved.

According to Lemma 4, if ¢ > a, the computation contains a state where a shorter link to a belongs to
CC'. That is, there is a process d such that a < d < ¢ and (a,d) € CC. Let us consider link (e,d) € CP such
that e < d.

If e < a, then, according to Lemma 3, some link in C'P shortens. If e = a, then some link in C'P shortens
according to Lemma 5. In both cases the claim of this lemma is satisfied.

Let us now consider the case where e > a. According to Lemma 4, the link to process a in C'C shortens.
The same argument applies to the new shorter link to a in CC. That is, either some link in C'P shortens or
a link to a shortens. Since the length of the link to a is finite, some link in C'P eventually shortens. Hence
the lemma. |

Lemma 7. If the computation is such that if (a,b) € CP then (b,a) € C'P in every state of the computation,
then this computation contains a suffiz where ((a,b) € CP) = ((a,b) € CC)

Lemma 7 states that if C'P does not change in a computation then eventually, the links in C' P contain
all the links of C'C.

Lemma 8. Let CP is strongly connected in some state of the system. Let also for every pair of processes a
and b in this state, if (a,b) € CP then also (b,a) € CP. In this case, this state satisfies LP.

Proof: Let us prove the if part of LP first. Assume that the state in the condition of the lemma violates
LP. That is, there is a pair of consequent processes v and v that are not neighbors. By condition of the
lemma, C'P is strongly connected. This means that there is a path from u to v. Let us consider the shortest
such path. Since u and v are not neighbors, the path has to include processes to the left or to the right of
both v and v. Assume without loss of generality u < v and the path includes processes to the right of w
and v. Let us consider the rightmost process in this path w. Let = and y be the processes that respectively
precede and follow w in this path. Since w is the rightmost, both = and w are to the left of w.

Note that each process in C'P can have at most one outgoing left and one outgoing right neighbor. By
the condition of the lemma the outgoing neighbor of a process is also its incoming neighbor. Since x precedes
w in the path from u to v and y follows w, x is the incoming and y is the outgoing neighbors of w. Yet, x
and y are both to the left of w. This means that x = y. However, this also means that w can be eliminated
from the path from u to v and can be shortened this way. However, we considered the shortest path from
and v. It cannot be further shortened. We arrived at a contradiction which proves the if part of the lemma.

The only if part follows from the observation that each process can only have a single right and single
left neighbor. That is, if a process is already a neighbor with the consequent process it cannot be a neighbor
with any other process. (|

Theorem 3. Program I-Corona is a weakly channel-connectivity existing identifier stabilizing solution to the
linearization problem.

Proof: To prove the theorem we show that 1-Corona stabilizes to LP. The closure of LP follows immedi-
ately from the operation of I-Corona. Indeed, LP states that the links in C'P connect consequent processes.
The only change that I-Corona can do to links in C'P is shorten them. However, the length of the links to
consequent processes is already zero and they cannot be further shortened.

Let us now address the convergence of LP. Consider a computation of I-Corona. According to Lemma 6,
for each process a if there is a link (a,b) € CP, then some link is shortened in C'P or there is a state where
(b, a) also belongs to C'P. Since links can be shortened only a finite number of times in a computation, there
is a suffix of this computation where in every state if (a,) belongs to C'P so does (b, a). Note that CP does
not change in this suffix of the computation, hence, according to Lemma 7, there is also a suffix where links
in CP and CC are identical.

According to Lemma 2, CC' is not disconnected during a computation of 1-Corona. This means that in
this suffix C'P is also connected. According to Lemma 6 then, C'P is strongly connected. Then, according to
Lemma 8, this computation contains a state where LP is satisfied. Hence the theorem. O

5 Skip List Stabilization

Problem statement. The problem maps each set of processes to a set of valid 1-2 skip lists. In each skip
list the bottom level is linearized and for each level 7 > 0, the following predicate SL holds: any two processes

a and b are neighbors at level 7 if the distance between a and b at level ¢ — 1 is no less than 2 and no more
than 3 hops.

s-Corona description. Each level of s-Corona has two sub-levels: status decision sublevel — sd-Corona,
and neighbor linking sublevel sn-Corona.

sd-Corona of level ¢ uses neighborhood information of level i — 1 to determine the status of a process at
level i. Depending on whether the process participates at level ¢, the process status is either up or down. If
a process is down at level i it is down at all levels above 7. On the basis of this information sn-Corona links
p with its left and right neighbor at level ¢. sn-Corona of level i does not influence the operation of sd-Corona
at level i. If process p is up, sn-Corona inspects ¢ — 1 neighbors three hops away from p to determine the
nearest up neighbor and connects it to p. To ensure overall CC' connectivity preservation sn-Corona sends
itself the link to the previous neighbor at level 0 for 1-Corona to handle. The stabilizing implementation of
sn-Corona is relatively straightforward. We, therefore, do not present it and focus on sd-Corona instead.

sd-Corona description. sd-Corona operates similarly at each level. At every level it maintains a set of
variables that belong to only this level. At level i, process p of sd-Corona makes use of the identities p.(i —1).1
and p.(i — 1).r of its respective left and right neighbors at level ¢ — 1. sd-Corona at level ¢ does not change
these identities. Therefore, they are assumed constant for the operation of sd-Corona at this level.

