
 1

Fault-Tolerance Verification of the Fluids and Combustion
Facility of the International Space Station

Raquel Whittlesey-Harris and Mikhail Nesterenko

Computer Science Department
Kent State University

Kent, OH 44242
rwhittle@kent.edu, mikhail@cs.kent.edu

Abstract

The Fluids and Combustion Facility (FCF)
will be a permanent modular, multi-user
facility used to accommodate microgravity
science experiments in the U.S. Laboratory
Module onboard the International Space
Stations (ISS). The ability to withstand
faults is vital for all ISS installations.
Currently, the FCF safety specification
requires a one-component fault-tolerance.
In future versions, a more extensive fault-
tolerance model may be required. In this
paper, we describe the formal verification of
fault-tolerance of the FCF Distributed State
Model using SPIN. We program the FCF
module state transitions in PROMELA
(SPIN's internal language). We first verify
the correctness of FCF without faults. We
then simulate a single fault by moving one
of the modules to an arbitrary state and
verify correct recovery of the system. We
extend our verification to the case of an
extensive fault where the whole system has
to recover from an arbitrary global state.

1 Introduction

Automating Verification of Self-
Stabilization. One of the main difficulties in
designing a self-stabling program is its lack
of a limited set of initial states. The program
is expected to start from an arbitrary state
and eventually arrive at a legitimate state
[1]. Traditionally, the correctness of a self-

stabilizing program is verified analytically.
A classic approach is to find an invariant
guaranteeing that a program starting from a
state conforming to this invariant satisfies
the specification. The correctness proof
then proceeds by showing that regardless of
the initial state the program eventually
arrives at a state that satisfies the invariant.

However, in a practical distributed system
the total number of states can be rather
large. This makes analytical verification of
stabilization a rather difficult task.
Moreover, the presence of details and
particulars of the system compound the
problem: such details frequently result in
special cases that have to be examined
individually. Thus, the analytic proof of
stabilization becomes tedious to construct
and verify. As the size and complexity of
such proof increases its validity becomes
suspect.

In this paper we propose an alternative
approach to verifying stabilization. We use
model-checking techniques to automate the
verification. We apply the techniques to the
verification of fault tolerance of an
experimental facility to be deployed at the
International Space Station.

Model checkers are designed to find logical
and functional design errors, such as
deadlocks, livelocks, starvation, race
conditions, priority problems, system
bounds violations and specification
incompleteness or redundancy. Because
model checking is cost-effective and
integrates well with conventional design
methods, it is being adopted as a standard

 2

procedure for the quality assurance of
reactive systems [10].

Addressing Safety of the Fluids and
Combustion Facility. We will be
addressing the fault-tolerance of the Fluids
and Combustion Facility (FCF), which is to
become a permanent installation on board
the International Space Station (ISS). The
reliability of ISS facilities is critical. It is
becoming even more important as budget
demands increase while safety requirements
become more central. Traditionally, space
experiments have been conducted on the
space shuttle. In this case, a failed
experiment may be repeated during
subsequent missions. However, ISS is a
permanent facility where experiments
operate continuously without down time.
Therefore, opportunities for corrections are
limited.

The adverse environment magnifies the
reliability concerns. Non-space based
experiments do not normally face the kind
of environmental hardships to be endured by
installations such as the FCF. The system
must survive harsh acceleration forces
including 3g peak during launch, 1.5g peak
during re-entry, microgravity vibration and
g-jitter (such as those caused by launch
vibrations, motors, orbital maneuvers,
astronaut activities, and experimental
vibrations). There are a number of other
factors that make the space environment
particularly challenging. These may include:
Galactic Cosmic Radiation, Trapped Belt
Radiation, Solar Particle Events, Ionizing
Radiation, the South Atlantic Anomaly,
orbital debris, airborne contaminants,
limited space craft volume, restricted
physical access, satellite access, excess heat
(both generated internally by experiments as
well as charged particle) [6]. Protection of
the space station environment presents
another distinctive challenge. The ISS has
strict requirements systems such as the FCF
must adhere to in order to prevent
contamination of the ISS environment.
Moreover, protection of the crew is
paramount: equipment failure should not

lead to the harm of the crew or the ISS.
Much of the equipment to be used in space
experiments is developed and tested on the
ground. Hence, the reliability of such
equipment in space is unproven.

Safety and reliability concerns are further
increased by the limited access to the
system. Crew time is limited in general.
The FCF is currently expecting 1.5 hours per
month of crew time. Maintaining a
research installation in space, both the
hardware and software components of it, is
difficult. Replacement parts have to be
transported to the ISS by spacecraft.
Spacecraft have limited cargo space to
accommodate such shipments. Once aboard
the ISS, replacement parts have to be
installed by crew members. The crew have
limited experience and knowledge of the
installation. Software upgrades may be
uploaded via satellite. These kinds of
uploads come with additional difficulties.
Communications availability is currently at
30% coverage (the communication window
is available less than 1/3 of the time.) In
addition, operational challenges further
complicate the scenario. The
communication and accessibility limitations
introduce a greater complexity to ascertain
and repair the system when failures occur or
upgrades are needed. Troubleshooting
opportunities are limited. Ground operation
teams are limited to the predefined telemetry
downlinked during operation of the FCF.
To upload new software care must be taken
to insure installation of an error free
replacement. The component responsible
for managing the operation of the racks must
be operational in order for this procedure to
be implemented. This results in many
opportunities for failure during
implementation of this process. For
example, a faulty kernel would not permit
the component to boot or possibly open
enough file descriptors to start up particular
functionalities.

The current FCF system specification
requires that the system must be able to
handle a one-component failure [12].

 3

“ The Flight Segment shall be
designed to mitigate the
consequences of Single Event
Effects (SEE)” .

Single Event Effects are Single Event
Upsets, Single Event Latchups or Single
Event Burnouts. Single Event Effects are
radiation-induced errors in microelectronic
circuits caused when charged particles
(usually from the radiation belts or from
cosmic rays) lose energy by ionizing the
medium through which they pass, leaving
behind a wake of electron-hole pairs. A
Single Event Latchup is a condition that
causes loss of device functionality due to a
single-event induced current state. A Single
Event Burnout is a condition that can cause
device destruction due to a high current state
in a power transistor. In addition to
handling Single Event Upsets, the system is
required to isolate failures to a particular
component.

Greater robustness is expected to be
achieved from the FCF in the future. It is
also advantageous for the system to recover
from more extensive failures (more than a
one-component failure criteria). We
anticipate that future specifications will
require more extensive fault-tolerance.
Our Approach. We examine the behavior of
the FCF as a collection of components. We
assume that each component is capable of
internally isolating the fault. External to the
component, the failure manifests itself as a
transition to an arbitrary state. We verify
that this transition does not cause the system
to violate the safety critical properties. We
study more extensive faults.

We model the system using the SPIN [2],
[3], [7], [8] tool. After modeling and
verifying the operation of the system
without faults, we systematically examine
the operation of the FCF by simulating
system faults using the SPIN simulator. We
place the system in an arbitrary state and
observe its behavior afterwards. The system
is expected to arrive at a legitimate state.

We then formally verify the operation of
FCF with a single component failure. We
specify a number of safety critical predicates
and verify that the system conforms to its
specification. We model an extensive
system failure by moving each component to
an arbitrary state. We then verify the
stabilization of the system to a state that
conforms to the safety critical predicates.
Related Literature. The formal
verification tool PRISM (Probabilistic
Symbolic Model Checker) [5], [16] has
been used to carry out probabilistic
formal model checking of randomized
distributed algorithms. Amongst the
randomized distributed algorithms are
self-stabilization algorithms. As a case
study, PRISM was used to verify the
self-stabilizing algorithm for token
passing on a ring network.

PRISM differs from SPIN in that it can
provide feedback on quantitative measures,
such as reliability and performance, as well
as the traditional functional correctness
verification. In our experiment, only
functional correctness was required. In
addition, SPIN requires a deterministic,
finite state model. PRISM on the other
hand, does not require termination.

Another probabilistic modeling checking
tool being utilized for distributed systems is
the Approximate Probabilistic Model
Checker (APMC) [17].

Organization. This paper is divided into
the following sections. In section 1, we
discuss the goal of our research. In section
2, we discuss the architecture of the Fluids
and Combustion Facility. In section 3, we
discuss the FCF model verified using the
SPIN tool. In section 4, we discuss the
experiments performed. We conclude this
paper in section 5 with a discussion of the
benefits of our experiments for the Fluids
and Combustion Facility’s design team and
future model verification plans.

