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Abstract 
 
The Fluids and Combustion Facility (FCF) 
will be a permanent modular, multi-user 
facility used to accommodate microgravity 
science experiments in the U.S. Laboratory 
Module onboard the International Space 
Stations (ISS).  The ability to withstand 
faults is vital for all ISS installations.  
Currently, the FCF safety specification 
requires a one-component fault-tolerance.  
In future versions, a more extensive fault-
tolerance model may be required.  In this 
paper, we describe the formal verification of 
fault-tolerance of the FCF Distributed State 
Model using SPIN. We program the FCF 
module state transitions in PROMELA 
(SPIN's internal language). We first verify 
the correctness of FCF without faults. We 
then simulate a single fault by moving one 
of the modules to an arbitrary state and 
verify correct recovery of the system. We 
extend our verification to the case of an 
extensive fault where the whole system has 
to recover from an arbitrary global state.  
 

 
1   Introduction 
 
Automating Verification of Self-
Stabilization. One of the main difficulties in 
designing a self-stabling program is its lack 
of a limited set of initial states. The program 
is expected to start from an arbitrary state 
and eventually arrive at a legitimate state 
[1].  Traditionally, the correctness of a self-

stabilizing program is verified analytically. 
A classic approach is to find an invariant 
guaranteeing that a program starting from a 
state conforming to this invariant satisfies 
the specification.  The correctness proof 
then proceeds by showing that regardless of 
the initial state the program eventually 
arrives at a state that satisfies the invariant. 
 
However, in a practical distributed system 
the total number of states can be rather 
large. This makes analytical verification of 
stabilization a rather difficult task. 
Moreover, the presence of details and 
particulars of the system compound the 
problem: such details frequently result in 
special cases that have to be examined 
individually. Thus, the analytic proof of 
stabilization becomes tedious to construct 
and verify. As the size and complexity of 
such proof increases its validity becomes 
suspect. 
 
In this paper we propose an alternative 
approach to verifying stabilization. We use 
model-checking techniques to automate the 
verification. We apply the techniques to the 
verification of fault tolerance of an 
experimental facility to be deployed at the 
International Space Station. 
 
Model checkers are designed to find logical 
and functional design errors, such as 
deadlocks, livelocks, starvation, race 
conditions, priority problems, system 
bounds violations and specification 
incompleteness or redundancy.  Because 
model checking is cost-effective and 
integrates well with conventional design 
methods, it is being adopted as a standard 
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procedure for the quality assurance of 
reactive systems [10]. 
 
Addressing Safety of the Fluids and 
Combustion Facility.  We will be 
addressing the fault-tolerance of the Fluids 
and Combustion Facility (FCF), which is to 
become a permanent installation on board 
the International Space Station (ISS).  The 
reliability of ISS facilities is critical. It is 
becoming even more important as budget 
demands increase while safety requirements 
become more central.  Traditionally, space 
experiments have been conducted on the 
space shuttle.  In this case, a failed 
experiment may be repeated during 
subsequent missions. However, ISS is a 
permanent facility where experiments 
operate continuously without down time.  
Therefore, opportunities for corrections are 
limited. 
   
The adverse environment magnifies the 
reliability concerns.  Non-space based 
experiments do not normally face the kind 
of environmental hardships to be endured by 
installations such as the FCF.  The system 
must survive harsh acceleration forces 
including 3g peak during launch, 1.5g peak 
during re-entry, microgravity vibration and 
g-jitter (such as those caused by launch 
vibrations, motors, orbital maneuvers, 
astronaut activities, and experimental 
vibrations). There are a number of other 
factors that make the space environment 
particularly challenging. These may include: 
Galactic Cosmic Radiation, Trapped Belt 
Radiation, Solar Particle Events, Ionizing 
Radiation, the South Atlantic Anomaly, 
orbital debris, airborne contaminants,  
limited space craft volume, restricted 
physical access, satellite access, excess heat 
(both generated internally by experiments as 
well as charged particle) [6].  Protection of 
the space station environment presents 
another distinctive challenge.  The ISS has 
strict requirements systems such as the FCF 
must adhere to in order to prevent 
contamination of the ISS environment.  
Moreover, protection of the crew is 
paramount:  equipment failure should not 

lead to the harm of the crew or the ISS.  
Much of the equipment to be used in space 
experiments is developed and tested on the 
ground.  Hence, the reliability of such 
equipment in space is unproven. 
 
Safety and reliability concerns are further 
increased by the limited access to the 
system.  Crew time is limited in general.  
The FCF is currently expecting 1.5 hours per 
month of crew time.  Maintaining  a 
research installation in space, both the 
hardware and software components of it, is 
difficult.  Replacement parts  have to be 
transported to the ISS by spacecraft.  
Spacecraft have limited cargo space to 
accommodate such shipments.  Once aboard 
the ISS, replacement parts have to be 
installed by crew members.  The crew have  
limited experience and knowledge of the 
installation.  Software upgrades may be 
uploaded via satellite. These kinds of 
uploads come with additional difficulties.  
Communications availability is currently at 
30% coverage (the communication window 
is available less than 1/3 of the time.)  In 
addition, operational challenges further 
complicate the scenario.  The 
communication and accessibility limitations 
introduce a greater complexity to ascertain 
and repair the system when failures occur or 
upgrades are needed.  Troubleshooting 
opportunities are limited.  Ground operation 
teams are limited to the predefined telemetry 
downlinked during operation of the FCF.  
To upload new software care must be taken 
to insure installation of an error free 
replacement.  The component responsible 
for managing the operation of the racks must 
be operational in order for this procedure to 
be implemented. This results in many 
opportunities for failure during 
implementation of this process.  For 
example, a faulty kernel would not permit 
the component to boot or possibly open 
enough file descriptors to start up particular 
functionalities. 
 
The current FCF system specification 
requires that the system must be able to 
handle a one-component failure [12].  
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“ The Flight Segment shall be 
designed to mitigate the 
consequences of Single Event 
Effects (SEE)” .   

 
Single Event Effects are Single Event 
Upsets, Single Event Latchups or Single 
Event Burnouts.  Single Event Effects are 
radiation-induced errors in microelectronic 
circuits caused when charged particles 
(usually from the radiation belts or from 
cosmic rays) lose energy by ionizing the 
medium through which they pass, leaving 
behind a wake of electron-hole pairs. A 
Single Event Latchup is a condition that 
causes loss of device functionality due to a 
single-event induced current state. A Single 
Event Burnout is a condition that can cause 
device destruction due to a high current state 
in a power transistor.   In addition to 
handling Single Event Upsets, the system is 
required to isolate failures to a particular 
component.  
 
Greater robustness is expected to be 
achieved from the FCF in the future.  It is 
also advantageous for the system to recover 
from more extensive failures (more than a 
one-component failure criteria).  We 
anticipate that future specifications will 
require more extensive fault-tolerance. 
Our Approach.  We examine the behavior of 
the FCF as a collection of components.  We 
assume that each component is capable of 
internally isolating the fault.  External to the 
component, the failure manifests itself as a 
transition to an arbitrary state.   We verify 
that this transition does not cause the system 
to violate the safety critical properties.  We 
study more extensive faults.   
 
We model the system using the SPIN [2], 
[3], [7], [8] tool.  After modeling and 
verifying the operation of the system 
without faults, we systematically examine 
the operation of the FCF by simulating 
system faults using the SPIN  simulator.  We 
place the system in an arbitrary state and 
observe its behavior afterwards.  The system 
is expected to arrive at a legitimate state. 

 
We then formally verify the operation of 
FCF with a single component failure.  We 
specify a number of safety critical predicates 
and verify that the system conforms to its 
specification.  We model an extensive 
system failure by moving each component to 
an arbitrary state.  We then verify the 
stabilization of the system to a state that 
conforms to the safety critical predicates. 
Related Literature.  The formal 
verification tool PRISM (Probabilistic 
Symbolic Model Checker) [5], [16] has 
been used to carry out probabilistic 
formal model checking of randomized 
distributed algorithms.  Amongst the 
randomized distributed algorithms are 
self-stabilization algorithms.  As a case 
study, PRISM was used to verify the 
self-stabilizing algorithm for token 
passing on a ring network.   

PRISM differs from SPIN in that it can 
provide feedback on quantitative measures, 
such as reliability and performance, as well 
as the traditional functional correctness 
verification.   In our experiment, only 
functional correctness was required.  In 
addition, SPIN requires a deterministic, 
finite state model.  PRISM on the other 
hand, does not require termination.  
 