At level i, process p of sd-Corona maintains two status variables: p.i.st and p.i.str. The values for both are
up and down. Variable p.i.st stores the status of p itself. Variable p.i.str keeps the status of the right neighbor
of p. The status of the rightmost and leftmost process at level i are fixed as up and down respectively and
are considered constant.

The idea of sd-Corona is to ensure that no two consequent neighbors are up and no three of them are
down. To break symmetry in deciding who of the neighbors should change status, the decision of the right
neighbor is favored.

process p
constants

p.(i — 1).r,p.(i — 1).l // identifiers of right and left neighbors at level ¢ — 1
variables

p.i.st, // own status at level i, either up or down

// constant and set to up for process with highest id
// constant and set to down for process with lowest id
p.i.str// status of right neighbor
actions
message(status) € p.C from p.(i — 1).r —
receive message(status),
p.i.str := status,
if (p.i.st = up) A (p.i.str = up) then
p.i.st := down

message(status) € p.C from p.(i — 1).l —
receive message(status),
if (status = down) A (p.i.st = down) A (p.i.str = down) then
p.i.st ;= up

true —
if p.(¢ — 1).r < 400 then send message(p.i.st) to p.(i — 1).r,
if p.(i — 1).I > —oo then send message(p.i.st) to p.(i — 1).1

Fig. 3. Status decision component of skip list part of Corona (sd-Corona).

10

sd-Corona has three guards. The timeout guard sends the status of p to its neighbors. The two receive
guards process messages from the left and right neighbors of p. If p receives a status value from its right
neighbor, it updates p.i.str and its own status. If both p and its right neighbor are up then p changes its
status to down. If p receives a message from its left neighbor and discovers that its neighbors and itself are
down, it changes its own status to up. The operation of s-Corona is illustrated in Figure 4.

N I !
u achLLIi oa_Ibcdefghi

(a) initial state

(d) at level 0, d receives messages
that both ¢ and e are down and
changes its status to up, links

(b) at level 0, processes d and h
receive messages that their right
neighbors are up, they change
their statuses to down

jmﬁ

) at level 1, i receives message
from f that its status is down,
updates its own status to up

(c) at level 0, e receives message
from f that its status is up and
changes its own status to down;
f and i are linked at level 1

) at level 2, i links with b

with neighbors at level 1

Fig. 4. Example computation of s-Corona. For simplicity, neighbor links are always assumed bidirectional.

Correctness proof.

Lemma 9. If process a at level i of sd-Corona changes its status st only a finite number of times in the
computation, then this computation contains a suffix where every message in the outgoing channel of a carries
the same value as a.i.st and b.i.str = a.i.st for the left neighbor b of a.

Proposition 1. If, in some computation, none of the processes at some level i change their status, then this
computation also contains a suffix where for each process a, a.i.r and a.i.l point to the nearest up process at
this level and do not change.

Lemma 10. If in some computation none of the processes at some level i — 1 change their right and left
neighbors, then this computation also contains a suffix where none of the processes at level i change their
status.

Proof: The proof is by induction on the number of processes on level i. The induction is carried out from
the right end of the process list. To simplify the description we assume the processes are numbered 1 to n
from right to left. Note that the status of the first (rightmost) process is constant. Assume that there is a
suffix of the computations where j — 1 right processes do not change their status.

According to Lemma 9, this computation also contains a suffix where all messages from process j — 1 to
process j, as well as j.r have the same value as the status of process j — 1. In this case there is a suffix of the
computation, where j.i.r does not change. Then, in this suffix j.i.st may change at most once. Specifically,
if j.i.st and j.i.r are both down, then j.i.st can be set to up if j receives a message with status = down
from process j + 1. Thus, this computation contains a suffix where j does not change its status. The lemma
follows by induction.]

Lemma 11. In each computation of s-Corona, every process p changes its status and its left and right
neighbors only finitely many times.

11

Proof: The proof is by induction on the levels of s-Corona. At level zero, the lemma holds due to Theo-
rem 3. Assume that there is a suffix of this computation where the status and neighbors of processes at level
i — 1 do not change. Then, according to Lemma 10, there is a suffix of this computation where the status
of processes at level ¢ does not change either. If that is the case, then, due to Proposition 1, there is also a
suffix where the neighbors do not change. The lemma follows by induction. O

Theorem 4. s-Corona is a weakly channel-connectivity ezisting identifiers stabilizing solution to the 1-2
skip list construction problem.