 4

Terminology.

Figure 1. Fluids and Combustion Facility

Some of the terminology used in the paper is
included below:

Downlink – data transmitted from the flight
system to the ground system; Flight
Segment - The FIR, CIR and SAR on the
ISS; Flight Segment Software – The
software component of the Flight Segment;
FSSS- Flight Segment Support System - The
GUI and Telescience support required to
meet the objectives of the on-orbit mission;
Health and Status - Data originating within
the FCF Rack that is monitored by the
Primary Processor to assure the safe and
correct operation of the FCF and FCF
Payloads, as well as assurance of ISS safety,
as specified by safety guidelines; Linear
Temporal Logic Formulae – technique for
the specification of temporal rules; Near
Real Time - The time the actual event occurs
plus the time to process the data. Note, this
time will vary with the situation to be
performed. This time is usually in the order
of seconds after the event occurred; Uplink
– data transmitted from the ground system to
the flight system.

2 Architecture

Overview. The FCF consists of the
Combustion Integrated Rack (CIR) and the
Fluids Integration Rack (FIR). See Figure 1.
The Shared Accommodations Rack is
currently not being developed and will not
be further discussed in this paper. Due to

the unique operational environment, the FCF
has been designed to be highly automated,
modular, easily configured and maintained.
In order to minimize cost, design
complexity, and maintenance, it has been
designed to maximize component reuse
across the racks and the use of commercial
off-the-shelf hardware and software. The
CIR and FIR provide resources for Principal
Investigators (PIs) to conduct scientific
experiments in a microgravity environment.

Common Components. Common systems
between the racks include: structural
hardware, electrical (power control),
environmental control (air and water thermal
control, fire detection and suppression and
gas interface), active rack isolation (payload
isolation from mechanical disturbances
onboard the ISS), device diagnostics (i.e.,
cameras, lenses, illumination, lasers), and
command and data management (diagnostic
control, image processing and
communication hardware and software).

CIR FIR

IOP IOP
IPSUIPSU

LLL-UV HiBMs

HFR/HR Illumination

MDSU

FSAP

Color
Camera

White Light YAG Laser

PI-FSAP Diagnostics

EPCU

ECS
EPCU

ECS

IPSU IPSU

Figure 2. FCF Subsystems in a Potential
Configuration

In our model we focus on the command and
data management facilities of the FCF. We
chose not to model communication with
hardware, i.e., lasers. We assume that such
communications is internal to the
components.

The Input/Output Processor (IOP) is the
component, which acts as the primary
processor or rack/system controller. The
IOP, amongst other things, is responsible for

 5

processing and transmitting telemetry to and
from ISS and monitoring as well as
coordinating rack and inter-rack operations.
Operations include health and status
monitoring and time synchronization
between components. The IOP consists of
three separate processors, the IOP Main
Processor (IOPMP), IOP Video Switch
Processor (VSP) and the IOP High Rate
Data Link (HRDL) Processor.

The Input/Output Processor Main
Processor (IOPMP) provides all the data
communication between the ISS and the
FCF. This includes a MIL-STD-1553B bus
interface to the ISS Low Rate Data Link
(LRDL), IEEE 802.3 interface to the ISS
Medium Rate Data Link (MRDL), and a
fiber optic interface to the ISS High Rate
Data Link (HRDL). IEEE 802.3 and a
RS170 interfaces are also available to the
ISS for a crew interface laptop. The IOPMP
utilizes a CANBus interface between the
IOP and components to monitor component
health and status.

The Input/Output Processor High Rate Data
Link Processor (IOPHP) is responsible for
all HRDL communications between the ISS
and the FCF. The link provides a 100-Mbps
transmit interface.

The Input/Output Processor Video Switch
Processor (IOPVSP) provides real-time
switching of data and video from various
sources in the FCF to various output
devices/sources.

The Image Processing and Storage Unit
(IPSU) is designed to accommodate image
acquisition, processing and management
typically required for fluids physics and
combustion experiments. There are two
types of IPSUs: one provides support for a
wide range of digital cameras common to
both the FIR and CIR. This IPSU stores
video data in digital format and data
acquired can be compressed if necessary to
reduce memory and transfer bandwidth.
Digital images can be processed to support
closed loop control scenarios. The other

flavor of IPSU (IPSU-A) provides image
acquisition from analog cameras. These
images can be digitized and stored,
processed and downlinked in much of the
same manner as images directly from digital
cameras. The CIR can accommodate up to
six IPSUs while the FIR can accommodate
up to two IPSUs. The FCF as a whole (FIR
and CIR) has been designed to have the
capability to utilize IPSUs located in the
other rack (virtual IPSU) for extra
processing power that may be required.

The Diagnostic Control Module (DCM)
provides control, power, cooling and
mechanical alignment interfaces between
modules in a diagnostic package.

The Image Acquisition Module (IAM) is a
device, which collects an image provided by
a diagnostic package optical system and
converts the image into a format that can be
transferred via optical fiber to an IPSU. It
integrates the camera with its power supply
and serial data link in one unit and provides
a four-flange mount to interface with other
diagnostic modules.

The Electrical Power Control Unit (EPCU)
performs power distribution, conversion,
control, management and fault protection for
the FCF racks. It is controlled by the IOP
via a 1553 bus. On the front of the rack,
there is a EPCU Shut-Off Switch Assembly
(ESSA) to manually remove power from the
rack.

The Environmental Control System (ECS)
consists of four subsystems. These include
the Air Thermal Control Subsystem (ATCS),
the Water Thermal Control Subsystem
(WTCS), the Gas Interface Subsystem (GIS)
and the Fire Detection and Suppression
Subsystem (FDSS).

The Air Thermal Control Subsystem (ATCS)
provides an air-cooling system for the FCF
avionics. It can remove up to 1650 W of
facility generated waste thermal energy.

 6

The Air There Control Unit (ATCU) uses a
CANBus interface for communications with
the IOP. It utilizes fans to draw warm air
from the rear of the rack and send the air
through a heat exchanger and filter returning
cooled air into the system. Both the FIR and
the CIR require a specific level of airflow
for the system to safely operate. In the event
that airflow inadvertently goes below this
level, the system will be shut down.

The Water Thermal Control Subsystem
(WTCS) provides cooling to the FCF
equipment by removing FCF systems
generated waste thermal energy and
transferring it to the ISS Internal Thermal
Control System (ITCS) Moderate
Temperature Loop (MTL). The WTCS
consists of a Water Distribution Subsystem
to distribute water to primary and secondary
loops; a Primary Loop Subsystem which
provides cooling to non-science hardware; a
Secondary Loop Subsystem which provides
cooling to science hardware, a Control
Subsystem located in the ATCU (EEU –
ECS Electronic Unit) which provides
electronic control between the IOP and
WTCS hardware; and a Accumulator
Subsystem which absorbs thermal control
system pulsations due to temperature
fluctuations during launch. If water flow is
not maintained to achieve the required
temperatures, the FCF system will be shut
down.

The Fire Detection and Suppression
Subsystem (FDSS) is responsible for
detection and suppression of fire events.
Each rack is independently monitored for
smoke using and ISS smoke detector. Laser
light attenuation and laser light scattering is
used to detect smoke. Upon detection of a
fire event, a red light emitting diode will
provide a visual indication to the crew of the
fire event location. Power to the rack will
be removed by the IOP, which shuts down
all airflow devices in the rack. Discharge
and diffusion of CO2 into the rack will
depend on the charge pressure in the
portable fire extinguisher.

The Gas Interface Subsystem (GIS) provides
an interface for payloads to access ISS
provided Gaseous Nitrogen (GN2), Vacuum
Exhaust System (VES) and Vacuum
Resource System (VRS) services. In the
CIR, the Fuel/Oxidizer Management
Assembly (FOMA) system provides the
required controls for interfacing to the GIS.
In the FIR, pressure regulation, flow control
and exhaust gas processing functions are the
responsibility of the Principal Investigator.