Another probabilistic modeling checking 
tool being utilized for distributed systems is  
the Approximate Probabilistic Model 
Checker (APMC) [17]. 
 
Organization.  This paper is divided into 
the following sections. In section 1, we 
discuss the goal of our research.  In section 
2, we discuss the architecture of the Fluids 
and Combustion Facility.  In section 3, we 
discuss the FCF model verified using the 
SPIN tool.  In section 4, we discuss the 
experiments performed.  We conclude this 
paper in section 5 with a discussion of the 
benefits of our experiments for the Fluids 
and Combustion Facility’s design team and 
future model verification plans. 
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Terminology. 

 
Figure 1. Fluids and Combustion Facility 

 
Some of the terminology used in the paper is 
included below:   
 
Downlink – data transmitted from the flight 
system to the ground system;   Flight 
Segment - The FIR, CIR and SAR on the 
ISS; Flight Segment Software – The 
software component of the Flight Segment;  
FSSS- Flight Segment Support System - The 
GUI and Telescience support required to 
meet the objectives of the on-orbit mission;   
Health and Status - Data originating within 
the FCF Rack that is monitored by the 
Primary Processor to assure the safe and 
correct operation of the FCF and FCF 
Payloads, as well as assurance of ISS safety, 
as specified by safety guidelines;  Linear 
Temporal Logic Formulae – technique for 
the specification of temporal rules;  Near 
Real Time - The time the actual event occurs 
plus the time to process the data.  Note, this 
time will vary with the situation to be 
performed.  This time is usually in the order 
of seconds after the event occurred;  Uplink 
– data transmitted from the ground system to 
the flight system. 
 

2  Architecture 
 
Overview.  The FCF consists of the 
Combustion Integrated Rack (CIR) and the 
Fluids Integration Rack (FIR).  See Figure 1.  
The Shared Accommodations Rack is 
currently not being developed and will not 
be further discussed in this paper.  Due to 

the unique operational environment, the FCF 
has been designed to be highly automated, 
modular, easily configured and maintained.  
In order to minimize cost, design 
complexity, and maintenance, it has been 
designed to maximize component reuse 
across the racks and the use of commercial 
off-the-shelf hardware and software.  The 
CIR and FIR provide resources for Principal 
Investigators (PIs) to conduct scientific 
experiments in a microgravity environment.   
 
Common Components.   Common systems 
between the racks include: structural 
hardware, electrical (power control), 
environmental control (air and water thermal 
control, fire detection and suppression and 
gas interface), active rack isolation (payload 
isolation from mechanical disturbances 
onboard the ISS), device diagnostics (i.e., 
cameras, lenses, illumination, lasers), and 
command and data management (diagnostic 
control, image processing and 
communication hardware and software). 
 

CIR FIR

IOP IOP
IPSUIPSU

LLL-UV HiBMs

HFR/HR Illumination

MDSU

FSAP

Color
Camera

White Light YAG Laser

PI-FSAP Diagnostics

EPCU

ECS
EPCU

ECS

IPSU IPSU

 
 

Figure 2. FCF Subsystems in a Potential 
Configuration 

In our model we focus on the command and 
data management facilities of the FCF. We 
chose not to model communication with 
hardware, i.e., lasers.  We assume that such 
communications is internal to the 
components.   
 
The Input/Output Processor (IOP) is the 
component, which acts as the primary 
processor or rack/system controller.  The 
IOP, amongst other things, is responsible for 
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processing and transmitting telemetry to and 
from ISS and monitoring as well as 
coordinating rack and inter-rack operations.  
Operations include health and status 
monitoring and time synchronization 
between components.  The IOP consists of 
three separate processors, the IOP Main 
Processor (IOPMP), IOP Video Switch 
Processor (VSP) and the IOP High Rate 
Data Link (HRDL) Processor. 
 
The   Input/Output Processor Main 
Processor (IOPMP) provides all the data 
communication between the ISS and the 
FCF.  This includes a MIL-STD-1553B bus 
interface to the ISS Low Rate Data Link 
(LRDL), IEEE 802.3 interface to the ISS 
Medium Rate Data Link (MRDL), and a 
fiber optic interface to the ISS High Rate 
Data Link (HRDL).  IEEE 802.3 and a 
RS170 interfaces are also available to the 
ISS for a crew interface laptop.  The IOPMP 
utilizes a CANBus interface between the 
IOP and components to monitor component 
health and status.   
 
The Input/Output Processor High Rate Data 
Link Processor (IOPHP) is responsible for 
all HRDL communications between the ISS 
and the FCF.  The link provides a 100-Mbps 
transmit interface. 
 
The Input/Output Processor Video Switch 
Processor (IOPVSP) provides real-time 
switching of data and video from various 
sources in the FCF to various output 
devices/sources. 
 
The Image Processing and Storage Unit 
(IPSU) is designed to accommodate image 
acquisition, processing and management 
typically required for fluids physics and 
combustion experiments.  There are two 
types of IPSUs: one provides support for a 
wide range of digital cameras common to 
both the FIR and CIR.  This IPSU stores 
video data in digital format and data 
acquired can be compressed if necessary to 
reduce memory and transfer bandwidth.  
Digital images can be processed to support 
closed loop control scenarios.  The other 

flavor of IPSU (IPSU-A) provides image 
acquisition from analog cameras.  These 
images can be digitized and stored, 
processed and downlinked in much of the 
same manner as images directly from digital 
cameras.  The CIR can accommodate up to 
six IPSUs while the FIR can accommodate 
up to two IPSUs.  The FCF as a whole (FIR 
and CIR) has been designed to have the 
capability to utilize IPSUs located in the 
other rack (virtual IPSU) for extra 
processing power that may be required. 
 
The Diagnostic Control Module (DCM) 
provides control, power, cooling and 
mechanical alignment interfaces between 
modules in a diagnostic package. 
 
The Image Acquisition Module (IAM) is a 
device, which collects an image provided by 
a diagnostic package optical system and 
converts the image into a format that can be 
transferred via optical fiber to an IPSU.  It 
integrates the camera with its power supply 
and serial data link in one unit and provides 
a four-flange mount to interface with other 
diagnostic modules. 
 
The Electrical Power Control Unit (EPCU) 
performs power distribution, conversion, 
control, management and fault protection for 
the FCF racks.  It is controlled by the IOP 
via a 1553 bus.  On the front of the rack, 
there is a EPCU Shut-Off Switch Assembly 
(ESSA) to manually remove power from the 
rack.   
 
The Environmental Control System (ECS) 
consists of four subsystems.  These include 
the Air Thermal Control Subsystem (ATCS), 
the Water Thermal Control Subsystem 
(WTCS), the Gas Interface Subsystem (GIS) 
and the Fire Detection and Suppression 
Subsystem (FDSS).   
 
The Air Thermal Control Subsystem (ATCS) 
provides an air-cooling system for the FCF 
avionics.  It can remove up to 1650 W of 
facility generated waste thermal energy. 
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The Air There Control Unit (ATCU) uses a 
CANBus interface for communications with 
the IOP.  It utilizes fans to draw warm air 
from the rear of the rack and send the air 
through a heat exchanger and filter returning 
cooled air into the system.  Both the FIR and 
the CIR require a specific level of airflow 
for the system to safely operate.  In the event 
that airflow inadvertently goes below this 
level, the system will be shut down. 
 
The Water Thermal Control Subsystem 
(WTCS) provides cooling to the FCF 
equipment by removing FCF systems 
generated waste thermal energy and 
transferring it to the ISS Internal Thermal 
Control System (ITCS) Moderate 
Temperature Loop (MTL). The WTCS 
consists of a Water Distribution Subsystem 
to distribute water to primary and secondary 
loops;  a Primary Loop Subsystem which 
provides cooling to non-science hardware; a 
Secondary Loop Subsystem which provides 
cooling to science hardware, a Control 
Subsystem located in the ATCU (EEU – 
ECS Electronic Unit) which provides 
electronic control between the IOP and 
WTCS hardware; and a Accumulator 
Subsystem which absorbs thermal control 
system pulsations due to temperature 
fluctuations during launch.  If water flow is 
not maintained to achieve the required 
temperatures, the FCF system will be shut 
down. 
 
