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Abstract

We propose bi-directional face traversal algorithm
2FACE to shorten the path the message takes to
reach the destination in geometric routing. Our al-
gorithm combines the practicality of the best single-
direction traversal algorithms with the worst case
message complexity of O(|E|), where E is the num-
ber of network edges. We apply 2FACE to a va-
riety of geometric routing algorithms. Our simula-
tion results indicate that bi-directional face traver-
sal decreases the latency of message delivery two to
three times compared to single direction face traver-
sal. The thus selected path approaches the short-
est possible route. This gain in speed comes with a
similar message overhead increase. We describe an
algorithm which compensates for this message over-
head by recording the preferable face traversal direc-
tion. Thus, if a source has several messages to send to
the destination, the subsequent messages follow the
shortest route. Our simulation results show that with
most geometric routing algorithms the message over-
head of finding the short route by bi-directional face
traversal is compensated within two to four repeat

∗This author was supported in part by DARPA contract
OSU-RF #F33615-01-C-1901 and by NSF CAREER Award
0347485.

messages.

1 Introduction

Geometric routing is an elegant approach to data dis-
semination in resource-constrained and large-scale ad
hoc networks such as wireless sensor networks. Ge-
ometric routing is attractive because it does not re-
quire nodes to maintain, or the messages to carry,
extensive state or routing information.

In geometric routing, each node knows its own and
its neighbors’ coordinates. Using low-cost GPS re-
ceivers or location estimation algorithms [2], wireless
sensor nodes can learn their relative location with
respect to the other nodes and then use this informa-
tion to make routing decisions. The message source
node knows the coordinates of the destination node.
The information that the message can carry should
not depend on the network size. Each forwarding
node should not maintain any extended routing data
or keep any information about forwarded messages
between message transmissions. The lack of infras-
tructure makes geometric routing algorithm a popu-
lar initialization and fallback option for other routing
schemes. Thus, geometric routing optimization is of
interest to the broad community of wireless sensor
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network designers.

Greedy routing [4] is an elementary approach to ge-
ometric routing where the node selects the neighbor
closest to the destination and forwards the message
there. The process repeats until the destination is
reached. Greedy routing fails in case the node is a
local minimum: it does not have neighbors that are
closer to the destination than itself. Alternatively,
in compass routing [7], a node selects the neighbor
whose direction has the smallest angle to the direc-
tion of the destination. Compass routing is prone to
livelocks.

GFG [1](also known as GPSR [6]) guarantees mes-
sage delivery. GFG contains two parts. A node uses
greedy routing to forward the message. To get out
of local minimum, GFG switches to face traversal. In
GFG, the message sequentially traverses faces that
intersect the line from the source to destination node.
The face traversal always proceeds in a fixed direc-
tion clockwise or counterclockwise. GFG may use
two face traversal algorithms: FACE-1 and FACE-2.
In FACE-1, the message goes around the entire face
to find the adjacent face that is the closest to the
destination. The message is then sent directly to this
next face and the process repeats. In FACE-2, the
message switches faces as soon as it finds the next
face to traverse. The new face may not be closest to
the destination and the message may have to traverse
the same face multiple times. FACE-1 and FACE-2
have the respective worst case message complexity of
3|E| and |V |2, where V and E are the set of vertices
and edges in the network graph. Even though FACE-
2 has worse message complexity, it proves to be more
efficient in practice.

Datta et al [3] propose a number of optimiza-
tions to GFG. In particular, they propose that nodes
maintain distance-two non-planar neighbors. If these
nodes lie on the same face, the edge from the non-
planar graph may be used as a shortcut to traverse
the face. Kuhn et al [8] modify GFG to achieve
asymptotically optimal worst-case message complex-
ity. Nesterenko and Vora [9] propose a technique
of traversing voids in non-planar graphs similar to
face traversal. This traversal may be combined with
greedy routing in GV G similar to GFG. A number

of geometric (location-based) routing algorithms are
proposed. The reader is referred to the following sur-
vey for a comprehensive list [5].

