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Abstract

We generalize the classic dining philosophers problem to allow critical section entry conflicts
between non-neighbor processes. This generalization is motivated by a number of practical
problems in distributed systems. We describe a deterministic self-stabilizing solution to the
new problem. We extend our solution to handle a similarly generalized drinking philosophers
problem.

1 Introduction

Self-stabilization (or just stabilization) [7, 10] is an elegant approach to forward recovery from
transient faults as well as initializing a large-scale system. In this paper we present a stabilizing
solution to our generalization of the dining philosophers problem.

The dining philosophers problem (diners for short) is a fundamental resource allocation problem
[6]. The diners, as well as its generalization — the drinking philosophers problem [5], has a variety
of applications. In diners, a set of processes (philosophers) periodically request access to the critical
section (CS) of code. For each process there is a set of neighbor processes. Each process has a
conflict with his neighbors: it cannot share the CS with any of them. In spite of the conflict, each
requesting process should eventually execute the CS. To coordinate CS execution, the processes
communicate. In classic diners it is assumed that each process can directly communicate with its
conflict neighbors. In other words, for every process, the set of communication neighbors fully
contains the set of conflict neighbors.
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However, there are applications where this assumption does not hold. Consider, for example,
wireless sensor networks. A number of problems in this area such as TDMA slot assignment, cluster
formation and routing backbone maintenance can be considered as instances of resource allocation
problems. Yet, due to radio propagation peculiarities, the signal’s interference range may exceed its
effective communication range. Moreover, radio networks have so called hidden terminal problem.
The problem is as follows. Let two transmitters ¢; and t2 be mutually out of reception range, while
receiver r be in range of them both. If ¢; and ¢3 broadcast simultaneously, due to mutual radio
interference, r is unable to receive either broadcast. The potential interference pattern is especially
intricate if the antennas used by the wireless sensor nodes are directional. Such transmitters can
be modeled as conflict neighbors that are not communication neighbors.

To accommodate the applications of this kind, we generalize the diners as follows. Instead of one,
each process has two sets of neighbors: the conflict neighbors and the communication neighbors.
These two sets are not, in general, related. The only restriction is that each conflict-neighbor has
to be reachable through the communication neighbors.

Most solutions to classic diners can potentially be extended to this generalized problem. Indeed,
if a separate communication channel is established to each conflict neighbor the classic diners
program can be directly applied to the generalized case. However, such a solution may not be
efficient. The channels to conflict neighbors go over the communication topology of the system.
The channels to multiple neighbors of the same process may overlap. Moreover, the sparser the
topology, the greater the potential overlap. However, in a diners program, the communication
between conflict neighbors is only of two kinds: a process either requests the permission to execute
the CS from the neighbors, or releases this permission. Due to channel overlap, communicating the
same message to each conflict neighbor separately is not efficient. This motivates our search for an
effective solution to the generalized diners.

Related work. There exist a number of deterministic stabilizing solutions to classic diners [1, 3,
4,9, 12, 13, 14, 15]. None of these solutions separate conflict and communication neighbors.

Meanwhile, researchers studied the problems that require such separation. Herman and Tixeuil
[11] present a probabilistic TDMA slot assignment algorithm for wireless sensor networks. Aru-
mugam and Kulkarni [2] propose a deterministic solution to the same problem. Gairing et al [8]
propose an interesting stabilizing program for conflict neighbor sets containing the communication
neighbors of distance at most two. They apply their program to a number of graph-theoretical
problems. However, their program cannot solve the diners as it is not designed to allow each re-
questing process to enter the CS if its neighbors also continue requesting. That is, their program
allows unfair computations.

Our contribution and paper outline. We generalize the diners problem to separate the conflict
and communication neighbor sets of each process. We define this generalization and describe our
notation and execution model in Section 2. In Section 3 we present a self-stabilizing deterministic
solution to the problem for the case where the conflict set of each process contains its communica-
tion neighbors within a fixed distance in communication topology. We call this program XDP. We
provide a formal correctness proof of XDP in Section 4. We then estimate the stabilization per-
formance of XDP and describe a number of extensions to DP in Section 5. We generalize XDP
to handle arbitrary conflict neighbor sets, solve generalized drinking philosophers, and simplify our
solution to handle problems that do not require fairness of CS access. We show that stabilization
time of XDP is independent of the system size.