The Fire Detection and Suppression 
Subsystem (FDSS) is responsible for 
detection and suppression of fire events.  
Each rack is independently monitored for 
smoke using and ISS smoke detector.  Laser 
light attenuation and laser light scattering is 
used to detect smoke.  Upon detection of a 
fire event, a red light emitting diode will 
provide a visual indication to the crew of the 
fire event location.  Power to the rack will 
be removed by the IOP, which shuts down 
all airflow devices in the rack.  Discharge 
and diffusion of CO2 into the rack will 
depend on the charge pressure in the 
portable fire extinguisher. 
 

The Gas Interface Subsystem (GIS) provides 
an interface for payloads to access ISS 
provided Gaseous Nitrogen (GN2), Vacuum 
Exhaust System (VES) and Vacuum 
Resource System  (VRS) services.  In the 
CIR, the Fuel/Oxidizer Management 
Assembly (FOMA) system provides the 
required controls for interfacing to the GIS.  
In the FIR, pressure regulation, flow control 
and exhaust gas processing functions are the 
responsibility of the Principal Investigator. 
 
The Active Rack Isolation System (ARIS) 
isolates experiments from mechanical 
disturbances that can occur on the ISS.  
ARIS is essentially a shock absorber.  ARIS 
has a sophisticated electronic sensing and 
control system that allows the racks to float 
within a 12.7 mm (0.5 inch) clearance in all 
directions thereby isolating payloads from 
motion disturbances.  Attenuation of on-
orbit low-frequency/large amplitude 
mechanical vibrations is achieved by 
utilization of accelerometers, actuators, a 
controller, drivers and sensors among other 
systems.  Three tri-axial accelerometer 
packages measure vibration disturbances 
and transmit this data to a controller, which 
commands eight actuators to position the 
racks on three axes, six degrees of freedom 
to counteract the disturbances.  ARIS has 
five system states, including, Idle – position 
and acceleration control is inactive however 
the controller reports health and status of the 
ARIS; Hold – the rack is centered and the 
position is held relative to the ISS without 
actively attenuating vibrations; Active – 
compensation for acceleration is achieved to 
maintain the microgravity environment; 
NOGO – essentially idle although entered 
on error; Power Off – emergency situations 
where ARIS power must be terminated 
immediately. 
 
The Space Acceleration Measurement 
System Triaxial Sensor Heads (SAMS TSH) 
are used on both racks to expand the 
measurement capabilities. 
 
The Station Support Computer (SSC) is a 
laptop computer, which is a shared ISS 
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resource.  The primary purpose of the SSC 
is to provide crew support applications.  
Software necessary for command and 
control of the FCF using the SSC will be 
resident on the IOP.  This software will be 
served up to the SSC for execution and will 
consists of applications and GUIs necessary 
to interact with the FCF. 
 
Combustion Integrated Rack.  The 
Combustion Integrated Rack (CIR), pictured 
in Figure 3, will provide sustained 
combustion physics research.  
 
 

 
Figure 3. Combustion Integrated Rack 

 

In addition to the common components 
discussed above, it includes, a Combustion 
Chamber, Fuel Oxidizer and Management 
Assembly (FOMA), additional diagnostic 
packages for imaging and other assemblies. 
 
The Fuel Oxidizer and Management 
Assembly (FOMA) provides the capability to 
supply gaseous fuels, oxidizers and diluents 
into the combustion chamber.  The FOMA 
also samples the environment of the 
combustion chamber via a Gas 
Chromatograph (GC) and controls the 
venting of chamber gases (to the ISS 
Vacuum Exhaust System) to acceptable 
concentration levels.  Redundant valves are 
used to meet the safety requirements to 
protect bottled gas from being evacuated 
during venting.  Pressure sensors and 
pressure switches ensure that an over 

pressurization of the combustion chamber 
does not occur.  Mass flow controllers are 
used to meter all gases.  Pre-mixed gases 
may also be delivered to the combustion 
chamber via a nitrogen/high pressure 
manifold as an alternative.  The FOMA 
Control Unit (FCU) is utilized as a software 
backup to these safety hazards.  The 
software ensures that particular valve 
combinations are avoided to prevent such 
occurrences as over pressurization, 
contamination and improper venting to 
name a few.  It performs command 
processing, control, data processing and 
health and status monitoring of the FOMA. 
 
The two packages that make up the FOMA 
are the Gas Delivery Package (GDP) and 
the Exhaust Vent Package (EVP), which 
includes the Gas Chromatograph (GC).  The 
Gas Delivery Package (GDP) consists of gas 
supply bottles and instrumentation to 
distribute and regulate gas delivery to the 
combustion chamber.  Up to four 
consumable gases is permitted.  The Exhaust 
Vent Package (EVP) is the interface 
between the combustion chamber and the 
ISS Vacuum Exhaust System (VES).  It 
includes a PI-supplied adsorber cartridge 
and a recirculation loop.  The adsorber 
cartridge is used to remove water, filter 
particulates, absorb trace amounts of 
unspent fuels, or chemically alter trace 
species (e.g., CO to Co2).  The recirculation 
loop is used to convert post-combustion 
gases into acceptable species for venting and 
to improve the test gas environment for 
subsequent PI hardware tests. 
 
The Gas Chromatograph (GC) includes a 
Gas Chromatograph Instrumentation 
Package (GCIP) and a Gas Chromatograph 
Gas Supply Package (GCGSP).  It is used to 
sample gas from the combustion chamber 
and analyze exhaust vent gases for 
acceptability. 
 
Diagnostic packages in the CIR include the 
High Bit Depth/Multi-Spectral Package 
(HiBMs), the High Frame Rate/High 
Resolution Package (HFR/HR), the Color 
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Camera Package, the Low Light Level 
Ultraviolet Package (LLL-UV), the Low 
Light Level Infrared Package (LLL-IR) and 
the Illumination Package. 
 
The High Bit Depth/Multi-Spectral Package 
(HiBMs) contains a spectral filter, a prism 
module, a telecentric optical system 
(provides pixel mapping through object 
space along parallel paths), a fixed mirror 
module, an optics housing module, a DCM, 
a high resolution 12-bit output digital 
camera in an IAM and a liquid crystal 
tunable filter. 
 
The High Frame Rate/High Resolution 
Package (HFR/HR) consists of a telecentric 
(magnification does not change with focus 
position) optical system, a trombone prism 
assembly, a pointing mirror module, a filter 
compensator module, a high-resolution (1 
mega-pixel) digital camera in the IAM, an 
optics housing module and a DCM. 
 
The Color Camera Package contains two 
Objective Optics Modules, a Relay Optics 
Module, an IAM with a color camera, a 
Fixed Mirror Module, and Optics Housing 
Module and a DCM.   
 
The Low Light Level Packages (LLL) 
produces images at a low radiance level.  
They each consist of a digital monochrome 
camera coupled with an IAM and fast 
numerical aperture optics with provision for 
spectral filtering of the transmitted 
illumination, a DCM, a Fixed Mirror 
Module and an Optics Housing Module.     
 
The Low Light Level Ultraviolet Package 
(LLL-UV) package can be positioned on the 
optics bench to provide orthogonal views of 
an experiment.  Combustion events can be 
recorded in matching or different spectral 
regions that are defined by investigator 
provided filters.   
 
The Illumination Package contains a 
collimated optical system (Objective Optics 
Module and optics in the Illumination 
Source Module), a Fixed Mirror Module, 

and an Illumination Control Module (ICM).  
The illumination source is a laser diode 
array that can be used to provide 
monochromatic background illumination.  
This package can be used with the laser 
diode to provide a uniform illumination 
background for soot absorption 
measurements in soot volume fraction 
applications.  The laser diode can be used as 
a non-coherent illumination source if 
operated below the lasing threshold.  The 
laser diode can also be used as the 
background illumination source for 
shadowgraph measurements with the HiBMs 
Package or for droplet size measurement 
with the HFR/HR Package.  Future growth 
considerations are feasible with the modular 
design of the system.   
 
The Command and Data Management 
System (CDMS) for the CIR provides 
command, control, data acquisition, data 
processing, data management, health and 
status monitoring, interfaces and time 
synchronization between the IOP, FCU, 
IPSUs, DCMs, Diagnostic Packages and 
Science Payloads.  The interfaces include 
the crew interface via the SSC and 
command, telemetry and video interfaces to 
the ISS Command and Data Handling 
System. 
 
CDMS communications occur over Ethernet 
and CAN Bus.  Health and Status is 
communicated via CAN Bus while 
interprocess communications occur over 
Ethernet. 
 