One of the shortcomings of face and void traver-
sal is the possibility of producing a route that is far
longer than optimal. The problem lies in the fixed
traversal direction used in the existing algorithms.
When routing along a face, the route in one direction
may be significantly shorter than in the other. This
is often the case when the message has to traverse the
external face of the graph. We propose an algorithm
2FACE that accelerates the message propagation by
sending the message to traverse the face in both di-
rections concurrently. When one of the message en-
counters a face that is closer to the destination, the
message spawns two messages to traverse the new
face and continues to traverse the old face. When
the two messages traveling around the face in the op-
posite direction meet, the traversal stops. The node
memory and message-size requirements of 2FACE are
the same as the other geometric routing algorithms.
2FACE improves worst-case time and message com-
plexity of comparable single-direction algorithms. In
practice, 2FACE guarantees faster message delivery
to the destination but may require more messages.
We present a technique to use 2FACE to determine
the intermediate nodes to learn the preferred traver-
sal direction. If source has multiple messages to send
to the same destination, this technique can be used
to eliminate the message overhead as the subsequent
messages use the shorter path.

Paper contribution and organization. The rest
of the paper is organized as follows. We introduce our
notation in Section 2. We describe 2FACE and for-
mally prove it correct in Section 3. In Section 4, we
discuss how the algorithm can be adopted for greedy
routing for use in non-planar graphs and how algo-
rithm can be used to select a preferred route in multi-
message sessions. We evaluate the performance of
our algorithm and its modifications in Section 5 and
conclude the paper in Section 6.
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2 Preliminaries

Graphs. We model the network as a connected geo-
metric graph G = (V,E). The set of nodes (vertices)
V are embedded in a Euclidean plane and are con-
nected by edges E. The graph is planar if its edges
intersect only at vertices. A void is a region on the
plane such that any two points in this region can be
connected by a curve that does not intersect any of
the edges in the graph. Every finite graph has one
infinite external void. The other voids are internal.
A void of a planar graph is a face.

Face traversal. Right-hand-rule face traversal pro-
ceeds as follows. If a message arrives to node a from
its neighbor b, a examines its neighborhood to find
the node c whose edge (a, c) is the next edge after
(a, b) in a clockwise manner. Node a forwards the
message to c. This mechanism results in the message
traversing an internal face in the counter-clockwise
direction, or traversing the external face in the clock-
wise direction. Left-hand-rule traversal is similar, ex-
cept the next-hop neighbor is searched in the opposite
direction. If node n (i) borders two faces F and F ′

both of which intersect the (s, d) line and (ii) there
is an edge adjacent to n that borders F and F ′ and
intersects (s, d), then n is an entry point to F ′ and F .
A source node is an entry point to the first face that
intersects (s, d). Notice that according to this defini-
tion, both nodes adjacent to the edge that intersects
(s, d) are entry points. To simplify the presentation
we assume that only one of them is an entry point
while the other is a regular border node. However,
2FACE is correct without this assumption. Notice
that a face may intersect (s, d) in multiple places and
thus have multiple entry points. Two faces that share
an entry point are adjacent.

Geometric routing. A source node s has a message
to transmit to a destination node d. Node s is aware
of the Euclidean coordinates of d. Node s attaches its
own coordinates as well as those of d to the messages.
Thus, every node receiving the message learns about
the line (s, d) that connects the source and the des-
tination. Each message is a token, as its payload is
irrelevant to its routing. Depending on whether the

token is routed using right- or left-hand-rule, it is de-
noted as R or L. Each node n knows the coordinates
of its neighbors: the nodes adjacent to n in G.

Execution model. We assume that each node can
send only one message at a time. The node does not
have control as to when the sent message is actually
transmitted. After the node appends the message to
the send queue SQ, the message may be sent at arbi-
trary time. Each channel has zero capacity; that is,
the sent message is removed from SQ of the sender
and instantaneously appears at the receiver. Message
transmission is reliable. The node may examine and
modify SQ. We assume that SQ manipulation, in-
cluding its modification and message transmission, is
done atomically. We assume that the execution of the
algorithm is a sequence of atomic actions. The sys-
tem is asynchronous in the sense that the difference
between algorithm execution speed at each process is
arbitrary (but finite).