2 Preliminaries

Program model. A program consists of a set of processes. Two binary relations N and M are
defined over these processes. Processes p and g are communication neighbors if (p,q) € N, and
conflict neighbors if (p,q) € M. A process contains a set of constants that it can read but not
update. A process maintains a set of variables. Each variable ranges over a fixed domain of values.
We use small case letters to denote singleton variables, and capital ones to denote sets. An action
has the form (name) : (qguard) — (command). A guard is a boolean predicate over the variables
of the process and its communication neighbors. A command is a sequence of statements assigning
new values to the variables of the process. We refer to a variable var and an action ac of process p
as var.p and ac.p respectively. A parameter is used to define a set of actions as one parameterized
action. For example, let j be a parameter ranging over values 2, 5, and 9; then a parameterized
action ac.j defines the set of actions: ac.(j :=2) [| ac.(j :=5) [| ac.(j :=9).

A state of the program is the assignment of a value to every variable of each process from its
corresponding domain. Each process contains a set of actions. An action is enabled in some state
if its guard is true at this state. A computation is a maximal fair sequence of states such that for
each state s;, the next state s; 11 is obtained by executing the command of an action that is enabled
in s;. Maximality of a computation means that either the computation is infinite or it terminates
in as state where none of the actions are enabled. In a computation the action execution is weakly
fair. That is, if an action is enabled in all but finitely many states of an infinite computation then
this action is executed infinitely often.

A state conforms to a predicate if this predicate is true in this state; otherwise the state violates
the predicate. By this definition every state conforms to predicate true and none conforms to false.
Let R and S be predicates over the state of the program. Predicate R is closed with respect to
the program actions if every state of the computation that starts in a state conforming to R also
conforms to R. Predicate R converges to S if R and S are closed and any computation starting
from a state conforming to R contains a state conforming to S. The program stabilizes to R iff
true converges to R.

Problem statement. The instance of the k-hop diners defines a set of processes, and for each
process p — an arbitrary set of communication neighbor processes N.p. A set M.p of conflict
neighbors of p contains the the processes whose distance to p in the graph formed by communication
topology is no more than k. Throughout the computation each process can request CS access an
arbitrary number of times: from zero to infinity. A program that solves the k-hop diners satisfies
the following two properties for each process p:

safety — if the action that executes the CS is enabled in p, it is disabled in all processes of M.p;

liveness — if p wishes to execute the CS, it is eventually allowed to do so.

3 KDP Algorithm Description

Algorithm overview. The main idea of the algorithm is to coordinate CS request notifications
between multiple conflict neighbors of the same process. We assume that for each process p there is
a tree that spans M.p. This tree is rooted in p. A stabilizing breadth-first construction of the tree
is a relatively simple task [7]. Notice that the individual tree construction is independent of other
trees constructions. Thus, these trees can be built in parallel. We assume that the tree construction
is completed and the tree remains unchanged throughout the computation of the algorithm.



process p
const
M: k-hop neighborhood of p
N': immediate neighbors of p
(Vg:q € M :dad.p.q € NKIDS.p.q C N)
parent id and set of children ids for each k-hop neighbor
parameter
r: M
var
state.p.p : {idle,req},
(Vg : g € M : state.p.q : {idle,req,rep}),
YIELD : (Vq:q € M : q > p) lower priority processes to wait for
needcs : boolean, application variable to request the CS

!
join: needcs A state.p.p =idle ANYIELD = @ A
(Vq:q € KIDS.p.p : state.q.p = idle) —
state.p.p := req