Proof: To prove the theorem, we show that s-Corona converges to the 1-2 skip list predicate SL. Ac-
cording to Lemma 11, the processes in sd-Corona change their status only finitely many times. Due to the
algorithm design, this means that the sd-Corona converges to predicate where, two consequent processes at
level i — 1 cannot be up and three consequent ones cannot be down. That is, the process status at level i
is appropriate for the 1-2 skip list. Due to Proposition 1 they are correctly linked. Hence the theorem. [

6 Extensions
In closing we would like to describe several significant extensions of basic Corona.

Topology updates. A topology update is a node joining or leaving the set of processes N. We address
topology updates when the system is in correct state, i.e., we consider the simple case where a node joins
or leaves a linearized set of processes. Formally, we assume that in the initial state of the computation, the
program satisfies the linearization predicate LP. Note that the skip list above this linearized list may be
incorrect due to nodes joining or leaving. However, it turns out that a slight update per level is sufficient
to handle that given that every node v stores, in addition to v.i.l and v.i.r, a flag for both v.i.l and v.i.r
in order to remember if v.i.l (resp. v.i.r) also has an i-level link back to v. When determining the status of
level ¢ only once the flags w.r.t. level i — 1 have been set, a joining node will only start getting integrated in
level i once it found its right place in level i — 1, which implies the following lemma.

Lemma 12. A removal or addition of a node at level i — 1 leads to at most one process status change in
sd-Corona at level i.

Proposition 2. The operation of sn-Corona at level © in case of a single status change of a node in sd-
Corona at level i is equivalent to a single state transition that reconnects up neighbors at level 1.

Recursively applying Lemma 12 and Proposition 2 to the levels of the skip list, we obtain the following
theorem.

Theorem 5. The number of topological changes Corona requires to reconstruct the skip graph after a single
topology update is in O(logn)

Skip graphs. The skip list may not be robust or convenient for concurrent searches. Indeed, a failure of a
single top-level node may disconnect the system. A k-l skip graph [3], the processes at level i — 1 that do not
participate at level i, form an alternative list at level i. The process continues recursively both at the main
as well as at the alternative list. That is, each list splits into several at each level. This way, most nodes
have links at all levels of the skip graph. This property makes skip graphs more robust and better suited for
concurrent searchers than skip lists.

Corona can be extended to construct a skip-graph. For that, Corona has to run two instances of sn-corona
at each level 7. The main instance operates as before, while the alternative instance constructs an alternative
list out of the nodes that do not participate in the main list. Note that in the 1-2 skip list, one alternative
list can always be constructed. An instance of sd-Corona at level ¢ + 1 runs each of the lists. The process of

12

splitting into main and alternative list continues iteratively on each thus formed list. No changes are required
in either 1-Corona or sd-Corona.

k-1 skip list. Corona can be extended to accommodate an arbitrary k-l skip list in several ways. For example,
each process in the extended version of Corona maintains the status of & — 1 right neighbors and one left
neighbor. If p detects that it is up and there is an up right neighbor less than [hops away, then p changes
its status to down. If p is down and there are k + 1 consequent down processes, it goes up.

References

1.

w

10.

11.

12.

13.

14.

15.

16.

17.

Luc Onana Alima, Seif Haridi, Ali Ghodsi, Sameh El-Ansary, and Per Brand. Position paper: Self-.properties in
distributed k-ary structured overlay networks. In Proceedings of SELF-STAR: International Workshop on Self-*
Properties in Complex Information Systems, volume 3460 of Lecture Notes in Computer Science. Springer, May
2004.

David Andersen, Hari Balakrishnan, Frans Kaashoek, and Robert Morris. Resilient overlay networks. In SOSP
’01: Proceedings of the eighteenth ACM symposium on Operating systems principles, pages 131-145, New York,
NY, USA, 2001. ACM.

James Aspnes and Gauri Shah. Skip graphs. ACM Transactions on Algorithms, 3(4):37:1-37:25, 2007.

Baruch Awerbuch and Christian Scheideler. The hyperring: a low-congestion deterministic data structure for
distributed environments. In SODA ’04: Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete
algorithms, pages 318-327, Philadelphia, PA, USA, 2004. Society for Industrial and Applied Mathematics.

A. Berns, S. Ghosh, and S. V. Pemmaraju. Brief announcement: a framework for building self-stabilizing overlay
networks. In Proc. of the 29th ACM Symp. on Principles of Distributed Computing (PODC), pages 398-399,
2010.

Ankur Bhargava, Kishore Kothapalli, Chris Riley, Christian Scheideler, and Mark Thober. Pagoda: a dynamic
overlay network for routing, data management, and multicasting. In SPAA ’04: Proceedings of the sizteenth
annual ACM symposium on Parallelism in algorithms and architectures, pages 170-179, New York, NY, USA,
2004. ACM.