The Active Rack Isolation System (ARIS)
isolates experiments from mechanical
disturbances that can occur on the ISS.
ARIS is essentially a shock absorber. ARIS
has a sophisticated electronic sensing and
control system that allows the racks to float
within a 12.7 mm (0.5 inch) clearance in all
directions thereby isolating payloads from
motion disturbances. Attenuation of on-
orbit low-frequency/large amplitude
mechanical vibrations is achieved by
utilization of accelerometers, actuators, a
controller, drivers and sensors among other
systems. Three tri-axial accelerometer
packages measure vibration disturbances
and transmit this data to a controller, which
commands eight actuators to position the
racks on three axes, six degrees of freedom
to counteract the disturbances. ARIS has
five system states, including, Idle – position
and acceleration control is inactive however
the controller reports health and status of the
ARIS; Hold – the rack is centered and the
position is held relative to the ISS without
actively attenuating vibrations; Active –
compensation for acceleration is achieved to
maintain the microgravity environment;
NOGO – essentially idle although entered
on error; Power Off – emergency situations
where ARIS power must be terminated
immediately.

The Space Acceleration Measurement
System Triaxial Sensor Heads (SAMS TSH)
are used on both racks to expand the
measurement capabilities.

The Station Support Computer (SSC) is a
laptop computer, which is a shared ISS

 7

resource. The primary purpose of the SSC
is to provide crew support applications.
Software necessary for command and
control of the FCF using the SSC will be
resident on the IOP. This software will be
served up to the SSC for execution and will
consists of applications and GUIs necessary
to interact with the FCF.

Combustion Integrated Rack. The
Combustion Integrated Rack (CIR), pictured
in Figure 3, will provide sustained
combustion physics research.

Figure 3. Combustion Integrated Rack

In addition to the common components
discussed above, it includes, a Combustion
Chamber, Fuel Oxidizer and Management
Assembly (FOMA), additional diagnostic
packages for imaging and other assemblies.

The Fuel Oxidizer and Management
Assembly (FOMA) provides the capability to
supply gaseous fuels, oxidizers and diluents
into the combustion chamber. The FOMA
also samples the environment of the
combustion chamber via a Gas
Chromatograph (GC) and controls the
venting of chamber gases (to the ISS
Vacuum Exhaust System) to acceptable
concentration levels. Redundant valves are
used to meet the safety requirements to
protect bottled gas from being evacuated
during venting. Pressure sensors and
pressure switches ensure that an over

pressurization of the combustion chamber
does not occur. Mass flow controllers are
used to meter all gases. Pre-mixed gases
may also be delivered to the combustion
chamber via a nitrogen/high pressure
manifold as an alternative. The FOMA
Control Unit (FCU) is utilized as a software
backup to these safety hazards. The
software ensures that particular valve
combinations are avoided to prevent such
occurrences as over pressurization,
contamination and improper venting to
name a few. It performs command
processing, control, data processing and
health and status monitoring of the FOMA.

The two packages that make up the FOMA
are the Gas Delivery Package (GDP) and
the Exhaust Vent Package (EVP), which
includes the Gas Chromatograph (GC). The
Gas Delivery Package (GDP) consists of gas
supply bottles and instrumentation to
distribute and regulate gas delivery to the
combustion chamber. Up to four
consumable gases is permitted. The Exhaust
Vent Package (EVP) is the interface
between the combustion chamber and the
ISS Vacuum Exhaust System (VES). It
includes a PI-supplied adsorber cartridge
and a recirculation loop. The adsorber
cartridge is used to remove water, filter
particulates, absorb trace amounts of
unspent fuels, or chemically alter trace
species (e.g., CO to Co2). The recirculation
loop is used to convert post-combustion
gases into acceptable species for venting and
to improve the test gas environment for
subsequent PI hardware tests.

The Gas Chromatograph (GC) includes a
Gas Chromatograph Instrumentation
Package (GCIP) and a Gas Chromatograph
Gas Supply Package (GCGSP). It is used to
sample gas from the combustion chamber
and analyze exhaust vent gases for
acceptability.

Diagnostic packages in the CIR include the
High Bit Depth/Multi-Spectral Package
(HiBMs), the High Frame Rate/High
Resolution Package (HFR/HR), the Color

 8

Camera Package, the Low Light Level
Ultraviolet Package (LLL-UV), the Low
Light Level Infrared Package (LLL-IR) and
the Illumination Package.

The High Bit Depth/Multi-Spectral Package
(HiBMs) contains a spectral filter, a prism
module, a telecentric optical system
(provides pixel mapping through object
space along parallel paths), a fixed mirror
module, an optics housing module, a DCM,
a high resolution 12-bit output digital
camera in an IAM and a liquid crystal
tunable filter.

The High Frame Rate/High Resolution
Package (HFR/HR) consists of a telecentric
(magnification does not change with focus
position) optical system, a trombone prism
assembly, a pointing mirror module, a filter
compensator module, a high-resolution (1
mega-pixel) digital camera in the IAM, an
optics housing module and a DCM.

The Color Camera Package contains two
Objective Optics Modules, a Relay Optics
Module, an IAM with a color camera, a
Fixed Mirror Module, and Optics Housing
Module and a DCM.

The Low Light Level Packages (LLL)
produces images at a low radiance level.
They each consist of a digital monochrome
camera coupled with an IAM and fast
numerical aperture optics with provision for
spectral filtering of the transmitted
illumination, a DCM, a Fixed Mirror
Module and an Optics Housing Module.

The Low Light Level Ultraviolet Package
(LLL-UV) package can be positioned on the
optics bench to provide orthogonal views of
an experiment. Combustion events can be
recorded in matching or different spectral
regions that are defined by investigator
provided filters.

The Illumination Package contains a
collimated optical system (Objective Optics
Module and optics in the Illumination
Source Module), a Fixed Mirror Module,

and an Illumination Control Module (ICM).
The illumination source is a laser diode
array that can be used to provide
monochromatic background illumination.
This package can be used with the laser
diode to provide a uniform illumination
background for soot absorption
measurements in soot volume fraction
applications. The laser diode can be used as
a non-coherent illumination source if
operated below the lasing threshold. The
laser diode can also be used as the
background illumination source for
shadowgraph measurements with the HiBMs
Package or for droplet size measurement
with the HFR/HR Package. Future growth
considerations are feasible with the modular
design of the system.

The Command and Data Management
System (CDMS) for the CIR provides
command, control, data acquisition, data
processing, data management, health and
status monitoring, interfaces and time
synchronization between the IOP, FCU,
IPSUs, DCMs, Diagnostic Packages and
Science Payloads. The interfaces include
the crew interface via the SSC and
command, telemetry and video interfaces to
the ISS Command and Data Handling
System.

CDMS communications occur over Ethernet
and CAN Bus. Health and Status is
communicated via CAN Bus while
interprocess communications occur over
Ethernet.

Fluids Integrated Rack. The Fluids
Integrated Rack (FIR), pictured in Figure 4,
will provide sustained fluids physics
research. The FIR provides common
services (diagnostics) required by most fluid
physics researchers to minimize the design
and development for each experiment.

 9

Figure 4. Fluids Integration Rack

In addition to the common subsystems
discussed earlier, the FIR includes, a Fluids
Science Avionics Package (FSAP), PI-
FSAP, Atmospheric Monitoring Assembly
(AMA), diagnostic packages and interfaces
to accommodate PI provided diagnostics.

The Fluids Science Avionics Package
(FSAP) is a multi-purpose data acquisition
and control system that provides the
capability to interact with a wide variety of
fluids experiments. The FSAP provides a
standard set of analog and digital
Input/Output channels, motion controllers,
analog video acquisition, data storage, and
communication connectivity. An analog
frame grabber is utilized to provide the
capability to acquire images from an analog
RS170A video source. The FSAP has the
capability for two axes of motion control for
stepper motors running in full, half, or
microstep configurations, and two axes of
motion control for servo motors and a
resolution of 12 bits. Automated position
and tracking is provided with the use of a
CAN controller and DCM.

The Principal Investigator Fluids Science
and Avionics Package (PI-FSAP) provides
an enclosure with a microprocessor,
communication interfaces, and card slots
available for PI use. The PI has the ability
to configure the PI-FSAP on the ground
with science-specific circuit boards.

The Atmospheric Monitoring Assembly
(AMA) provides temperature, pressure and
relative humidity information for the rack
volume.

Diagnostic packages in the FIR include the
Color Camera Assembly, White Light
Assembly and Nd:YAG Laser Assembly.