I
enter: state.p.p = req A
(Vg:q € KIDS.p.p : state.q.p = rep) A
(Vg:q € M ANq< p: state.p.q = idle) —
/* CS*/
YIELD := (NVg:q € M ANq > p: state.p.q = rep),
state.p.p := idle
I
forward: state.(dad.p.r).r = req A state.p.r = idle A
((KIDS.ppor=@)V (Vqg:q € KIDS.p.r : state.q.r = idle)) —
state.p.r := req
I
back: state.(dad.p.r).r = req A state.p.r = req A
((KIDS.p.r =)V (Vq:q € KIDS.p.r: state.q.r =rep)) V
state.(dad.p.r).r = rep A state.p.r # rep —
state.p.r := rep
I
stop: state.(dad.p.r).r = idle A

(state.p.r #idleVr € YIELD) —
YIELD :=YIELD\ {r},
state.p.r := idle

Figure 1: Process of KDP



The processes in M.p propagate CS request of its root along this tree. The request reflects from
the leaves and, in the form of reply goes back to the root. When the root receives this reply, the
root knows that its conflict neighbors are notified of its request.

The access to the CS is granted on the basis of the priority of the requesting process. Each
process has an identifier that is unique throughout the system. A process with lower identifier has
higher priority. To ensure liveness, when executing the CS, each process p records the identifiers
of its lower priority conflict neighbors that also request the CS. Process p then waits until all these
processes access the CS before requesting it again.

Detailed description. Each process p has access to a number of constants. The set of identifiers
of its communication neighbors is N, and its conflict neighbors is M. For each of its conflict
neighbors 7, p knows the appropriate spanning tree information: the parent identifier — dad.p.r,
and a set of ids of its children — KIDS.p.r.

Process p stores its own request state in variable state.p.p and the state of each of its conflict
neighbors in state.p.r. Notice that p’s own state can be only idle or req, while for its conflict
neighbors the state of p also has rep. To simplify the description, depending on the state, we refer
to the process as being idle, requesting or replying. In YIELD, process p maintains the ids of its
lower priority conflict neighbors that should be allowed to enter the CS before p requests it again.
Variable needcs is an external boolean variable that indicates if CS access is desired. Notice that
the CS entry is guaranteed only if needcs remains true until p requests the CS.

There are five actions in the algorithm. The first two: join and enter — manage CS entry of
p itself. The remaining three: forward, back and stop — propagate CS request information along
the tree. Notice that the latter three actions are parameterized over the set of conflict neighbors.

Action join states that p requests the CS when the application variable needcs is true, p itself,
as well as its children in its own spanning tree, is idle and there are no lower priority conflict
neighbors to wait for. As action enter describes, p enters the CS when its children reply and the
the higher priority processes do not request the CS themselves. To simplify the presentation, we
describe the CS execution as a single action.

Action forward describes the propagation of request of a conflict neighbor r of p along r’s tree.
Process p propagates the request when p’s parent — dad.p.r is requesting and p’s children are idle.
Similarly, back describes the propagation of a reply back to r. Process p propagates the reply either
if its parent is requesting and p is the leaf in r’s tree or all p’s children are replying. The second
disjunct of back is to expedite the stabilization of XDP. Action stop resets the state of p in r’s
tree to idle when its parent is idle. This action removes r from the set of lower-priority processes
to wait before initiating another request.

4 KDP Correctness Proof

Proof outline. We present the proof of correctness of KDP as follows. We first state a predicate
we call InvK and demonstrate that KDP stabilizes to it in Theorem 1. We then proceed to show
that if InvK holds, then KDP satisfies the safety and liveness properties of the diners in Theorems
2 and 3 respectively.

Proof notation. Throughout this section, unless otherwise specified, we consider the conflict
neighbors of a certain node a. That is, we implicitly assume that a is universally quantified over
all processes in the system. In particular, we focus on a child e of a, a descendant of a — b, b’s
parent ¢ and one of b’s children d. That is e € KIDS.a.a,b € M.a, ¢ = dad.b.a and d € KIDS.b.a.



stop.b

Jjoin.a

stop.e

i) intermediate process b ii) root process a
if Inv holds for ancestors

Figure 2: State transitions for an individual process

Since, we will be discussing the states of e, b, ¢ and d in the spanning tree of a, when it is clear
from the context, we omit the specifier of the conflict neighborhood. For example, we use state.b
for state.b.a. For clarity, we attach the identifier of the process to the actions it contains. For
example, forward.b is the forward action of process b.