Fluids Integrated Rack.  The Fluids 
Integrated Rack (FIR), pictured in Figure 4, 
will provide sustained fluids physics 
research.  The FIR provides common 
services (diagnostics) required by most fluid 
physics researchers to minimize the design 
and development for each experiment. 
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Figure 4. Fluids Integration Rack 

 

In addition to the common subsystems 
discussed earlier, the FIR includes, a Fluids 
Science Avionics Package (FSAP), PI-
FSAP, Atmospheric Monitoring Assembly 
(AMA), diagnostic packages and interfaces 
to accommodate PI provided diagnostics.   
 
The Fluids Science Avionics Package 
(FSAP) is a multi-purpose data acquisition 
and control system that provides the 
capability to interact with a wide variety of 
fluids experiments.  The FSAP provides a 
standard set of analog and digital 
Input/Output channels, motion controllers, 
analog video acquisition, data storage, and 
communication connectivity.  An analog  
frame grabber is utilized to provide the 
capability to acquire images from an analog 
RS170A video source.  The FSAP has the 
capability for two axes of motion control for 
stepper motors running in full, half, or 
microstep configurations, and two axes of 
motion control for servo motors and a 
resolution of 12 bits.  Automated position 
and tracking is provided with the use of a 
CAN controller and DCM. 
 
The Principal Investigator Fluids Science 
and Avionics Package (PI-FSAP) provides 
an enclosure with a microprocessor, 
communication interfaces, and card slots 
available for PI use.  The PI has the ability 
to configure the PI-FSAP on the ground 
with science-specific circuit boards. 
 

The Atmospheric Monitoring Assembly 
(AMA) provides temperature, pressure and 
relative humidity information for the rack 
volume.   
 
Diagnostic packages in the FIR include the 
Color Camera Assembly, White Light 
Assembly and Nd:YAG Laser Assembly. 
 
The Color Camera Assembly contains an 
analog 3-CCD (Charge-Coupled Device) 
color camera head and a Color Camera 
Image Acquisition Module (CCIAM).  Real-
time downlink of analog video can be 
provided to the ISS interface via the IOP.  
Health, status and control is provided 
through a CAN bus interface to the FSAP 
and CCIAM. 
 
The White Light Assembly provides 
acquisition of color images while helping to 
prevent “ ringing” .  It contains two 
independently controllable lamp modules.     
 
The Nd:YAG Laser Assembly converts 1064-
nm output to 532 nm with the use of a non-
linear, frequency-doubling crystal.  The high 
quality beam is suitable for interferometry, 
velocimetry and monochromatic 
illumination of relatively large test cell 
areas.  
 
The Command and Data Management 
System for the FIR is similar to the CIR.  
Time synchronization however, is between 
the IOP, FSAP, PI-FSAP, IPSUs, DCMs, 
Diagnostics and science payloads. 
 
The FCF Software System.  The FCF 
Flight Software System is a distributed real-
time multitasking embedded system.  Main 
components are running on the VxWorks [9] 
operating system.  Communication between 
components is achieved through Ethernet, 
Fiber-Optic, CANBus, Analog, MIL-STD-
1553 and Serial Data links.   
 
All main component communication is done 
through the primary rack controller  the 
IOP.  In addition, communication to the ISS 
is achieved through a Medium Rate Data 
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Link – an 802.3 interface running at 10 
Mbps; a Low Rate Data Link – a MIL-STD-
1553 interface running at 1 Mbps; and a 
High Rate Data Link – Fiber Optic Data 
Distributed Interface running at 100 Mbps. 
There is also analog video (RS170) and 
Ethernet (100BaseT) interfaces to the on 
board station computer for crew interface. 
 
Communications between sub-components 
and main components may take place 
directly. 
 
The IOP as the rack manager maintains the 
overall rack state and monitors component 
states as well as component health and 
status.  The FCF defined rack states are 
depicted in Figure 5. 
 
 

Initialization Safed (S)

Maintenance (M) Experiment (E)

Idle (I)

Mixed

Operational (OP)

Maintenance (M) Experiment (E)

Idle (I)

Mixed

Off-Nominal

OP to S

Off-Nom to S

power on/

success /
er ro r /

e rro r/

e rro r/

power off/

safed cmd/

safed cmd/

operational cmd/

maintenance cmd to all packages/

idle cmd to all packages/ experiment cmd to all packages/

idle cmd to all packages/

en try /

success /

e rro r/

success /

er ro r /

e rro r/ e r ro r /

safed cmd/

unsynchronize package states/

synchronize package states/unsynchronize package states/

synchronize package states/

unsynchronize package states/

synchronize package states/

e rro r/

power off/

 
Figure 5. FCF Rack States 

 
Component states (in general) include: 
 
good-off  The component has either never 
been powered on or have been shut down 
due to a nominal circumstance, without any 
anomalies. 

 

bad-off  The component is powered off 
due to an anomaly. 
 
initialization  The component has been 
powered on and is performing system 
Power-On-Self-Test (POST) and initializing 
hardware and software components.  The 
component is not yet ready to initiate 
communications with the Rack Manager and 
receive commands. 
 
operational-idle  The component has 
completed initialization, is operating 
nominally and is ready to perform 
experiment operations.  Generally only 
communications (telemetry and limited 
commanding) is available in operational-
idle. 
 
operational-uplink/downlink  The 
component is operating nominally and is 
ready to receive an uplink or transmit data to 
the ground (downlink). 
 
operational-maintenance  The 
component has expanded commanding 
capability from operational-idle.  May be 
used for troubleshooting or initiating non-
sequenced events. 
 
operational-experiment  The component 
is operating nominally and in a state to 
perform experiment operations.  
Commanding capability is expanded from 
operational-idle. 
 
off-nominal  The component has 
encountered an anomaly that must be 
addressed before further operations may 
take place.  
 
safed  The component is ready for power-
down (all hardware and software 
components have been put in a state that will 
not damage the component or cause lost of 
data).  Generally only the power down 
command is accepted in this state.  
Communications to the Rack Manager 
continues. 
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Rack states include: 
 
good-off  All system components have 
either never been powered on or have been 
shut down due to a nominal circumstance, 
without any anomalies. 
 
bad-off  All system components are 
powered off and at least one system 
component is in the powered off state due to 
an anomaly. 
 
initialization  All powered system 
components are in their respective 
initialization states. 
 
operational-idle  All powered system 
components are in their respective 
operational-idle states. 
 
operational-uplink/downlink  All 
powered system components are in their 
respective operational-uplink/downlink 
states. 
 
operational-maintenance  All powered 
system components are in their respective 
operational-maintenance states. 
 
operational-experiment  All powered 
system components are in their respective 
operational-experiment states. 
 
operational-mixed  Not all powered 
system components are in the same state. 
 
off-nominal  At least one of the powered 
system components is in off-nominal. 
 
safed   All powered system components 
are in their respective safed states. 
 
The Rack Manager manages the rack state.  
The components communicate their current 
state to the Rack Manager with every 
telemetry packet sent.  The Rack Manager 
in turn responds to changes in component 
states by possibly altering the rack state.  
The rack state is determined by the rules 
stated above.  In addition, if a component 

enters the off-nominal state, all powered on 
components will be commanded to their 
respective operational-idle states.  The 
rack will remain in the off-nominal state 
until the off-nominal is first acknowledged 
from an operator and all off-nominal 
components are returned to an operating 
state or safed/powered off. 
 
Sets of States.  We clarify the states of the 
FCF into three sets of states.  The 
operational states include all states where 
the FCF is capable of performing normal 
operations.  The safe states include all states 
where the FCF is in off-nominal operations 
and is not violating the hazard specification.  
The unsafe states are states where the 
system goes during faults.  The FCF handles 
faults by converging to a safe or operational 
state.  A possible correct transition of the 
FCF Model between states is (see Figure 6),   
 
1. The system initiates in a valid state,  

2. The system moves to a fault span state, 

3. The system converges to a safe state 
within a finite number of steps.   

 
 

SAFE STATES

UNSAFE STATES

OPERATIONAL
STATES

2

3

1

 
 

Figure 6. State Space 

 
These three encompassing states represent 
the model self-stabilizing capability.  With 
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an arbitrary initial system state, the system 
should always converge to the safe state. 
 
In addition to the predefined states described 
above, the rack manager also monitors the 
health and status of components in the 
rack(s).  The rack manager will take actions 
to ensure the safety of the system, the ISS, 
and the crew.  This may include powering 
down a package, turning off hazardous 
items, even powering down the entire rack.  
There are seven predefined actions the IOP 
will take in response to a state of the system 
that is considered “Unsafe” .  See Section 3 
for a list of the seven actions.  After 
executing one of these actions, the system 
will converge to a legitimate state.  
Legitimate states are considered “Safe” 
states and “Operational”  states. 
 