The Color Camera Assembly contains an
analog 3-CCD (Charge-Coupled Device)
color camera head and a Color Camera
Image Acquisition Module (CCIAM). Real-
time downlink of analog video can be
provided to the ISS interface via the IOP.
Health, status and control is provided
through a CAN bus interface to the FSAP
and CCIAM.

The White Light Assembly provides
acquisition of color images while helping to
prevent “ ringing” . It contains two
independently controllable lamp modules.

The Nd:YAG Laser Assembly converts 1064-
nm output to 532 nm with the use of a non-
linear, frequency-doubling crystal. The high
quality beam is suitable for interferometry,
velocimetry and monochromatic
illumination of relatively large test cell
areas.

The Command and Data Management
System for the FIR is similar to the CIR.
Time synchronization however, is between
the IOP, FSAP, PI-FSAP, IPSUs, DCMs,
Diagnostics and science payloads.

The FCF Software System. The FCF
Flight Software System is a distributed real-
time multitasking embedded system. Main
components are running on the VxWorks [9]
operating system. Communication between
components is achieved through Ethernet,
Fiber-Optic, CANBus, Analog, MIL-STD-
1553 and Serial Data links.

All main component communication is done
through the primary rack controller  the
IOP. In addition, communication to the ISS
is achieved through a Medium Rate Data

 10

Link – an 802.3 interface running at 10
Mbps; a Low Rate Data Link – a MIL-STD-
1553 interface running at 1 Mbps; and a
High Rate Data Link – Fiber Optic Data
Distributed Interface running at 100 Mbps.
There is also analog video (RS170) and
Ethernet (100BaseT) interfaces to the on
board station computer for crew interface.

Communications between sub-components
and main components may take place
directly.

The IOP as the rack manager maintains the
overall rack state and monitors component
states as well as component health and
status. The FCF defined rack states are
depicted in Figure 5.

Initialization Safed (S)

Maintenance (M) Experiment (E)

Idle (I)

Mixed

Operational (OP)

Maintenance (M) Experiment (E)

Idle (I)

Mixed

Off-Nominal

OP to S

Off-Nom to S

power on/

success /
er ro r /

e rro r/

e rro r/

power off/

safed cmd/

safed cmd/

operational cmd/

maintenance cmd to all packages/

idle cmd to all packages/ experiment cmd to all packages/

idle cmd to all packages/

en try /

success /

e rro r/

success /

er ro r /

e rro r/ e r ro r /

safed cmd/

unsynchronize package states/

synchronize package states/unsynchronize package states/

synchronize package states/

unsynchronize package states/

synchronize package states/

e rro r/

power off/

Figure 5. FCF Rack States

Component states (in general) include:

good-off  The component has either never
been powered on or have been shut down
due to a nominal circumstance, without any
anomalies.

bad-off  The component is powered off
due to an anomaly.

initialization  The component has been
powered on and is performing system
Power-On-Self-Test (POST) and initializing
hardware and software components. The
component is not yet ready to initiate
communications with the Rack Manager and
receive commands.

operational-idle  The component has
completed initialization, is operating
nominally and is ready to perform
experiment operations. Generally only
communications (telemetry and limited
commanding) is available in operational-
idle.

operational-uplink/downlink  The
component is operating nominally and is
ready to receive an uplink or transmit data to
the ground (downlink).

operational-maintenance  The
component has expanded commanding
capability from operational-idle. May be
used for troubleshooting or initiating non-
sequenced events.

operational-experiment  The component
is operating nominally and in a state to
perform experiment operations.
Commanding capability is expanded from
operational-idle.

off-nominal  The component has
encountered an anomaly that must be
addressed before further operations may
take place.

safed  The component is ready for power-
down (all hardware and software
components have been put in a state that will
not damage the component or cause lost of
data). Generally only the power down
command is accepted in this state.
Communications to the Rack Manager
continues.

 11

Rack states include:

good-off  All system components have
either never been powered on or have been
shut down due to a nominal circumstance,
without any anomalies.

bad-off  All system components are
powered off and at least one system
component is in the powered off state due to
an anomaly.

initialization  All powered system
components are in their respective
initialization states.

operational-idle  All powered system
components are in their respective
operational-idle states.

operational-uplink/downlink  All
powered system components are in their
respective operational-uplink/downlink
states.

operational-maintenance  All powered
system components are in their respective
operational-maintenance states.

operational-experiment  All powered
system components are in their respective
operational-experiment states.

operational-mixed  Not all powered
system components are in the same state.

off-nominal  At least one of the powered
system components is in off-nominal.

safed  All powered system components
are in their respective safed states.

The Rack Manager manages the rack state.
The components communicate their current
state to the Rack Manager with every
telemetry packet sent. The Rack Manager
in turn responds to changes in component
states by possibly altering the rack state.
The rack state is determined by the rules
stated above. In addition, if a component

enters the off-nominal state, all powered on
components will be commanded to their
respective operational-idle states. The
rack will remain in the off-nominal state
until the off-nominal is first acknowledged
from an operator and all off-nominal
components are returned to an operating
state or safed/powered off.

Sets of States. We clarify the states of the
FCF into three sets of states. The
operational states include all states where
the FCF is capable of performing normal
operations. The safe states include all states
where the FCF is in off-nominal operations
and is not violating the hazard specification.
The unsafe states are states where the
system goes during faults. The FCF handles
faults by converging to a safe or operational
state. A possible correct transition of the
FCF Model between states is (see Figure 6),

1. The system initiates in a valid state,

2. The system moves to a fault span state,

3. The system converges to a safe state
within a finite number of steps.

SAFE STATES

UNSAFE STATES

OPERATIONAL
STATES

2

3

1

Figure 6. State Space

These three encompassing states represent
the model self-stabilizing capability. With

 12

an arbitrary initial system state, the system
should always converge to the safe state.

In addition to the predefined states described
above, the rack manager also monitors the
health and status of components in the
rack(s). The rack manager will take actions
to ensure the safety of the system, the ISS,
and the crew. This may include powering
down a package, turning off hazardous
items, even powering down the entire rack.
There are seven predefined actions the IOP
will take in response to a state of the system
that is considered “Unsafe” . See Section 3
for a list of the seven actions. After
executing one of these actions, the system
will converge to a legitimate state.
Legitimate states are considered “Safe”
states and “Operational” states.

3 The FCF Model

Overview. The FCF Meta Model is written
in the SPIN modeling language PROMELA.
PROMELA, a non-deterministic, guarded
command language. It enables the dynamic
creation of concurrent processes and
communication between processes via
message channels.

There are limitations to modeling a
distributed real-time system with SPIN.
First, there is no concept of time in SPIN.
Second, the distributed multi-tasking
environment is difficult to simulate.
Furthermore, the system modeled must be a
finite-state model to guarantee decidability.
Several of these limitations have been
addressed in extensions to SPIN [14].

A model is an abstraction of the system.
The FCF Model is an abstraction of the FCF
state model and a subset of the safety
specification. The FCF Meta Model
includes several processes running on a
single processor. The FCF Model includes a
simplified communication protocol to
simulate the interaction between
components and processes. This includes,
events, commands and state information.

Component Model.

Rack Manager

Command
Handler

State
Manager

Initialization

Power On

Power Off

Main

«include»

«include»

«include»

«extend»

«extend»

«extend»

Figure 7. FCF Meta Model Processes

In the FCF Meta Model, each component
consists of several processes. See Figure 7
(shown in UML notation [13]). Each
process runs in parallel and implements the
main functionality of a component. The
main process handles initialization,
communication direction, health and status
checks, and nominal shutdown. The
component command handler validates
commands and initiates processing of a valid
command. The component state manager
manages the components state transitions.
This includes the states described in Section
2 Architecture

Component Power Up Example. As an
example, we describe the actions of the
IPSU and Rack Manager by process while
performing a power on, command
processing and then power down sequence.

1. The Rack Manager initiates a power on

of an IPSU. The IOP reads the
configuration information for the
component it wants to power on. The
Power On task of the Rack Manager is
executed to implement the power on of
the component.

 13

2. The Component Initialization. The
component determines it own function.
It determines it is an IPSU (either 1 – 6).
It initializes the appropriate state
variables. The Power On task of the
component is executed to power on any
subcomponents. A Power-On Self Test
(POST) is executed. This test simulates
the health check of internal systems
upon component power up. The
component randomly selects whether it
powers on and passes POST or fails. If
the POST is successful, the component
enters operational-idle. In this case,
commanding and telemetry handlers are
initiated.