Our global predicate consists of the following two predicates that constrain the states of each
individual process and the states of its communication neighbors. The predicate below relates the
states of the root of the tree a to the states of its children.

state.a = idle A (Ve : e € KIDS.a : state.e # req) (Inv.a)

The following sequence of predicates relates the state of b to the state of its neighbors.

state.b = idle A state.c #rep A (Vd:d € KIDS.b: state.d # req) (I.b.a)
state.b = req A state.c = req (R.b.a)
state.b = rep A (Vd:d € KIDS.b: state.d = rep) (P.b.a)

We denote the disjunction of the above three predicates as follows:
I.b.aV R.b.aV Pb.a (Inv.b.a)
The following predicate relates the states of all processes in M.a.

(Va :: Inv.a A (Vb:b e M.a: Inv.b.a)) (InvK)

To aid in exposition, we mapped the states and transitions for individual processes in Figure
2. Note that to simplify the picture, for the intermediate process b we only show the states and
transitions if Inmv holds for each ancestor of b. For b, the I.b, R.b and P.b denote the states
conforming to the respective predicates. While the primed versions I'.b and P’.b signify the states
where b is respectively idle and replying but Inv.b.a does not hold. Notice that the primed version
of R does not exist if Inv.c holds for b’s parent c. Indeed, to violate R, b should be requesting
while c is either idle or replying. However, if Inv.c holds, when c is in either of these two states, b
cannot be requesting.

For a, IR.a and RR.a denote the states where a is respectively idle and requesting while Inv.a
holds. In states IR .a, a is idle while Inv.a does not hold. Notice that Inv.a always holds if a is



requesting. The state transitions in Figure 2 are labeled by actions whose execution effects them.
Loopback transitions are not shown.

Theorem 1 (Stabilization) Program KDP stabilizes to InvK.

Proof: By the definition of stabilization, InvK should be closed with respect to the execution
of the actions of XDP, and KDP should converge to InvK. We prove the closure first.

Closure. To aid in the subsequent convergence proof, we show a property that is stronger than
just the closure of InvK. We demonstrate the closure of the following conjunction of predicates:
Inv.a and Inv.b.a for a set of descendants of a up to a certain depth of the tree. To put another
way, in showing the closure of Inv.b.a for b we assume that the appropriate predicate holds for all
its descendants. Naturally, the closure of InvK follows.

By definition of a closure of a predicate, we need to demonstrate that if the predicate holds in
a certain state, the execution of any action in this state does not violate the predicate.

Let us consider Inv.a and a root process a first. Notice that the only two actions that can
potentially violate Inv.a are enter.a and forward.e. Let us examine each action. If enter.a is
enabled, each child of a is replying. Hence, when it is executed and sets the state of a to idle,
Inv.a holds. If forward.e is enabled, a is requesting. Thus, setting the state of e to req does not
violate Inv.a.

Let us now consider Inv.b.a for an intermediate process b € M.a. We examine the effect of the
actions of b, b’s parent — ¢, and one of b’s children — d in this sequence.

Let us start with the actions of b. If 1.b holds, forward.b is the only action that can be enabled.
If it is enabled, c¢ is requesting. Thus, if it is executed, R.b holds and Inv.b.a is not violated. If
R.b holds then back.b is the only action that can be enabled. However, if back.b is enabled and
R.b holds, then all children of b are replying. If back.b is executed, the resultant state conforms to
P.b. If P.b holds, then stop.b can exclusively be enabled. If P.b holds and stop.b is enabled, then ¢
is idle and all children of b are replying. The execution of back.b sets the state of b to idle. The
resulting state conforms to I1.b and Inv.b.a is not violated.

Let us examine the actions of c¢. Recall that we are assuming that Inv.c holds. If I.b holds,
forward.c it the only possible enabled action. If it is enabled, b is idle. The execution of forward.c
sets the state of ¢ to req. I.b and Inwv.b.a still hold. If R.b holds none of the actions of ¢ are
enabled. Indeed, actions forward.c and back.c are disabled. Moreover, if R.b holds, c¢ is requesting,
since Inv.c holds, ¢ must be in R.c. Which means that ¢’s parent is not idle. Hence, stop.c is also
disabled. Since P.b does not mention the state of ¢, the execution of ¢’s actions does not affect the
validity of P.b.