3  The FCF Model 
 
Overview. The FCF Meta Model is written 
in the SPIN modeling language PROMELA.  
PROMELA, a non-deterministic, guarded 
command language.  It enables the dynamic 
creation of concurrent processes and 
communication between processes via 
message channels.  
 
There are limitations to modeling a 
distributed real-time system with SPIN.  
First, there is no concept of time in SPIN.  
Second, the distributed multi-tasking 
environment is difficult to simulate.  
Furthermore, the system modeled must be a 
finite-state model to guarantee decidability.  
Several of these limitations have been 
addressed in extensions to SPIN [14].   
 
A model is an abstraction of the system.  
The FCF Model is an abstraction of the FCF 
state model and a subset of the safety 
specification.  The FCF Meta Model 
includes several processes running on a 
single processor.  The FCF Model includes a 
simplified communication protocol to 
simulate the interaction between 
components and processes.  This includes, 
events, commands and state information.   

Component Model.   

 

Rack Manager

Command
Handler

State
Manager

Initialization

Power On

Power Off

Main

«include»

«include»

«include»

«extend»

«extend»

«extend»

 

Figure 7. FCF Meta Model Processes 

 

In the FCF Meta Model, each component 
consists of several processes.  See Figure 7 
(shown in UML notation [13]).  Each 
process runs in parallel and implements the 
main functionality of a component.  The 
main process handles initialization, 
communication direction, health and status 
checks, and nominal shutdown.  The 
component command handler validates 
commands and initiates processing of a valid 
command.  The component state manager 
manages the components state transitions.  
This includes the states described in Section 
2  Architecture 
 
Component Power Up Example. As an 
example, we describe the actions of the 
IPSU and Rack Manager by process while 
performing a power on, command 
processing and then power down sequence.   
 
1. The Rack Manager initiates a power on 

of an IPSU.  The IOP reads the 
configuration information for the 
component it wants to power on.  The 
Power On task of the Rack Manager is 
executed to implement the power on of 
the component.  
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2. The Component Initialization.  The 
component determines it own function.  
It determines it is an IPSU (either 1 – 6).  
It initializes the appropriate state 
variables.  The Power On task of the 
component is executed to power on any 
subcomponents.  A Power-On Self Test 
(POST) is executed.  This test simulates 
the health check of internal systems 
upon component power up.  The 
component randomly selects whether it 
powers on and passes POST or fails.  If 
the POST is successful, the component 
enters operational-idle. In this case, 
commanding and telemetry handlers are 
initiated. 

3. Component Health Monitoring.  The 
component now begins to monitor it’ s 
own health and status, process 
commands, send regular 
communications to the IOP, and 
monitor the IOP status. 

4. Command Processing. During operation, 
a command is sent from the IOP to the 
IPSU to transition to the IPSU to 
operational-idle.  The IOP has 
determined a system component to be in 
off-nominal.  All powered on 
components are therefore sent to 
operational-idle.  A packet is 
transmitted from the IOP to the IPSU.  
The IPSU determines the packet to be a 
command and invokes the Command 
Handler to decipher it.  The Command 
Handler determines the command is for 
the IPSU that has received it (IPSU 1-6).  
The Command Handler then determines 
the command to be a valid command for 
the IPSU.  The command handler now 
determines the command is a state 
change request.  In this case, the 
Command Handler forwards the 
command to the component’s State 
Manager for processing. 

5. State Request Processing.  The 
component’s State Manager receives a 
request to change the current state to 
operational-idle.  The State Manager 

determines which component the 
request is from and verifies it is a valid 
requestor; the rack manager.  The State 
Manager determines if the transition is 
legal.  If the transition is legal, the State 
Manager sets the component state to 
operational-idle. 

6. Power Down Component.  The Rack 
Manager determines that it needs to 
power down the IPSU.  A command is 
sent to the IPSU to transition it to safed.  
The Rack Manager looks up the 
configuration information for the 
component and sends commands to the 
EPCU to power down any sub-
components that are powered on.  
Following the power down of sub-
components, the component is powered 
down via the EPCU.   

 

Rack Manager Model. 
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Figure 8. Rack Manager Processes 

 

The IOP, being the racks and facility 
manager has similar processes to the 
component processes with additional 
functionality.  See Figure 8 (shown in UML 
notation [13]).  The IOP also has a rack 
manager, an action handler, health monitor, 
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processes for each action and several utility 
processes for jobs such as turning off and on 
components and determining what 
hazardous items are operating.  In this 
model, there is one IOP managing all of the 
components in both racks. 
 
Within the IOP Action Handler, the seven 
actions the IOP initiates in response to 
hundreds of safety events is implemented.  
These actions are described below: 
 
Action 1  Power off a component. 
 
Action 2  Power off a subcomponent. 
 
Action 3  Orderly power down of all 
components (including their 
subcomponents) except for the IOP and 
ECS. 
 
Action 4  Orderly power down of all 
components (including their 
subcomponents) along with the IOP and 
ECS. 
 
Action 5  Command the FCU to Off 
Nominal.  If it fails to respond, power the 
FCU down.  
 
Action 6  Command the IOP to Off-
Nominal. 
 
Action 7  Power off all hazardous items. 
 
Fault Model.  In every component, there is 
a fault simulation process that introduces 
faults into the system.  This process 
randomly introduces state and safety faults. 
 

Eight possible fault scenarios are introduced 
into the system by the fault simulator task.  
These faults are discussed below. 
 
1. Set the state of solenoid valves SV9 and 

SV14 to open.   To prevent the 
inadvertent venting of out of limit 
chamber premixed gasses into ISS vent 
system (causes fire in vent system) the 

FCU should never vent from valve nine 
and valve fourteen at the same time.  
The IOP acts as a watchdog.  The health 
monitor shall monitor the status of 
solenoid valves nine and fourteen and 
command the FCU to off-nominal if 
such a state arises.  The FCU 
automatically closes all energized 
solenoid valves when entering the off-
nominal state.  After commanding the 
FCU to off-nominal, if the solenoid 
valves remain energized, the IOP will 
power down the FCU.  This in turn will 
deenergize the valves.   Predicate 7. 

 
2. Set the state of the rack door to open.   

To prevent astronaut exposure to 
hazardous items, all hazardous items 
(e.g., lasers) are powered off upon 
detection of an open rack door.   
Predicate 1. 

 
3. Set the state of the IOP communication 

received flag from a randomly selected 
package to false.  This indicates that the 
IOP has not received communications 
from the package for a particular time 
frame.   Predicate 3. 

 
4. Set the state of the IOP communication 

to a randomly selected package to false.  
This indicates that the package has not 
received communications from the IOP 
for a particular time frame.  The IOP 
as the rack manager monitors the health 
and status of all components powered 
on.  If the IOP does not receive 
communications from a component for a 
specified period of time, the component 
must be powered down as to not cause a 
potential hazardous situation.   
Predicate 5. 

 
5. Set the state of the ECS CANBus 

communication flag to false.  This 
indicates that the IOP has not received 
communication from the ECS over the 
ECS CANBus link for a particular time 
frame. The ECS is an essential 
component.  The system cannot 
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safely operate without thermal (air 
and water) control.  If the ECS 
component is not in communications 
with the Rack Manager, the system 
is powered down.  Predicate 2. 

 
6. Set the state of the ECS component 

state flag to powered down.  Again, 
the ECS must be functioning for the 
rack to be safely operated.   
Predicate 6. 

 
7. Set the state of solenoid valves SV14 

and SV4 to open.  To prevent the 
inadvertent venting of out of limit 
chamber oxygen into ISS vent system 
(causes fire in vent system) the FCU 
should never vent from valve four and 
valve fourteen at the same time.  The 
IOP acts as a watchdog.  The health 
monitor shall monitor the status of 
solenoid valves nine and fourteen and 
command the FCU to off-nominal if 
such a state arises.  The FCU 
automatically closes all energized 
solenoid valves when entering the off-
nominal state.  After commanding the 
FCU to off-nominal, if the solenoid 
valves remain energized, the IOP will 
power down the FCU.  This in turn will 
deenergize the valves.   Predicate  8. 