Complexity measures. The worst case message
complexity of an algorithm is the largest number of
messages that is sent in a single computation calcu-
lated in terms of the network parameters. The worst
case time complexity is the longest chain of causally
related messages in a computation. Where two mes-
sages are causally related if the send of one message
causally follows the receipt of the other.

3 2FACE Description and
Correctness Proof

Description. The pseudocode of 2FACE is shown in
Figure 1. The operation of 2FACE is as follows. The
source s initiates the face traversal by sending the
right- and left-hand rule tokens R and L to traverse
the face F that intersects the (s, d) line. When a node
n receives token L it first checks if it already has a
matching L. If there is a matching token, both tokens
are removed and the processing stops. If the node is
the destination, the token is delivered. Note that for
the same of uniformity, the face traversal continues
after delivery. If n is an entry point to the adjacent
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node s
/* let F be the face bordering s

and intersecting line (s, d)
add L(s, d, F ) to SQ
add R(s, d, F ) to SQ

node n
if receive L(s, d, F ) then

if R(s, d, F ) ∈ SQ then
delete L(s, d, F ) from SQ

else
if n = d then

deliver L(s, d, F )
elsif n if an entry point to F ′ then

add L(s, d, F ′) to SQ
add R(s, d, F ′) to SQ

add L(s, d, F ) to SQ
if receive R(s, d, F ) then

/* handle similar to L(s, d, F ) */

Figure 1: pseudocode for 2FACE at each node

face F ′, n initiates the traversal F ′ by sending L and
R tokens to go around F ′. After that, n retransmits
L. Processing of the receipt of R is similar to that of
L.

The operation of 2FACE is best understood with
an example. Consider the graph shown in Figure 2.
If node s has a message to transmit to node d, it
sends R(F1) and L(F1) tokens around face F1. As a
shorthand, we omit the source and destination and
just specify the face that the token traverses. Nodes
a and b forward L(F1) without other actions. Node
c also forwards L. However, c is an entry point to
an adjacent face F2. Thus, c also sends L(F2) and
R(F2). Node h forwards L(F1) to g. Meanwhile,
i also forwards R(F1) to f . Node i is another entry
point to F2 and it sends another pair of tokens L′(F2)
and R′(F2) to traverse F2. Node f receives R(F1)
from i and forwards it to g. Node g receives both
R(F1) and L(F1) and deletes them. This completes
the traversal of F1.

Notice that there are two pairs of tokens: L, R and
L′, R′ that traverse F2. Token L′ is sent from i to h

Figure 2: Example of 2FACE operation. Nodes s, i
and c are entry points.

via f and g. At h it meets R where both tokens are
destroyed. Token L is forwarded from c to e and then
to d where L is delivered. Token L then continues to
k where it meets R′. Node k destroys the pair and
completes the traversal of F2.

Correctness proof.

Lemma 1 For each node n bordering a face F that
intersects (s, d) one of the following happens exactly
once: either (a) n receives token T (s, d, F ) where T
is either R or L and forwards it or (b) n has a to-
ken, receives a token from the opposite direction and
deletes them both.

Proof: According to the algorithm, the token visits
the node and proceeds to the next one along the face,
or the two tokens in the opposing traversal directions
meet at a node and disappear. Thus, to prove the
lemma, we have to show that each node bordering
face F is reached and that it is visited only once. A
sequence of adjacent nodes of the face is a visited seg-
ment if each node has been visited at least once. A
border of a visited segment is a visited node whose
neighbor is not visited. By the design of the algo-
rithm, a border node always has a token to send to its
neighbor that is not visited. Because we assume reli-
able message transmission, eventually the non-visited
neighbor joins the visited segment. Thus, every node
in a face with a visited segment is eventually visited.

Observe that the face bordering s has at least one
visited segment: the one that contains s itself. Thus,
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every node in this face will eventually be visited. Be-
cause graph G is connected, there is a sequence of
adjacent faces intersecting (s, d) from the face bor-
dering s to the face bordering d. Adjacent faces share
an entry point. When an entry point is visited in one
face, it sends a pair of tokens around the adjacent
face; that is, visiting an entry point creates a vis-
ited segment in the adjacent edges. By induction, all
nodes in the sequence of adjacent faces are visited,
including the destination node.