3. Component Health Monitoring. The
component now begins to monitor it’ s
own health and status, process
commands, send regular
communications to the IOP, and
monitor the IOP status.

4. Command Processing. During operation,
a command is sent from the IOP to the
IPSU to transition to the IPSU to
operational-idle. The IOP has
determined a system component to be in
off-nominal. All powered on
components are therefore sent to
operational-idle. A packet is
transmitted from the IOP to the IPSU.
The IPSU determines the packet to be a
command and invokes the Command
Handler to decipher it. The Command
Handler determines the command is for
the IPSU that has received it (IPSU 1-6).
The Command Handler then determines
the command to be a valid command for
the IPSU. The command handler now
determines the command is a state
change request. In this case, the
Command Handler forwards the
command to the component’s State
Manager for processing.

5. State Request Processing. The
component’s State Manager receives a
request to change the current state to
operational-idle. The State Manager

determines which component the
request is from and verifies it is a valid
requestor; the rack manager. The State
Manager determines if the transition is
legal. If the transition is legal, the State
Manager sets the component state to
operational-idle.

6. Power Down Component. The Rack
Manager determines that it needs to
power down the IPSU. A command is
sent to the IPSU to transition it to safed.
The Rack Manager looks up the
configuration information for the
component and sends commands to the
EPCU to power down any sub-
components that are powered on.
Following the power down of sub-
components, the component is powered
down via the EPCU.

Rack Manager Model.

Rack Manager

Command
Handler

State
Manager

Initialization

Power On

Power Off

Main

Rack
Manager

Action
HandlersHealth Monitor

Utility
Processes

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«extend»

«extend»

«extend»

Figure 8. Rack Manager Processes

The IOP, being the racks and facility
manager has similar processes to the
component processes with additional
functionality. See Figure 8 (shown in UML
notation [13]). The IOP also has a rack
manager, an action handler, health monitor,

 14

processes for each action and several utility
processes for jobs such as turning off and on
components and determining what
hazardous items are operating. In this
model, there is one IOP managing all of the
components in both racks.

Within the IOP Action Handler, the seven
actions the IOP initiates in response to
hundreds of safety events is implemented.
These actions are described below:

Action 1  Power off a component.

Action 2  Power off a subcomponent.

Action 3  Orderly power down of all
components (including their
subcomponents) except for the IOP and
ECS.

Action 4  Orderly power down of all
components (including their
subcomponents) along with the IOP and
ECS.

Action 5  Command the FCU to Off
Nominal. If it fails to respond, power the
FCU down.

Action 6  Command the IOP to Off-
Nominal.

Action 7  Power off all hazardous items.

Fault Model. In every component, there is
a fault simulation process that introduces
faults into the system. This process
randomly introduces state and safety faults.

Eight possible fault scenarios are introduced
into the system by the fault simulator task.
These faults are discussed below.

1. Set the state of solenoid valves SV9 and

SV14 to open.  To prevent the
inadvertent venting of out of limit
chamber premixed gasses into ISS vent
system (causes fire in vent system) the

FCU should never vent from valve nine
and valve fourteen at the same time.
The IOP acts as a watchdog. The health
monitor shall monitor the status of
solenoid valves nine and fourteen and
command the FCU to off-nominal if
such a state arises. The FCU
automatically closes all energized
solenoid valves when entering the off-
nominal state. After commanding the
FCU to off-nominal, if the solenoid
valves remain energized, the IOP will
power down the FCU. This in turn will
deenergize the valves.  Predicate 7.

2. Set the state of the rack door to open. 

To prevent astronaut exposure to
hazardous items, all hazardous items
(e.g., lasers) are powered off upon
detection of an open rack door. 
Predicate 1.

3. Set the state of the IOP communication

received flag from a randomly selected
package to false. This indicates that the
IOP has not received communications
from the package for a particular time
frame.  Predicate 3.

4. Set the state of the IOP communication

to a randomly selected package to false.
This indicates that the package has not
received communications from the IOP
for a particular time frame.  The IOP
as the rack manager monitors the health
and status of all components powered
on. If the IOP does not receive
communications from a component for a
specified period of time, the component
must be powered down as to not cause a
potential hazardous situation. 
Predicate 5.

5. Set the state of the ECS CANBus

communication flag to false. This
indicates that the IOP has not received
communication from the ECS over the
ECS CANBus link for a particular time
frame. The ECS is an essential
component. The system cannot

 15

safely operate without thermal (air
and water) control. If the ECS
component is not in communications
with the Rack Manager, the system
is powered down. Predicate 2.

6. Set the state of the ECS component

state flag to powered down. Again,
the ECS must be functioning for the
rack to be safely operated. 
Predicate 6.

7. Set the state of solenoid valves SV14

and SV4 to open.  To prevent the
inadvertent venting of out of limit
chamber oxygen into ISS vent system
(causes fire in vent system) the FCU
should never vent from valve four and
valve fourteen at the same time. The
IOP acts as a watchdog. The health
monitor shall monitor the status of
solenoid valves nine and fourteen and
command the FCU to off-nominal if
such a state arises. The FCU
automatically closes all energized
solenoid valves when entering the off-
nominal state. After commanding the
FCU to off-nominal, if the solenoid
valves remain energized, the IOP will
power down the FCU. This in turn will
deenergize the valves.  Predicate 8.

8. Set the state of solenoid valves SV12

and SV14 to open.  To prevent the
over pressurization of the chamber, the
FCU should never energize valves
twelve and fourteen at the same time.
The IOP acts as a watchdog. The health
monitor shall monitor the status of
solenoid valves twelve and fourteen and
command the FCU to off-nominal if
such a state arises. The FCU
automatically closes all energized
solenoid valves when entering the off-
nominal state. After commanding the
FCU to off-nominal, if the solenoid
valves remain energized, the IOP will
power down the FCU. This in turn will
deenergize the valves.  Predicate 9.

The Specification. The FCF has hundreds
of safety monitoring responsibilities, many
of which have similar responses. We have
therefore modeled a representation of the
critical system responses. We express the
safety properties in the form of predicates.
We formally verify the system conforms to
these predicates.

The FCF Model was formally verified
against nine safety predicates. These
predicates are described below.

When the rack door is open, the system will
power off any hazardous items:

 ml �� (1)

where l represents the rack door is open and
m represents all hazardous items are
powered off.

When there is a loss of communication on
the ECS CANBus, all packages must be shut
down (are either in good_off or bad_off):

)__(

)__(

)__(

)6_6_(

)5_5_(

)4_4_(

)3_3_(

)2_2_(

)1_1_(

(

PIPtPIPs

FSAPtFSAPs

FCUtFCUs

IPSUtIPSUs

IPSUtIPSUs

IPSUtIPSUs

IPSUtIPSUs

IPSUtIPSUs

IPSUtIPSUs

n

∨
∧∨

∧∨
∧∨
∧∨
∧∨
∧∨
∧∨

∧∨
��

 (2)

where n represents IOP loss of
communication on the ECS CANBus, s
represents a package in good_off and t
represents a package in bad_off.

 16

When the IOP looses communication with a
package, the package is sent to safed:

)__(

)__(

)__(

)6_6_(

)5_5_(

)4_4_(

)3_3_(

)2_2_(

)1_1_(

PIPrPIPo

FCUrFSAPo

FCUrFCUo

IPSUrIPSUo

IPSUrIPSUo

IPSUrIPSUo

IPSUrIPSUo

IPSUrIPSUo

IPSUrIPSUo

��

∧��

∧��

∧��

∧��

∧��

∧��

∧��

∧��

 (3)

where o represents the IOP looses
communication with the package and r
represents the package is in safed.

When the IOP goes into off-nominal, all
packages are sent to a state where the
equipment and data is safe (idle, safed,
good_off or bad_off):

))_

__

__(

)_

__

__(

)_

__

__(

)6_

6_6_

6_6_(

)5_

5_5_

5_5_(

)4_

4_4_

4_4_(

)3_

3_3_

3_3_(

)2_

2_2_

2_2_(

)1_

1_1_

1_1_(

(

PIPp

PIPtPIPs

PIPrPIPq

FSAPp

FSAPtFSAPs

FSAPrFSAPq

FCUp

FCUtFCUs

FCUrFCUq

IPSUp

IPSUtIPSUs

IPSUrIPSUq

IPSUp

IPSUtIPSUs

IPSUrIPSUq

IPSUp

IPSUtIPSUs

IPSUrIPSUq

IPSUp

IPSUtIPSUs

IPSUrIPSUq

IPSUp

IPSUtIPSUs

IPSUrIPSUq

IPSUp

IPSUtIPSUs

IPSUrIPSUq

p

∨∨
∨∨

∧
∨∨

∨∨
∧

∨∨
∨∨

∧
∨∨

∨∨
∧

∨∨
∨∨

∧
∨∨

∨∨
∧

∨∨
∨∨

∧
∨∨

∨∨
∧

∨∨
∨∨

��

 (4)

where p represents the package in off-
nominal, q represents the package is in idle,
r represents the package is in safed, s
represents the package is in good_off, t
represents the package is in bad_off.