 
8. Set the state of solenoid valves SV12 

and SV14 to open.  To prevent the 
over pressurization of the chamber, the 
FCU should never energize valves 
twelve and fourteen at the same time.  
The IOP acts as a watchdog.  The health 
monitor shall monitor the status of 
solenoid valves twelve and fourteen and 
command the FCU to off-nominal if 
such a state arises.  The FCU 
automatically closes all energized 
solenoid valves when entering the off-
nominal state.  After commanding the 
FCU to off-nominal, if the solenoid 
valves remain energized, the IOP will 
power down the FCU.  This in turn will 
deenergize the valves.   Predicate 9. 

  

The Specification.  The FCF has hundreds 
of safety monitoring responsibilities, many 
of which have similar responses.  We have 
therefore modeled a representation of the 
critical system responses.  We express the 
safety properties in the form of predicates.  
We formally verify the system conforms to 
these predicates. 
 
The FCF Model was formally verified 
against nine safety predicates.  These 
predicates are described below. 
 
When the rack door is open, the system will 
power off any hazardous items:  
 

 ml ��  (1) 

where l represents the rack door is open and 
m represents all hazardous items are 
powered off. 
 
When there is a loss of communication on 
the ECS CANBus, all packages must be shut 
down (are either in good_off or bad_off):  
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where n represents IOP loss of 
communication on the ECS CANBus, s 
represents a package in good_off and t 
represents a package in bad_off. 
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When the IOP looses communication with a 
package, the package is sent to safed:  
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where o represents the IOP looses 
communication with the package and r 
represents the package is in safed. 
 
When the IOP goes into off-nominal, all 
packages are sent to a state where the 
equipment and data is safe (idle, safed, 
good_off or bad_off):   
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where p represents the package in off-
nominal, q represents the package is in idle, 
r represents the package is in safed, s 
represents the package is in good_off, t 
represents the package is in bad_off. 
 
When a package looses communication with 
the IOP, the package will go into safed:  
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where z represents the package has lost 
communication with the IOP and t 
represents the package is in safed.  Note, 
this is an added capability added to the 
model and a suggestion for future FCF 
development. 
 
When the ECS is powered off, the IOP will 
go into bad_off: 
 

 yu ��¬  (6) 

 

where u represents the ECS is powered on 
and y represents the IOP is in bad_off. 
 
When the FCU solenoid valve S14 is open 
and FCU solenoid valve, S9, is open, the 
FCU will go into off-nominal: 
 

 FCUpSxSx _)9_14_( ��∧  (7) 

  

where x represents the solenoid valve is 
open and p represents the FCU is in off-
nominal. 
 
When the FCU solenoid valve, S14, is open 
and FCU solenoid valve, S4, is open, the 
FCU will go into the off-nominal state: 
 
 FCUpSxSx _)4_14_( ��∧  (8) 

 

where x represents the solenoid valve is 
open and p represents the FCU is in off-
nominal . 
 
When the FCU solenoid valve, S14, is open 
and FCU solenoid valve, S12, is open, the 
FCU will go into the off-nominal:  
 

FCUpSxSx _)12_14_( ��∧  (9) 
 

where x represents the solenoid valve is 
open and p represents the FCU is in off-
nominal. 
 

4  Experiments 
 
Preamble.  Our experiments were carried 
out in two phases: a simulation phase and a 
verification phase.  During the simulation 
phase, we ascertained the model was 
correctly implemented (exhibited the 
anticipated behavior of the FCF System).  In 
the verification phase, we established the 
model was correct given the nine predicates 
as constraints.  The simulator is a random, 
guided and interactive execution of the 
model.  When initiating execution, the given 
seed provides determinism.  This enables the 
user to execute the exact sequence precisely 
repeatedly.  This is particularly useful for 
debugging.  The simulator can repeatedly 
execute sequences with faults, such as 
transients, that are difficult to reproduce [4].  
It does have the drawback of potentially 
missing an execution path and therefore 
possibly leaving behind implementation 
errors.  The verifier differs from the 
simulator in that each execution of the 
model exposes every possible execution 
path.  This is the only way to guarantee 
correctness of a model. 
 
Simulation.  We executed two simulation 
models to provide feedback on correct 
implementation.  Initially, we created a FCF 
simulation model in order to exercise 
legitimate system states.  We simulated in 
this matter to assist in debugging the 
implementation of the FCF in PROMELA.   
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During this phase we used the windows 
version of the SPIN simulator to take 
advantage of the graphical displays that 
could be monitored in real-time.   
 
Three displays were invaluable in the 
debugging phase of the simulation.  These 
include, the Simulation Output Display, The 
Message Passing Display and the Data 
Values Display.   We show sample screen 
shots of the Simulation Output Display and 
the Message passing display in Figure 9 and 
Figure 10 below.  The Data Values Display 
as well as other SPIN displays we utilized is 
included in Appendix A. 
 

 
 

Figure 9. Simulation Output View 

Depicts each step executed in order along with 
the text of the line executed and the value of data 
set or passed in the call.  This display can be 
paused and/or resumed to assist in monitoring 
execution. 

 

 
 

Figure 10. Message Passing View 

Useful to monitor during run-time, but we found 
to be more useful for post-analysis.  This 
provided a visual and expeditious way to 
determine message-passing sequences. In this 
display, each process that sends messages to 
another process is represented with a vertical 
line.  The name of the process is highlighted in 
yellow.  Red lines signifying messages are 
displayed going from the sending process to the 
receiving process.  These messages are 
represented with a number, which can be related 
to a execution step.  It is also possible to have 
the message text displayed. 

 
After debugging and accepting the 
implementation of the FCF Model, we 
added the random fault generator process to 
the model.  The random fault generator 
produces randomly introduces faults one 
after the other.  This model was executed 
over 100 simulation runs.  For each run we 
provided a different seed to provide a new 
random result.  The random fault generator 
process is the process used in the final 
model to introduce faults into the system.  
However, during the simulation, the fault 
generator is cycled 50 times during each run.  
Since the simulator runs an execution of the 
system in a deterministic fashion based on 
the seed, this is the mechanism that permits 
the sequence of faults to be introduced one 
after the other in each execution. 
 
This fault generator model was simulated in 
both the Windows environment as well as 
the Linux command line environment.   The 
model was simulated in the Windows 
environment on a Pentium 4 with 256 MB 
RAM, 4GB of Virtual Memory and 
operating on Windows NT 4.0.  The average 
run-time of the model in this environment 
with several other tasks running was 1 hour 
and 45 minutes.  The model was simulated 
in the Linux environment on a machine with 
4 Intel Zeon, 2.8 Gigahertz processors, 4 
Gigabytes of RAM, 8 Gigabytes of swap 
space and operating on RedHat Linux 
Enterprise 3.  The average run time of the 
model in this environment is negligible.  
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Verification.  Initially, we ran the FCF 
Model in the verifier to verify there were no 
acceptance cycles or invalid end states.  
Following this, we ran nine verification 
models in the SPIN verifier against the 
predicates given above.  Using SPIN, we 
compiled the FCF model with each 
predicate, separately.  This process created 
nine verification models.  We compiled each 
FCF verification model on an Intel Pentium 
P4 2.8 Gigahertz processor machine with 1 
Gigabyte of RAM and running Linux 9.0.  
To accommodate compilation swap had to 
be extended to 4GB.  The compile time for 
non-compound LTL-formulae (predicates 1 
and 6 – 9) was negligible.    Due to the time 
requirement to compile and run the complex 
LTL-formulae [3], these predicates were 
compiled in a simplified specification to 
provide correctness feedback in a more 
timely fashion.  At the time of this 
publication, the complex LTL-formulae 
(predicates 2-5) is still in the process of 
completing compilation and execution. 
 
The verification models generated are in the 
C programming language.  We compiled 
these verification models using the GNU C 
compiler.  We selected compiler options to 
reduce the complexity and memory 
requirements of the verification.  This 
assisted in decreasing run-time and memory 
usage. We compiled the verification models 
on the machine used to compile the FCF 
models.  The compile time for all 
verification models was negligible. 
 
After compiling each verification model, we 
ran the models on machines with 4 Intel 
Zeon, 2.8 Gigahertz processors, 4 Gigabytes 
of RAM and operating on RedHat Linux 
Enterprise 3.  To accommodate verification, 
the swap space had to be extended to 8 
Gigabytes. 
 
The following metrics is generated and 
supplied below for each verification run.  
The number of errors found in the model 
during verification is reported as Errors.  
The number of states revisited during 
verification is reported as States Matched.  