Let us now examine the actions of d. If 1.b holds, the only possibly enabled action is stop.d.
The execution of this action moves the state of d to idle, which does not violate 1.b. R.b does not
mention the state of d. Hence, its action execution does not affect R.b. If P.b holds, all actions of
d are disabled.

This concludes the closure proof of InvK.

Convergence. We prove convergence by induction on the depth of the tree rooted in a.

Let us show convergence of a. The only illegitimate set of states is IR'.a. When a conforms to
IR .a, a is idle and at least one child e is requesting. In such state, all actions that affect the state
of a are disabled. Moreover, for every child of a that is idle, all relevant actions are disabled as
well. For the child e that is not idle, the only enabled action is stop.e. After this action is executed
e is idle. Thus, eventually I R.a holds.



Let a conform to Inv.a. Let also every descendant process f of a up to depth ¢ confirm to
Inv.f.a. Let the distance from a to b be i + 1. We shall show that Inv.b.a eventually holds. Notice
that according to the proceeding closure proof, conjunction of Inv.a and for each process f in the
distance no more than ¢ the predicate Inv.f is closed.

Note that according to Figure 2, there is no loop in the state transitions containing primed
states. Hence, to prove that b eventually satisfies Inv.b.a we need to show that b does not remain
in a single primed state indefinitely. Process b can satisfy either I'.b or P’.b. Let us examine these
cases individually.

Let b € I'.b. Since Inwv.c holds, if b is idle, ¢ cannot satisfy P.c. Thus, for b to satisfy I'.b, at
least one child d of b must be requesting. However, if b is idle then stop.d is enabled. When this
action is executed for every requesting child of b, b leaves I'.b.

Suppose b € P'.b. This means that there exists at least one child d of b that is not requesting.
However, for every such process d, back.d is enabled. When it is executed for every such process, b
leaves P'.b.

Hence, XDP converges to InvK. O

Theorem 2 (Safety) If InvK holds and enter.a is enabled, then for every process b € M.a,
enter.b is disabled.

Proof: If enter.a is enabled, every child of a is replying. Due to InvK, this means that every
descendant of a is also replying. Thus, for every process x whose priority is lower than a’s priority,
enter.z is disabled.

Note also, that since enter.a is enabled, for every process y whose priority is higher than a’s,
state.a.y is idle. According to InvK, none of the ancestors of a in 4’s tree, including %’s children,
are replying. Thus, enter.y is disabled.

In short, when enter.a is enabled, neither higher nor lower priority processes of M.a have enter
enabled. The theorem follows. O

Lemma 1 If InvK holds, and some process a is requesting, then eventually either a stops request-
ing or none of its descendants are idle.

Proof:  Notice that the lemma trivially holds if a stops requesting. Thus, we focus on proving
the second claim of the lemma. We prove it by induction on the depth of a’s tree. Process a is
requesting and so it is not idle. By the assumption of the lemma, a will not be idle. Now let us
assume that this lemma holds for all its descendants up to distance 7. Let b be a descendant of a
whose distance from a is ¢ + 1. And let b be idle.

By inductive assumption, b’s parent ¢ is not idle. Due to InvK, if b is idle ¢ is not replying.
Hence, c is requesting.

If there exists a child d of b that is not idle, then stop.d is enabled at d. When stop.d is executed,
d is idle. Notice that when b and d are idle, all actions of d are disabled. Thus, d continues to be
idle. When all children of b are idle and its parent is requesting, forward.b is enabled. When it is
executed, b is not idle.

Notice, that the only way for b to become idle again is to execute stop.b. However, by inductive
assumption c is not idle. This means that stop.b is disabled. The lemma, follows. O

Lemma 2 If InvK holds and some process a is requesting, then eventually all its children in M.a
are replying.



Proof: Notice that when a is requesting, the conditions of Lemma 1 are satisfied. Thus, even-
tually, none of the descendants of a are idle. Notice that if a process is replying it does not start
requesting without being idle first (see Figure 2). Thus, we have to prove that each individual
process is eventually replying. We prove it by induction on the height of a’s tree.