Let us discuss if a token may penetrate a segment
and arrive at an interior (non-border) node. Observe
that the computation of 2FACE starts with a single
segment consisting of the source node. Thus, initially,
there are no tokens inside any of the segments. As-
sume there are no internal tokens in this computation
up to some step x. Let us consider the next step. The
token may penetrate the segment only through a bor-
der node or through an interior entry point. A token
may arrive at a border node b only from the border
node of another segment of the same face. Because
b is a border node, it already holds the token of the
opposite traversal direction. Thus, b destroys both
tokens and the received token does not propagate to
the interior nodes. Let us consider an entry point
node e. Because e is interior to the segment, it was
visited earlier. Recall that a node is an entry point
of two faces. When an entry point of a face receives
a token, it creates a pair of tokens in the other face.
That is, once an entry point is visited, it becomes
visited in both faces. Since we assumed that there
are no internal tokens up to step x, e cannot receive
a token. By induction, a token may not penetrate a
segment. That is, each node bordering a face is vis-
ited at most once. This completes the proof of the
lemma. �

The below theorem follows from Lemma 1.

Theorem 1 Algorithm 2FACE guarantees the deliv-
ery of a message from s to d.

According to Lemma 1, the total number of mes-
sages sent in a computation is equal to the sum of the
edges of the faces intersecting (s, d). The causally re-
lated messages propagate along a path between s and
d. Hence, the following corollary.

Corollary 1 The worst case message complexity of
2FACE is O(|E|) and time complexity is O(|V |).

4 2FACE Application and
Extensions

Combining with greedy routing, using vari-
ous traversals. For efficiency a single direction face
traversal may be combined with greedy routing as in
GFG [1]. Algorithm 2FACE can be used in a similar
combination. We call the combined algorithm G2FG.
The message starts in greedy mode and switches to
2FACE once it reaches a local minimum. Because
multiple messages traverse the graph simultaneously,
unlike GFG, once the message switches to face traver-
sal in G2FG it continues in this mode until the des-
tination is reached. A technique similar to 2FACE,
can be used for bi-directional void traversal [9]. The
resultant algorithm is 2VOID. 2VOID can also be
combined with greedy routing to form G2VG.

Face traversal can be accelerated if each node
stores its two-hop neighbors as proposed by Datta
et al [3]. This method certainly applies to 2FACE.

Following the shortest path. The performance
of 2FACE can be further optimized if the source has
multiple messages to send to the destination; that
is, there is a session between s and d. The idea is
to route the messages in a single direction and only
along the shorter route of the face. This path is called
preferred. To enable this, the entry point needs to be
informed as to which traversal direction leads to the
shorter route to the destination. Algorithm 2FACE
is augmented by requiring each entry point to store
the traversal direction from which it was visited. The
first message in the session is sent using augmented
2FACE. When d receives the message, it sends a sin-
gle traceback message in the opposite direction. This
traceback is to travel the preferred route in reverse.
When an entry point gets a traceback, it stores the
direction of its arrival and forwards it in the adjacent
face in the reverse direction from which it was first
visited. Thus, traceback reaches the source and every
entry point learns the preferred direction to forward
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messages of the session henceforth. Note that some
of the entry points may lie on the preferred path alto-
gether. A separate message sent using 2FACE has to
inform these entry points to discard the direction in-
formation. The last message of the session that trav-
els the preferred path has to make the entry points
forget about the preferred direction. Thus, follow-
ing the spirit of geometric routing, no information is
stored at intermediate nodes between sessions.