The number of states stored during 
verification is reported as States Stored.  The 
longest depth of the DFS State tree is 
reported as Depth.  The number of state 
transitions during verification is reported as 
Transitions.  The amount of memory used 
to store the states, in MB, is reported as 
Memory.  A summary of the statistics for 
each execution is provided in Figure 11 
below.  The complete reported statistics is 
provided in Appendix B. 
 
Verification model one executed in 6 hours 
without any errors reported.  This model 
shows that the FCF system model will 
converge to the state of operating without 
power to any hazardous items in response to 
being thrown into a state with the rack door 
ajar.   
 
Verification model two was first run with 
simplified LTL formulae in order to reduce 
run-time.  The model executed in 18 hours 
without any errors reported.  This model 
shows that the FCF system model will 
converge to the state of powered-off if 
communications is lost with the ECS. 
 
Verification model three was first run with 
simplified LTL formulae in order to reduce 
run-time.  The model executed in 14.5 hours 
without any errors reported.  This model 
shows that the FCF system model will 
converge to the state of all packages are in 
safed state for which the rack manager has 
lost communication with. 
 
Verification model four was first run with 
simplified LTL formulae in order to reduce 
run-time.  The model executed in 18 hours 
without any errors reported.  This model 
shows that the FCF system model will 
converge to the state of “safe off-nominal”  
when any package is determined to be in an 
off-nominal state. 
 
Verification model five was first run with 
simplified LTL formulae in order to reduce 
time.   The model executed in 18.5 hours 
without any errors reported.  This model 
shows that the FCF system model will 
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converge to the state of all packages that 
have lost communications with the rack 
manager are in safed state.  This verification 
shows packages other than the rack manager 
can stabilize the system. 
 
Verification model six executed in 2.5 hours 
without any errors reported.  This model 
shows that the FCF system model will 
converge to a state where the IOP is in bad-
off in response to being put in a state where 
there is no communications with the ECS. 
 
Verification model seven executed in 2.5 
hours without any errors reported.  This 
model shows that the FCF system model 
will converge to a state where the FCU is 
off-nominal in response to a state where 
solenoid valves S14 and S9 are found to be 
open 
 
Verification model eight executed in 15.5 
hours without any errors reported.  This 
model shows that the FCF system model 
will converge to a state where the FCU is 
off-nominal in response to a state where 
solenoid valves S14 and S4 are found to be 
open. 
 
Verification model nine executed in 3 hours 
without any errors reported.  This model 
shows that the FCF system model will 
converge to a state where the FCU is off-
nominal in response to a state where 
solenoid valves S14 and S12 are found to be 
open.
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Model Run Time States Stored Sates Matched Depth Transitions Memory 

Predicate 1 6 hours 2.86e+06 1.18e+07 7319 1.469e+08 393762.878 
Predicate 2 18 hours 2.87e+06 1.19e+07 6305 1.472e+07 395904.356 
Predicate 3 14.5 hours 2.55e+06 3.53e+06 6327 6.078e+06 352055.424 
Predicate 4 18 hours 2.88e+06 1.19e+07 6337 1.477e+07 397429.996 
Predicate 5 18.5 hours 2.93e+06 1.24e+07 6305 1.531e+07 403771.225 
Predicate 6 2.5 hours 2.62e+06 3.68e+06 8055 6.301e+06 361863.855 
Predicate 7 2.5 hours 2.53e+06 3.42e+06 8055 5.951e+06 34.9666.837 
Predicate 8 15.5 hours 2.50e+06 5.32e+06 6311 7.818e+06 34411.991 
Predicate 9 3 hours 2.50e+06 5.32e+06 8265 7.818e+06 34411.991 
 

Figure 11. Model Statistics (Simplified LTL-formulae) 

States stored indicates the total states in the system.  States Matched refers to the total states 
revisited during the verification.  Depth refers to the longest path in the DFS tree.  Transitions 
indicate the number of transitions from state to state to complete the verification.  Memory refers 
to the memory used to store the states in MB.   
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5  Conclusion 

Benefits.  We completed the implementation 
of the FCF System Model in PROMELA 
prior to the finalizing of the FCF system 
state design and verification.  Therefore, the 
formal verification of the FCF System 
Model was particularly useful to the FCF 
design team at NASA Glenn Research 
Center for the purpose of verifying and 
debugging system state implementation.  In 
addition to finding a few implementation 
errors, the simulation was executed over one 
hundred times.  The FCF did not have the 
luxury of executing verifications to this 
degree.  This provides added assurance of 
the soundness of the system state design. 

 
The FCF design team was able to take 
advantage of the implementation of the FCF 
System Model.  It provided the opportunity 
to clearly think through implementation 
details as the system was modeled, 
simulated, debugged and verified.  A couple 
of implementation errors were found and 
corrected before formal verifications of the 
FCF were completed.  An implementation 
error was found in the routine that handles 
sending the rack to the off-nominal state 
when the IOP is found to be off-nominal.  
This routine, Action_6, attempted to 
command packages in the safed state to op-
idle state.  Only packages in an operational 
state (op-maintenance, op-experiment, op-
uplink-downlink) are to be commanded to 
op-idle state.  The only transition allowed 
from safed state is to powered-off (good-off 
or bad-off).  The correction was made to the 
FCF system implementation.  An 
undesirable design feature was found in the 
routine that manages rack state changes.  
The rack state was being calculated for each 
package state calculated.  It appears as if the 
rack state was in constant fluctuation.  It is 
better if the rack state is set after a local 
copy of the rack state is calculated in 
entirety.   
 

Future Work.  There are opportunities for 
increased fault-tolerance of the FCF System.  
We propose incorporating crash failure 
tolerance.  In the event the IOP “crashes” , 
the FCF is not functional.  IOP fail-over 
capability between racks would improve 
system capabilities greatly and allow for 
better use of rack-to-rack capabilities. 

 
We also propose to expand the state space of 
the model to introduce a more detailed 
modeling of the system components.  There 
is a trade off that will have to be further 
investigated.  The compile and run-time of a 
larger model is sure to become a more 
looming problem.  We thus propose 
considering further optimization of code to 
enable efficient compilation and execution 
of the model. 
 
One additional proposition is the addition of 
real-time constraints.  Due to the fact that 
SPIN does not have real-time extensions, 
this would require the system be re-
implemented in a tool such as RT-SPIN 
[14], UPPAAL [11], or a tool with discrete 
time extension to SPIN [15]. 
 
In the design of the FCF System Model, a 
few suggestions were made which may be 
incorporated into the design of the FCF in 
the future.  These suggestions were 
implemented in the FCF System Model.  
First, the robustness of the FCF System 
would be increased if the capability for 
either IOP to control the power to all 
packages (i.e., an IOP in the CIR rack can 
control power to packages in the FIR rack 
and vise versa).  Secondly, the packages 
should be “ IOP aware”.  Meaning, the a 
package can determine if the IOP has not 
communicated with it and enter it’ s safe 
state upon detecting that communication has 
not taken place for a specified period of 
time.  This will provide added system safety 
and self-stabilization. 
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Acronyms 
 
APMC – Approximate Probabilistic Model 
Checker 

ARIS – Active Rack Isolation System 

ATCS – Air Thermal Control System 

ATCU – Air Thermal Control Unit 

CIR – Combustion Integrated Rack 

ECS – Environmental Control System 

FCU – FOMA Control Unit 

FIR – Fluids Integrated Rack 

FSAP – Fluids Science Avionics Package 

FOMA – Fuel Oxidizer and Management 
Assembly 
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IOP – Input/Output Processor 

IPSU – Image Processing and Storage Unit 

PI – Principal Investigator 

PRISM – Probabilistic Symbolic Model 
Checker 

PROMELA – PROcess Meta LAnguage 

RT – Real Time 

SPIN – Simple PROMELA Interpreter  

UPPAAL – Uppsala and Aalborg 
Universities 
  
UV – Ultra Violet 
 
WTCS – Water Thermal Control System 
 
YAG – Yttrium Aluminum Garnet 
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APPENDIX A SPIN Simulation Displays 
 

 
 

Figure 12. Variable Output View 

Particularly useful to monitor in run-time or to view post-run to get a snapshot of the final state of the system. 
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Figure 13. Process Run Percentage View 

Captures the percentage of time each process runs.  We found this display difficult to use since there are many 
processes in the FCF Model.  The save feature on this display will only display the visible information (viewable).  
This presented a situation where all of the information could not be saved.  Although not of particular importance to 
our research, it may be a nice metric to have. 