If a leaf node b is requesting and its parent is not idle, back.b is enabled. When it is executed,
b is replying. Assume that each node whose longest distance to a leaf of a’s tree is i is replying.
Let b’s longest distance to a leaf be ¢ + 1. By assumption, all its children are replying. Due to
Lemma 1, its parent is not idle. In this case back.b is enabled. After it is executed, b is replying.
By induction, the lemma holds. O

Lemma 3 If InvK holds and the computation contains infinitely many states where a is idle, then
for every descendant there are infinitely many states where it is idle as well.

Proof: We first consider the case where the computation contains a suffix where a is idle in
every state. In this case we prove the lemma by induction on the depth of a’s tree with a itself as
a base case. Assume that there is a suffix where all descendants of a up to depth ¢ are idle. Let us
consider process b whose distance to a is ¢ + 1. Notice that this means that ¢ remains idle in every
state of this suffix. If b is not idle, stop.b is enabled. Once it is executed, no relevant actions are
enabled at b and it remains idle afterwards. By induction, the lemma holds.

Let us now consider the case where no computation suffix of continuously idle a exists. Yet,
there are infinitely many states where a is idle. Thus, a leaves the idle state and returns to it
infinitely often. We prove by induction on the depth of the tree that every descendant of a behaves
similarly. This claim holds for the descendants up to depth 7. Let b’s distance to a be 7 + 1.

When InvK holds, the only way for b’s parent ¢ to leave idle is to execute forward.c (see Figure
2). Similarly, the only way for ¢ to return to idle is to execute stop.c while c is replying .

However, forward.c is enabled only when b is idle. Also, according to InvK when c is requesting,
b is not idle. Thus, b leaves idle and returns to it infinitely many times as well. By induction, the
lemma, follows. O

Lemma 4 If InvK holds, process a is requesting and a’s priority is the highest among requesting
processes in M.a then a eventually exzecutes the CS.

Proof: If a is requesting, then, by Lemma 2, all its children are eventually replying. Therefore
the first and second conjuncts of guard of enter.a are true. If a’s priority is the highest among all
the requesting processes in M.a, then each process z, whose priority is higher than that of a is idle.
According to Lemma 3, state.a.z is eventually idle. Thus, the third and last conjunct of enter.a
is enabled. This allows a to execute the CS. O

Lemma 5 If InvK holds and process a is requesting, a eventually executes the CS.

Proof:  Notice that by Lemma 2, for every requesting process, the children are eventually reply-
ing. According to InvK, this implies that all the descendants of the requesting process are also
replying. For the remainder of the proof we assume that this condition holds.

We prove this lemma by induction on the priority of the requesting processes. According
to Lemma, 4, the requesting process with the highest priority eventually executes the CS. Thus, if
process a is requesting and there is no other higher priority process b € M.a which is also requesting
then, by Lemma 4, a eventually enters the CS.

'The argument is slightly different for a as it executes join.a and enter.a instead.



Suppose, on the contrary, that there exists a requesting process b € M.a whose priority is higher
than a’s. If every such process b enters the CS finitely many times, then, by repeated application
of Lemma, 4, there is a suffix of the computation where all processes with priority higher than a’s
are idle. Then, by Lemma 4 a enters the CS.

Suppose every higher priority process b enters the CS infinitely often. Since a is requesting,
state.b.a = rep. When b executes the CS, it enters a into YIELD.b. We assume that b enters the
CS infinitely often. However, b can request the CS again only when YIELD.b is empty. The only
action that takes a out of YIFELD.b is stop.b. However, this action is enabled when state.b.a is idle.
Notice that, if InvK holds, the only way for the descendants of a to move from replying to idle is
if g itself moves from requesting to idle. That is a executes the CS.

Thus, each process a requesting the CS eventually executes it. O

Lemma 6 If InvK holds and a process a wishes to enter the CS, a eventually requests.