Silvia Bianchi, Ajoy Datta, Pascal Felber, and Maria Gradinariu. Stabilizing peer-to-peer spatial filters. In ICDCS
’07: Proceedings of the 27th International Conference on Distributed Computing Systems, page 27, Washington,
DC, USA, 2007. IEEE Computer Society.

Eddy Caron, Frédéric Desprez, Franck Petit, and Cédric Tedeschi. Snap-stabilizing prefix tree for peer-to-peer
systems. Parallel Processing Letters, 20(1):15-30, 2010.

Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed systems. Journal
of the ACM, 43(2):225-267, 1996.

Thomas Clouser, Mikhail Nesterenko, and Christian Scheideler. Tiara: A self-stabilizing deterministic skip list.
In Sandeep S. Kulkarni and André Schiper, editors, SSS, volume 5340 of Lecture Notes in Computer Science,
pages 124-140. Springer, 2008.

Curt Cramer and Thomas Fuhrmann. Self-stabilizing ring networks on connected graphs. Technical Report
2005-5, System Architecture Group, University of Karlsruhe, 2005.

Edsger W. Dijkstra. Self-stabilization in spite of distributed control. Communications of the ACM, 17(11):643—
644, 1974.

D. Gall, R. Jacob, A. Richa, C. Scheideler, S. Schmid, and H. Tdubig. Time complexity of distributed topological
self-stabilization: The case of graph linearization. pages 294-305, 2010.

Nicholas J. A. Harvey, Michael B. Jones, Stefan Saroiu, Marvin Theimer, and Alec Wolman. Skipnet: a scalable
overlay network with practical locality properties. In USITS’03: Proceedings of the 4th conference on USENIX
Symposium on Internet Technologies and Systems, pages 9-9, Berkeley, CA, USA, 2003. USENIX Association.
Thomas Hérault, Pierre Lemarinier, Olivier Peres, Laurence Pilard, and Joffroy Beauquier. Brief announcement:
Self-stabilizing spanning tree algorithm for large scale systems. In Ajoy Kumar Datta and Maria Gradinariu,
editors, SSS, volume 4280 of Lecture Notes in Computer Science, pages 574-575. Springer, 2006.

R. Jacob, A. Richa, C. Scheideler, S. Schmid, and H. T&ubig. A distributed polylogarithmic time algorithm for
self-stabilizing skip graphs. In Proc. of the 28th ACM Symp. on Principles of Distributed Computing (PODC),
pages 131-140, 2009.

Dahlia Malkhi, Moni Naor, and David Ratajczak. Viceroy: a scalable and dynamic emulation of the butterfly.
In PODC ’02: Proceedings of the twenty-first annual symposium on Principles of distributed computing, pages
183-192, New York, NY, USA, 2002. ACM.

13

18.

19.

20.

21.

22.

23.

24.

25.

Melih Onus, Andrea Richa, and Christian Scheideler. Linearization: Locally self-stabilizing sorting in graphs. In
Proc. 9th Workshop on Algorithm Engineering and Ezperiments (ALENEX). STAM, 2007.

Melih Onus, Andréa W. Richa, and Christian Scheideler. Linearization: Locally self-stabilizing sorting in graphs.
In ALENEX 2007: Proceedings of the Workshop on Algorithm Engineering and Experiments. SIAM, January
2007.

William Pugh. Skip lists: A probabilistic alternative to balanced trees. Communications of the ACM, 33(6):668—
676, June 1990.

C. Scheideler R. Jacob, S. Ritscher and S. Schmid. A self-stabilizing local delaunay graph construction. In 20th
Intl. Symp. on Algorithms and Computation (ISAAC), 2009.

Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Schenker. A scalable content-addressable
network. In SIGCOMM ’01: Proceedings of the 2001 conference on Applications, technologies, architectures, and
protocols for computer communications, pages 161-172, New York, NY, USA, 2001. ACM.

Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, decentralized object location, and routing for
large-scale peer-to-peer systems. In Middleware '01: Proceedings of the IFIP/ACM International Conference on
Distributed Systems Platforms Heidelberg, pages 329-350, London, UK, 2001. Springer-Verlag.

Ayman Shaker and Douglas S. Reeves. Self-stabilizing structured ring topology P2P systems. In Proc. 5th IEEE
International Conference on Peer-to-Peer Computing, pages 39-46, 2005.

Ton Stoica, Robert Morris, David Liben-Nowell, David R. Karger, M. Frans Kaashoek, Frank Dabek, and Hari
Balakrishnan. Chord: a scalable peer-to-peer lookup protocol for Internet applications. IEEE/ACM Transactions
on Networking, 11(1):17-32, February 2003.

14