 

 
 

Figure 14. Process State View 

Represents each state of a process and the paths taken to each state.  In the Windows version, only the viewable 
display is savable. With Linux version of SPIN, this is not a problem.   
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Figure 15. Execution Sequence View 

This display provides a timeline of the execution.  It shows in order each executable line and the cumulative time of 
execution in a time sequence. 
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APPENDIX B SPIN Verification Results 
 

 
(Spin Version 4.1.2 -- 21 February 2004) 
 + Partial Order Reduction 
 
Bit statespace search for: 
 never claim          + 
 assertion violations + (if within scope of claim) 
 cycle checks        - (disabled by -DSAFETY) 
 invalid end states - (disabled by never claim) 
 
State-vector 137888 byte, depth reached 6305, errors: 0 
2.85559e+06 states, stored 
1.1831e+07 states, matched 
1.46866e+07 transitions (= stored+matched) 
       0 atomic steps 
hash factor: 1.4688 (best coverage if >100) 
(max size 2^22 states) 
 
Stats on memory usage (in Megabytes): 
393762.878 equivalent memory usage for states (stored*(State-vector + overhead)) 
1.049  memory used for hash array (-w22) 
0.360  memory used for DFS stack (-m10000) 
52.428 total actual memory usage 

 
Figure 16. Predicate 1 Verification Results 
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(Spin Version 4.1.2 -- 21 February 2004) 
 + Partial Order Reduction 
 
Bit statespace search for: 
 never claim          + 
 assertion violations + (if within scope of claim) 
 cycle checks        - (disabled by -DSAFETY) 
 invalid end states - (disabled by never claim) 
 
State-vector 137904 byte, depth reached 6305, errors: 0 
2.87079e+06 states, stored 
1.18518e+07 states, matched 
1.47226e+07 transitions (= stored+matched) 
       0 atomic steps 
hash factor: 1.46103 (best coverage if >100) 
(max size 2^22 states) 
 
Stats on memory usage (in Megabytes): 
395904.356 equivalent memory usage for states (stored*(State-vector + overhead)) 
1.049  memory used for hash array (-w22) 
0.360  memory used for DFS stack (-m10000) 
52.428 total actual memory usage 

 
Figure 17. Predicate 2 Verification Results 
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(Spin Version 4.1.2 -- 21 February 2004) 
 + Partial Order Reduction 
 
Bit statespace search for: 
 never claim          + 
 assertion violations + (if within scope of claim) 
 cycle checks        - (disabled by -DSAFETY) 
 invalid end states - (disabled by never claim) 
 
State-vector 137920 byte, depth reached 6327, errors: 0 
2.55253e+06 states, stored 
3.52539e+06 states, matched 
6.07792e+06 transitions (= stored+matched) 
       0 atomic steps 
hash factor: 1.64319 (best coverage if >100) 
(max size 2^22 states) 
 
Stats on memory usage (in Megabytes): 
352055.424 equivalent memory usage for states (stored*(State-vector + overhead)) 
1.049  memory used for hash array (-w22) 
0.360  memory used for DFS stack (-m10000) 
52.428 total actual memory usage 

 
Figure 18. Predicate 3 Verification Results 
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(Spin Version 4.1.2 -- 21 February 2004) 
 + Partial Order Reduction 
 
Bit statespace search for: 
 never claim          + 
 assertion violations + (if within scope of claim) 
 cycle checks        - (disabled by -DSAFETY) 
 invalid end states - (disabled by never claim) 
 
State-vector 137916 byte, depth reached 6337, errors: 0 
2.8816e+06 states, stored 
1.18932e+07 states, matched 
1.47748e+07 transitions (= stored+matched) 
       0 atomic steps 
hash factor: 1.45555 (best coverage if >100) 
(max size 2^22 states) 
 
Stats on memory usage (in Megabytes): 
397429.996 equivalent memory usage for states (stored*(State-vector + overhead)) 
1.049  memory used for hash array (-w22) 
0.360  memory used for DFS stack (-m10000) 
52.428 total actual memory usage 

 
Figure 19. Predicate 4 Verification Results 
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(Spin Version 4.1.2 -- 21 February 2004) 
 + Partial Order Reduction 
 
Bit statespace search for: 
 never claim          + 
 assertion violations + (if within scope of claim) 
 cycle checks        - (disabled by -DSAFETY) 
 invalid end states - (disabled by never claim) 
 
State-vector 137932 byte, depth reached 6305, errors: 0 
2.92724e+06 states, stored 
1.23792e+07 states, matched 
1.53065e+07 transitions (= stored+matched) 
       0 atomic steps 
hash factor: 1.43285 (best coverage if >100) 
(max size 2^22 states) 
 
Stats on memory usage (in Megabytes): 
403771.225 equivalent memory usage for states (stored*(State-vector + overhead)) 
1.049  memory used for hash array (-w22) 
0.360  memory used for DFS stack (-m10000) 
52.428 total actual memory usage 

 
Figure 20. Predicate 5 Verification Results 
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(Spin Version 4.1.2 -- 21 February 2004) 
 + Partial Order Reduction 
 
Bit statespace search for: 
 never claim          + 
 assertion violations + (if within scope of claim) 
 cycle checks        - (disabled by -DSAFETY) 
 invalid end states - (disabled by never claim) 
 
State-vector 137968 byte, depth reached 6313, errors: 0 
2.62273e+06 states, stored 
3.6787e+06 states, matched 
6.30143e+06 transitions (= stored+matched) 
       0 atomic steps 
hash factor: 1.59921 (best coverage if >100) 
(max size 2^22 states) 
 
Stats on memory usage (in Megabytes): 
361863.855 equivalent memory usage for states (stored*(State-vector + overhead)) 
1.049  memory used for hash array (-w22) 
0.360  memory used for DFS stack (-m10000) 
52.428 total actual memory usage 

 
Figure 21. Predicate 6 Verification Results 
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(Spin Version 4.1.2 -- 21 February 2004) 
 + Partial Order Reduction 
 
Bit statespace search for: 
 never claim          + 
 assertion violations + (if within scope of claim) 
 cycle checks        - (disabled by -DSAFETY) 
 invalid end states - (disabled by never claim) 
 
State-vector 137904 byte, depth reached 6313, errors: 0 
2.53551e+06 states, stored 
3.41563e+06 states, matched 
5.95114e+06 transitions (= stored+matched) 
       0 atomic steps 
hash factor: 1.65423 (best coverage if >100) 
(max size 2^22 states) 
 
Stats on memory usage (in Megabytes): 
349666.837 equivalent memory usage for states (stored*(State-vector + overhead)) 
1.049  memory used for hash array (-w22) 
0.360  memory used for DFS stack (-m10000) 
52.428 total actual memory usage 

 
Figure 22. Predicate 7 Verification Results 
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(Spin Version 4.1.2 -- 21 February 2004) 
 + Partial Order Reduction 
 
Bit statespace search for: 
 never claim          + 
 assertion violations + (if within scope of claim) 
 cycle checks        - (disabled by -DSAFETY) 
 invalid end states - (disabled by never claim) 
 
State-vector 137904 byte, depth reached 6311, errors: 0 
2.4974e+06 states, stored 
5.32071e+06 states, matched 
7.81811e+06 transitions (= stored+matched) 
       0 atomic steps 
hash factor: 1.67946 (best coverage if >100) 
(max size 2^22 states) 
 
Stats on memory usage (in Megabytes): 
344411.991 equivalent memory usage for states (stored*(State-vector + overhead)) 
1.049  memory used for hash array (-w22) 
0.360  memory used for DFS stack (-m10000) 
52.428 total actual memory usage 

 
Figure 23. Predicate 8 Verification Results 
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(Spin Version 4.1.2 -- 21 February 2004) 
 + Partial Order Reduction 
 
Bit statespace search for: 
 never claim          + 
 assertion violations + (if within scope of claim) 
 cycle checks        - (disabled by -DSAFETY) 
 invalid end states - (disabled by never claim) 
 
State-vector 137904 byte, depth reached 6311, errors: 0 
2.4974e+06 states, stored 
5.32071e+06 states, matched 
7.81811e+06 transitions (= stored+matched) 
       0 atomic steps 
hash factor: 1.67946 (best coverage if >100) 
(max size 2^22 states) 
 
Stats on memory usage (in Megabytes): 
344411.991 equivalent memory usage for states (stored*(State-vector + overhead)) 
1.049  memory used for hash array (-w22) 
0.360  memory used for DFS stack (-m10000) 
52.428 total actual memory usage 

 
Figure 24. Predicate 9 Verification Results 

 