When a package looses communication with
the IOP, the package will go into safed:

 17

)__(

)__(

)__(

)6_6_(

)5_5_(

)4_4_(

)3_3_(

)2_2_]

)1_1_(

PIPtPIPz

FSAPtFSAPz

FCUtFCUz

IPSUtIPSUz

IPSUtIPSUz

IPSUtIPSUz

IPSUtIPSUz

IPSUtIPSUz

IPSUtIPSUz

��

∧��

∧��

∧��

∧��

∧��

∧��

∧��

∧��

 (5)

where z represents the package has lost
communication with the IOP and t
represents the package is in safed. Note,
this is an added capability added to the
model and a suggestion for future FCF
development.

When the ECS is powered off, the IOP will
go into bad_off:

 yu ��¬ (6)

where u represents the ECS is powered on
and y represents the IOP is in bad_off.

When the FCU solenoid valve S14 is open
and FCU solenoid valve, S9, is open, the
FCU will go into off-nominal:

 FCUpSxSx _)9_14_(��∧ (7)

where x represents the solenoid valve is
open and p represents the FCU is in off-
nominal.

When the FCU solenoid valve, S14, is open
and FCU solenoid valve, S4, is open, the
FCU will go into the off-nominal state:

 FCUpSxSx _)4_14_(��∧ (8)

where x represents the solenoid valve is
open and p represents the FCU is in off-
nominal .

When the FCU solenoid valve, S14, is open
and FCU solenoid valve, S12, is open, the
FCU will go into the off-nominal:

FCUpSxSx _)12_14_(��∧ (9)

where x represents the solenoid valve is
open and p represents the FCU is in off-
nominal.

4 Experiments

Preamble. Our experiments were carried
out in two phases: a simulation phase and a
verification phase. During the simulation
phase, we ascertained the model was
correctly implemented (exhibited the
anticipated behavior of the FCF System). In
the verification phase, we established the
model was correct given the nine predicates
as constraints. The simulator is a random,
guided and interactive execution of the
model. When initiating execution, the given
seed provides determinism. This enables the
user to execute the exact sequence precisely
repeatedly. This is particularly useful for
debugging. The simulator can repeatedly
execute sequences with faults, such as
transients, that are difficult to reproduce [4].
It does have the drawback of potentially
missing an execution path and therefore
possibly leaving behind implementation
errors. The verifier differs from the
simulator in that each execution of the
model exposes every possible execution
path. This is the only way to guarantee
correctness of a model.

Simulation. We executed two simulation
models to provide feedback on correct
implementation. Initially, we created a FCF
simulation model in order to exercise
legitimate system states. We simulated in
this matter to assist in debugging the
implementation of the FCF in PROMELA.

 18

During this phase we used the windows
version of the SPIN simulator to take
advantage of the graphical displays that
could be monitored in real-time.

Three displays were invaluable in the
debugging phase of the simulation. These
include, the Simulation Output Display, The
Message Passing Display and the Data
Values Display. We show sample screen
shots of the Simulation Output Display and
the Message passing display in Figure 9 and
Figure 10 below. The Data Values Display
as well as other SPIN displays we utilized is
included in Appendix A.

Figure 9. Simulation Output View

Depicts each step executed in order along with
the text of the line executed and the value of data
set or passed in the call. This display can be
paused and/or resumed to assist in monitoring
execution.

Figure 10. Message Passing View

Useful to monitor during run-time, but we found
to be more useful for post-analysis. This
provided a visual and expeditious way to
determine message-passing sequences. In this
display, each process that sends messages to
another process is represented with a vertical
line. The name of the process is highlighted in
yellow. Red lines signifying messages are
displayed going from the sending process to the
receiving process. These messages are
represented with a number, which can be related
to a execution step. It is also possible to have
the message text displayed.

After debugging and accepting the
implementation of the FCF Model, we
added the random fault generator process to
the model. The random fault generator
produces randomly introduces faults one
after the other. This model was executed
over 100 simulation runs. For each run we
provided a different seed to provide a new
random result. The random fault generator
process is the process used in the final
model to introduce faults into the system.
However, during the simulation, the fault
generator is cycled 50 times during each run.
Since the simulator runs an execution of the
system in a deterministic fashion based on
the seed, this is the mechanism that permits
the sequence of faults to be introduced one
after the other in each execution.

This fault generator model was simulated in
both the Windows environment as well as
the Linux command line environment. The
model was simulated in the Windows
environment on a Pentium 4 with 256 MB
RAM, 4GB of Virtual Memory and
operating on Windows NT 4.0. The average
run-time of the model in this environment
with several other tasks running was 1 hour
and 45 minutes. The model was simulated
in the Linux environment on a machine with
4 Intel Zeon, 2.8 Gigahertz processors, 4
Gigabytes of RAM, 8 Gigabytes of swap
space and operating on RedHat Linux
Enterprise 3. The average run time of the
model in this environment is negligible.

 19

Verification. Initially, we ran the FCF
Model in the verifier to verify there were no
acceptance cycles or invalid end states.
Following this, we ran nine verification
models in the SPIN verifier against the
predicates given above. Using SPIN, we
compiled the FCF model with each
predicate, separately. This process created
nine verification models. We compiled each
FCF verification model on an Intel Pentium
P4 2.8 Gigahertz processor machine with 1
Gigabyte of RAM and running Linux 9.0.
To accommodate compilation swap had to
be extended to 4GB. The compile time for
non-compound LTL-formulae (predicates 1
and 6 – 9) was negligible. Due to the time
requirement to compile and run the complex
LTL-formulae [3], these predicates were
compiled in a simplified specification to
provide correctness feedback in a more
timely fashion. At the time of this
publication, the complex LTL-formulae
(predicates 2-5) is still in the process of
completing compilation and execution.

The verification models generated are in the
C programming language. We compiled
these verification models using the GNU C
compiler. We selected compiler options to
reduce the complexity and memory
requirements of the verification. This
assisted in decreasing run-time and memory
usage. We compiled the verification models
on the machine used to compile the FCF
models. The compile time for all
verification models was negligible.

After compiling each verification model, we
ran the models on machines with 4 Intel
Zeon, 2.8 Gigahertz processors, 4 Gigabytes
of RAM and operating on RedHat Linux
Enterprise 3. To accommodate verification,
the swap space had to be extended to 8
Gigabytes.

The following metrics is generated and
supplied below for each verification run.
The number of errors found in the model
during verification is reported as Errors.
The number of states revisited during
verification is reported as States Matched.

The number of states stored during
verification is reported as States Stored. The
longest depth of the DFS State tree is
reported as Depth. The number of state
transitions during verification is reported as
Transitions. The amount of memory used
to store the states, in MB, is reported as
Memory. A summary of the statistics for
each execution is provided in Figure 11
below. The complete reported statistics is
provided in Appendix B.

Verification model one executed in 6 hours
without any errors reported. This model
shows that the FCF system model will
converge to the state of operating without
power to any hazardous items in response to
being thrown into a state with the rack door
ajar.

Verification model two was first run with
simplified LTL formulae in order to reduce
run-time. The model executed in 18 hours
without any errors reported. This model
shows that the FCF system model will
converge to the state of powered-off if
communications is lost with the ECS.

Verification model three was first run with
simplified LTL formulae in order to reduce
run-time. The model executed in 14.5 hours
without any errors reported. This model
shows that the FCF system model will
converge to the state of all packages are in
safed state for which the rack manager has
lost communication with.

Verification model four was first run with
simplified LTL formulae in order to reduce
run-time. The model executed in 18 hours
without any errors reported. This model
shows that the FCF system model will
converge to the state of “safe off-nominal”
when any package is determined to be in an
off-nominal state.