Proof: = We show that a wishing to enter the CS eventually executes join.a. We assume that a
is idle and needcs.a is true. Then, join.a is enabled if YIELD.a is empty. a adds processes to
YIELD only when it executes the CS. Thus, as a remains idle, processes can only be removed
from it.

Let us consider a process b € YIELD.a. If b executes the CS finitely many times, then there
is a suffix of the computation where b is idle. According to Lemma 3, for all descendants of b,
including a, state.a.b is idle. If this is the case state.a is enabled. When it is executed b is removed
from YIELD.a.

Let us consider the case, where b executes the CS infinitely often. In this case, b enters and
leaves idle infinitely often. According to Lemma 3, state.a.b is idle infinitely often. Moreover, a
moves to idle by executing stop.a, which removes b from YIFELD.a. The lemma follows. O

The theorem below follows from Lemmas 5 and 6.

Theorem 3 (Liveness) If InvK holds, a process wishing to enter the CS is eventually allowed to
do so.

This theorem concludes the correctness proof of KDP.

5 Conclusion

Stabilization time and locality. Observe (see Figure 2) that each process executes at most two
of its own actions before satisfying the stabilization predicate. Each of these action executions may
only be interleaved by the action execution of the process neighbors. Let § be the maximum degree
of a process. Since stabilization proceeds from the root, there could be at most 2(d + 1)k executions
of actions in the conflict neighborhood before it stabilizes. If § is not related to the number of
processes in the system, the stabilization time of KDP depends only on k and thus independent of
the system size.

Notice that the stabilization of one conflict neighborhood is independent of stabilization of
another. Thus, the spacial extent of the state corruption is at most 2k.

Implementation considerations. In our XDP algorithm, the CS execution is shown as a single

step in action enter. However, the CS entry and exit can be separated into two actions without
compromising the properties of XDP.
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To simplify the exposition, we presented XDP in a rather abstract execution model. In our
algorithm, we assumed that a process can atomically read the variables of all its communication
neighbors and update its own. However, this may not be practical in reality. Nesterenko and Arora
[15] described a self-stabilizing mechanism for atomicity refinement to a model where a process
may read variables of a single neighbor or update its own. A similar refinement mechanism can be
applied to XDP. Notice that Nesterenko and Arora propose a further refinement to message-passing
model. This refinement is applicable to KDP as well.

Extension to generic conflict neighbors. Notice that we presented DP for the case of rather
strictly defined conflict neighborhood. However, XDP can be extended to handle an arbitrary
conflict neighborhood relation.

In this case, each process p still has to have a spanning tree to all its conflict neighbors. Notice
that, unlike XDP, it is possible that some conflict neighbor ¢ is only reachable through a process
r that is not a conflict neighbor of p. In this case, r is included in p’s spanning tree. Process r still
propagates the requests and replies along p’s tree. However, r ignores the state of p for its own CS
access. For instance, r never enters p in YIELD.r.

Extension to generic drinking philosophers. In generic drinking philosophers, a set of conflict
neighbors for each process p may vary with each CS access. KDP can be extended to solve this
problem as well. In this case, p has to construct a spanning tree to the union of all of its possible
conflict neighbors. Each process ¢ in the tree, has the list of all its descendants. Thus, p has the
list of all its conflict neighbors. When p requests the CS, it advertises the list of conflict neighbors
for this request. The child of p propagates the request only if has a descendant in this set. The
process repeats at each node.

Simplification to unfair case. Notice that some problems, such as distance-k vertex coloring,
do not require fairness of CS access specified by the diners: such a problem has only finitely many
CS accesses throughout any computations. If XDP is to be used for such a problem, it can be
simplified. In an unfair case, an idle higher-priority process does not have to wait for a lower-
priority neighbor to execute the CS before requesting itself. Hence, there is no need for YIELD.
Which simplifies actions stop, enter and join. Moreover, the computations of such program are
finite. Thus, this program is capable of operating without the weak fairness assumption on action
execution.

Future research directions. It is unclear if XDP is an optimal solution to generalized diners
with respect to space complexity. If a communication topology is dense, statically maintaining
spanning trees may be expensive. Hence, the construction of a more space-efficient algorithm is an
attractive area of future research.
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