Let us go back to the example in Figure 2 to il-
lustrate this idea. For this example, the route of the
traceback message and the traversal directions for en-
try points s and d are shown in Figure 3. Also refer
to the latter figure for the subsequent discussion. Af-
ter the first 2FACE message, the entry points c and
i store the preferred token arrival direction of L and
R respectively. Destination d receives the left-hand-
rule token first. Node d sends the traceback token R.
When traceback R reaches c, c stores the preferred
token forwarding direction as L. Then, c forwards
the traceback token R. When this token arrives at
s, s learns that the direction of the preferred path is
L. For the rest of the session, s will send messages
to traverse F1 using left-hand-rule until they reach c.
Node c will forward them, also using left-hand-rule,
until the messages reach d. A message has to be sent
using 2FACE to inform entry point i (which does not
lie on the preferred path) that entry point i should
not store direction information any longer.

Figure 3: The example traceback message route and
traversal directions stored at face entry points s and
d.

5 Performance Evaluation

Simulation environment We programmed the al-
gorithms described in this paper using Java and Mat-
lab. We used sets of randomly generated, connected
unit-disk graphs starting with 40 nodes and up to 180
nodes with 20 node increments in an area of 2 by 2
units.

In each graph, the nodes were uniformly dis-
tributed over the area. For each set of generated
graphs we used the connectivity unit u ranging from
0.9 to 0.2: a pair of nodes was connected by an edge
if the distance between them was less than u. Discon-
nected graphs were discarded. For simulation we used
an earlier version of FACE2 where the token waits for
its pair at an entry point. On the generated graphs,
the performance of this version and the one presented
in the paper are identical. For each node density, 20
graphs were generated for the experiments. Thus, the
total number of graphs under consideration was 160
graphs. For each graph, 20 random node pairs were
selected as sources and destinations. Example routes
selected by GFG and G2FG are shown in Figure 4.
In this example, the preferred path distance between
the source and destination is 44 hops for GFG and
14 for G2FG.

Route length comparison. We compare the op-
timal (shortest) route with the route generated by
the single-direction and bi-direction traversal algo-
rithm. For the bi-direction traversal we used the
preferred path for route length calculation. For pla-
nar graphs, we chose the more efficient FACE-2 for
single-direction traversal. For both kinds of traver-
sals, we also compared the performance of the greedy
variants: GFG and G2FG. The results are shown in
Figure 5. We carried out the same measurements for
non-planar traversal algorithms. We chose VOID-
2 as a single-direction traversal algorithm. The re-
sults are shown in Figure 6. We incorporated the 2-
hop shortcut optimization to traversal suggested by
Datta et al [3]. The results are shown in Figure 7.
As the results indicate, for all geometric routing al-
gorithms studied, the bi-directional traversal outper-
forms the single-directional one by a factor of 2 or
3. Moreover, the path length of the bi-directional
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Figure 4: Example routes selected by GFG and
G2FG between nodes 7 and 39 in a 40-node graph

traversal approaches the shortest (optimal) path in
the graph. To highlight the performance improve-
ment, we plotted the difference between the paths
selected by single- and bi-directional traversals nor-
malized to the bi-directional traversal path length.
The plot is in Figure 8. The plot does not show an
observable trend, but the path improvement is con-
sistent across the graph densities and and across dif-
ferent routing algorithms.

The concurrent message transmission in bi-
directional traversal requires more messages than in
in single direction. We quantify this message over-
head in Figure 9. In the first graph, we plat the
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Figure 5: Path length for single and bi-directional
traversal in planar graphs.

message difference between the two traversal types.
Observe that the preferred route selected by bi-
directional traversal is several times shorter on aver-
age. Thus, if source have multiple messages to send
to the destination, the subsequent messages can use
this shorter route as opposed to the route selected by
the single-directional traversal. The second graph in
Figure 9 indicates how many messages per session it
takes to compensate this overhead. The figure indi-
cates that for some routing algorithms the overhead
may be recouped by a session as short as just two
messages.

6 Conclusion

In this paper, we proposed the bi-directional face
traversal to improve geometric routing efficiency. The
results show that the proposed algorithm provides
significant performance improvement over existing
single-face traversal. Moreover, the bi-directional
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Figure 6: Average path length for single and bi-
directional traversal in non-planar graphs.

traversal addresses one of the major drawbacks of
geometric routing: its inconsistency due to selection
of disadvantageous routes. The proposed technique
is simple to implement. The authors are hopeful that
it will find its way into the practical implementation
of routing algorithms.
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