Verification model five was first run with
simplified LTL formulae in order to reduce
time. The model executed in 18.5 hours
without any errors reported. This model
shows that the FCF system model will

 20

converge to the state of all packages that
have lost communications with the rack
manager are in safed state. This verification
shows packages other than the rack manager
can stabilize the system.

Verification model six executed in 2.5 hours
without any errors reported. This model
shows that the FCF system model will
converge to a state where the IOP is in bad-
off in response to being put in a state where
there is no communications with the ECS.

Verification model seven executed in 2.5
hours without any errors reported. This
model shows that the FCF system model
will converge to a state where the FCU is
off-nominal in response to a state where
solenoid valves S14 and S9 are found to be
open

Verification model eight executed in 15.5
hours without any errors reported. This
model shows that the FCF system model
will converge to a state where the FCU is
off-nominal in response to a state where
solenoid valves S14 and S4 are found to be
open.

Verification model nine executed in 3 hours
without any errors reported. This model
shows that the FCF system model will
converge to a state where the FCU is off-
nominal in response to a state where
solenoid valves S14 and S12 are found to be
open.

 21

Model Run Time States Stored Sates Matched Depth Transitions Memory

Predicate 1 6 hours 2.86e+06 1.18e+07 7319 1.469e+08 393762.878
Predicate 2 18 hours 2.87e+06 1.19e+07 6305 1.472e+07 395904.356
Predicate 3 14.5 hours 2.55e+06 3.53e+06 6327 6.078e+06 352055.424
Predicate 4 18 hours 2.88e+06 1.19e+07 6337 1.477e+07 397429.996
Predicate 5 18.5 hours 2.93e+06 1.24e+07 6305 1.531e+07 403771.225
Predicate 6 2.5 hours 2.62e+06 3.68e+06 8055 6.301e+06 361863.855
Predicate 7 2.5 hours 2.53e+06 3.42e+06 8055 5.951e+06 34.9666.837
Predicate 8 15.5 hours 2.50e+06 5.32e+06 6311 7.818e+06 34411.991
Predicate 9 3 hours 2.50e+06 5.32e+06 8265 7.818e+06 34411.991

Figure 11. Model Statistics (Simplified LTL-formulae)

States stored indicates the total states in the system. States Matched refers to the total states
revisited during the verification. Depth refers to the longest path in the DFS tree. Transitions
indicate the number of transitions from state to state to complete the verification. Memory refers
to the memory used to store the states in MB.

 22

5 Conclusion

Benefits. We completed the implementation
of the FCF System Model in PROMELA
prior to the finalizing of the FCF system
state design and verification. Therefore, the
formal verification of the FCF System
Model was particularly useful to the FCF
design team at NASA Glenn Research
Center for the purpose of verifying and
debugging system state implementation. In
addition to finding a few implementation
errors, the simulation was executed over one
hundred times. The FCF did not have the
luxury of executing verifications to this
degree. This provides added assurance of
the soundness of the system state design.

The FCF design team was able to take
advantage of the implementation of the FCF
System Model. It provided the opportunity
to clearly think through implementation
details as the system was modeled,
simulated, debugged and verified. A couple
of implementation errors were found and
corrected before formal verifications of the
FCF were completed. An implementation
error was found in the routine that handles
sending the rack to the off-nominal state
when the IOP is found to be off-nominal.
This routine, Action_6, attempted to
command packages in the safed state to op-
idle state. Only packages in an operational
state (op-maintenance, op-experiment, op-
uplink-downlink) are to be commanded to
op-idle state. The only transition allowed
from safed state is to powered-off (good-off
or bad-off). The correction was made to the
FCF system implementation. An
undesirable design feature was found in the
routine that manages rack state changes.
The rack state was being calculated for each
package state calculated. It appears as if the
rack state was in constant fluctuation. It is
better if the rack state is set after a local
copy of the rack state is calculated in
entirety.

Future Work. There are opportunities for
increased fault-tolerance of the FCF System.
We propose incorporating crash failure
tolerance. In the event the IOP “crashes” ,
the FCF is not functional. IOP fail-over
capability between racks would improve
system capabilities greatly and allow for
better use of rack-to-rack capabilities.

We also propose to expand the state space of
the model to introduce a more detailed
modeling of the system components. There
is a trade off that will have to be further
investigated. The compile and run-time of a
larger model is sure to become a more
looming problem. We thus propose
considering further optimization of code to
enable efficient compilation and execution
of the model.

One additional proposition is the addition of
real-time constraints. Due to the fact that
SPIN does not have real-time extensions,
this would require the system be re-
implemented in a tool such as RT-SPIN
[14], UPPAAL [11], or a tool with discrete
time extension to SPIN [15].

In the design of the FCF System Model, a
few suggestions were made which may be
incorporated into the design of the FCF in
the future. These suggestions were
implemented in the FCF System Model.
First, the robustness of the FCF System
would be increased if the capability for
either IOP to control the power to all
packages (i.e., an IOP in the CIR rack can
control power to packages in the FIR rack
and vise versa). Secondly, the packages
should be “ IOP aware”. Meaning, the a
package can determine if the IOP has not
communicated with it and enter it’ s safe
state upon detecting that communication has
not taken place for a specified period of
time. This will provide added system safety
and self-stabilization.

 23

References

[1] Arora, Anish, Stabilization. Department
of Computer Sciences, Ohio State
University, 2000.

[2] Holzmann, J. Gerald and Peled Doron,
An Improvement in Formal Verification.
AT&T Bell Laboratories, 1994.

[3] Holzmann, J. Gerald, The Model
Checker SPIN. IEEE Transactions on
Software Engineering, 23(5):279-295, May
1997.

[4] Chandra, Subhachandra, An Evaluation
of the Recovery-Related Properties of
Software Faults. Department of Computer
Science and Engineering, University of
Michigan, 2000.

[5] Probabilistic Symbolic Model Checker:
www.cs.bham.ac.uk/~dxp/prism/index.html

[6] NASA, Strategic Program Plan For
Space Radiation Health Research. National
Aeronautics Space Administration, 1998.

[7] Simple PROMELA Interpreter:
www.spinroot.com

[8] Holzmann, J. Gerard, The SPIN Model
Checker: Primer and Reference Manual.
Addison-Wesley Professional, 2003.

[9] VxWorks:
www.wrs.com/products/html/vxworks.html

[10] Merz, Stephan, Model Checking: A
Tutorial Overview. Institut fur Informatik,
Universitat Munchen, 2001.

[11] UPPAAL: www.uppaal.com/

[12] Whittlesey-Harris, S. Raquel, Flight
Software Requirements, Fluids and
Combustion Facility. National Aeronautics
Space Administration, FCF-REQ-0063A.

[13] Douglass, Bruce, Real-Time UML:
Developing Efficient Objects for Embedded
Systems. Addison Wesley Longman, Inc.
1998.

[14] Tripakis, Stavros and Courcoubetis,
Costas, Extending PROMELA and Spin for
Real-Time. Department of Computer
Science, University of Crete and Institute of
Computer Science, FORTH.

[15] Bosnacki, Dragan and Dams, Dennis
Integrating Real Time into Spin: A prototype
Implementation. Department of Math and
Computer Science, Eindhoven University of
Technology.

[16] Kwiatkowska, Marta, Norman, Gethin
and Parker, David, Probablilistic Model
Checking in Practice: Case Studies with
PRISM. School of Computer Science,
University of Birhmingham, 2005.

[17] Approximate Probabilistic Model
Checker: http://apmc.berbiqui.org/

Acronyms

APMC – Approximate Probabilistic Model
Checker

ARIS – Active Rack Isolation System

ATCS – Air Thermal Control System

ATCU – Air Thermal Control Unit

CIR – Combustion Integrated Rack

ECS – Environmental Control System

FCU – FOMA Control Unit

FIR – Fluids Integrated Rack

FSAP – Fluids Science Avionics Package

FOMA – Fuel Oxidizer and Management
Assembly

 24

IOP – Input/Output Processor

IPSU – Image Processing and Storage Unit

PI – Principal Investigator

PRISM – Probabilistic Symbolic Model
Checker

PROMELA – PROcess Meta LAnguage

RT – Real Time

SPIN – Simple PROMELA Interpreter

UPPAAL – Uppsala and Aalborg
Universities

UV – Ultra Violet

WTCS – Water Thermal Control System

YAG – Yttrium Aluminum Garnet

 25

APPENDIX A SPIN Simulation Displays

Figure 12. Variable Output View

Particularly useful to monitor in run-time or to view post-run to get a snapshot of the final state of the system.

 26

Figure 13. Process Run Percentage View

Captures the percentage of time each process runs. We found this display difficult to use since there are many
processes in the FCF Model. The save feature on this display will only display the visible information (viewable).
This presented a situation where all of the information could not be saved. Although not of particular importance to
our research, it may be a nice metric to have.

Figure 14. Process State View

Represents each state of a process and the paths taken to each state. In the Windows version, only the viewable
display is savable. With Linux version of SPIN, this is not a problem.

 27

Figure 15. Execution Sequence View

This display provides a timeline of the execution. It shows in order each executable line and the cumulative time of
execution in a time sequence.

 28

APPENDIX B SPIN Verification Results

(Spin Version 4.1.2 -- 21 February 2004)
 + Partial Order Reduction

Bit statespace search for:
 never claim +
 assertion violations + (if within scope of claim)
 cycle checks - (disabled by -DSAFETY)
 invalid end states - (disabled by never claim)

State-vector 137888 byte, depth reached 6305, errors: 0
2.85559e+06 states, stored
1.1831e+07 states, matched
1.46866e+07 transitions (= stored+matched)
 0 atomic steps
hash factor: 1.4688 (best coverage if >100)
(max size 2^22 states)

Stats on memory usage (in Megabytes):
393762.878 equivalent memory usage for states (stored*(State-vector + overhead))
1.049 memory used for hash array (-w22)
0.360 memory used for DFS stack (-m10000)
52.428 total actual memory usage

Figure 16. Predicate 1 Verification Results

 29

(Spin Version 4.1.2 -- 21 February 2004)
 + Partial Order Reduction

Bit statespace search for:
 never claim +
 assertion violations + (if within scope of claim)
 cycle checks - (disabled by -DSAFETY)
 invalid end states - (disabled by never claim)

State-vector 137904 byte, depth reached 6305, errors: 0
2.87079e+06 states, stored
1.18518e+07 states, matched
1.47226e+07 transitions (= stored+matched)
 0 atomic steps
hash factor: 1.46103 (best coverage if >100)
(max size 2^22 states)

Stats on memory usage (in Megabytes):
395904.356 equivalent memory usage for states (stored*(State-vector + overhead))
1.049 memory used for hash array (-w22)
0.360 memory used for DFS stack (-m10000)
52.428 total actual memory usage

Figure 17. Predicate 2 Verification Results

 30

(Spin Version 4.1.2 -- 21 February 2004)
 + Partial Order Reduction

Bit statespace search for:
 never claim +
 assertion violations + (if within scope of claim)
 cycle checks - (disabled by -DSAFETY)
 invalid end states - (disabled by never claim)

State-vector 137920 byte, depth reached 6327, errors: 0
2.55253e+06 states, stored
3.52539e+06 states, matched
6.07792e+06 transitions (= stored+matched)
 0 atomic steps
hash factor: 1.64319 (best coverage if >100)
(max size 2^22 states)

Stats on memory usage (in Megabytes):
352055.424 equivalent memory usage for states (stored*(State-vector + overhead))
1.049 memory used for hash array (-w22)
0.360 memory used for DFS stack (-m10000)
52.428 total actual memory usage

Figure 18. Predicate 3 Verification Results

 31

(Spin Version 4.1.2 -- 21 February 2004)
 + Partial Order Reduction

Bit statespace search for:
 never claim +
 assertion violations + (if within scope of claim)
 cycle checks - (disabled by -DSAFETY)
 invalid end states - (disabled by never claim)

State-vector 137916 byte, depth reached 6337, errors: 0
2.8816e+06 states, stored
1.18932e+07 states, matched
1.47748e+07 transitions (= stored+matched)
 0 atomic steps
hash factor: 1.45555 (best coverage if >100)
(max size 2^22 states)

Stats on memory usage (in Megabytes):
397429.996 equivalent memory usage for states (stored*(State-vector + overhead))
1.049 memory used for hash array (-w22)
0.360 memory used for DFS stack (-m10000)
52.428 total actual memory usage

Figure 19. Predicate 4 Verification Results

 32

(Spin Version 4.1.2 -- 21 February 2004)
 + Partial Order Reduction

Bit statespace search for:
 never claim +
 assertion violations + (if within scope of claim)
 cycle checks - (disabled by -DSAFETY)
 invalid end states - (disabled by never claim)

State-vector 137932 byte, depth reached 6305, errors: 0
2.92724e+06 states, stored
1.23792e+07 states, matched
1.53065e+07 transitions (= stored+matched)
 0 atomic steps
hash factor: 1.43285 (best coverage if >100)
(max size 2^22 states)

Stats on memory usage (in Megabytes):
403771.225 equivalent memory usage for states (stored*(State-vector + overhead))
1.049 memory used for hash array (-w22)
0.360 memory used for DFS stack (-m10000)
52.428 total actual memory usage

Figure 20. Predicate 5 Verification Results

 33

(Spin Version 4.1.2 -- 21 February 2004)
 + Partial Order Reduction

Bit statespace search for:
 never claim +
 assertion violations + (if within scope of claim)
 cycle checks - (disabled by -DSAFETY)
 invalid end states - (disabled by never claim)

State-vector 137968 byte, depth reached 6313, errors: 0
2.62273e+06 states, stored
3.6787e+06 states, matched
6.30143e+06 transitions (= stored+matched)
 0 atomic steps
hash factor: 1.59921 (best coverage if >100)
(max size 2^22 states)

Stats on memory usage (in Megabytes):
361863.855 equivalent memory usage for states (stored*(State-vector + overhead))
1.049 memory used for hash array (-w22)
0.360 memory used for DFS stack (-m10000)
52.428 total actual memory usage

Figure 21. Predicate 6 Verification Results

 34

(Spin Version 4.1.2 -- 21 February 2004)
 + Partial Order Reduction

Bit statespace search for:
 never claim +
 assertion violations + (if within scope of claim)
 cycle checks - (disabled by -DSAFETY)
 invalid end states - (disabled by never claim)

State-vector 137904 byte, depth reached 6313, errors: 0
2.53551e+06 states, stored
3.41563e+06 states, matched
5.95114e+06 transitions (= stored+matched)
 0 atomic steps
hash factor: 1.65423 (best coverage if >100)
(max size 2^22 states)

Stats on memory usage (in Megabytes):
349666.837 equivalent memory usage for states (stored*(State-vector + overhead))
1.049 memory used for hash array (-w22)
0.360 memory used for DFS stack (-m10000)
52.428 total actual memory usage

Figure 22. Predicate 7 Verification Results

 35

(Spin Version 4.1.2 -- 21 February 2004)
 + Partial Order Reduction

Bit statespace search for:
 never claim +
 assertion violations + (if within scope of claim)
 cycle checks - (disabled by -DSAFETY)
 invalid end states - (disabled by never claim)

State-vector 137904 byte, depth reached 6311, errors: 0
2.4974e+06 states, stored
5.32071e+06 states, matched
7.81811e+06 transitions (= stored+matched)
 0 atomic steps
hash factor: 1.67946 (best coverage if >100)
(max size 2^22 states)

Stats on memory usage (in Megabytes):
344411.991 equivalent memory usage for states (stored*(State-vector + overhead))
1.049 memory used for hash array (-w22)
0.360 memory used for DFS stack (-m10000)
52.428 total actual memory usage

Figure 23. Predicate 8 Verification Results

 36

(Spin Version 4.1.2 -- 21 February 2004)
 + Partial Order Reduction

Bit statespace search for:
 never claim +
 assertion violations + (if within scope of claim)
 cycle checks - (disabled by -DSAFETY)
 invalid end states - (disabled by never claim)

State-vector 137904 byte, depth reached 6311, errors: 0
2.4974e+06 states, stored
5.32071e+06 states, matched
7.81811e+06 transitions (= stored+matched)
 0 atomic steps
hash factor: 1.67946 (best coverage if >100)
(max size 2^22 states)

Stats on memory usage (in Megabytes):
344411.991 equivalent memory usage for states (stored*(State-vector + overhead))
1.049 memory used for hash array (-w22)
0.360 memory used for DFS stack (-m10000)
52.428 total actual memory usage

Figure 24. Predicate 9 Verification Results

