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Reliability vs. Redundancy
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Stateless Routing

A routing algorithm is stateless if it is designed
such that devices store no information about

messages between transmissions. It is stateful
otherwise.
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Stateless Flooding v2
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Geometric Routing

e Each node is aware of its coordinates (and those of its
neighbors)

* The message contains the coordinates of the destination

* Goal: deliver the message to the destination without
routing tables

Stojmenovic, lvan (2002). "Position based routing in ad hoc networks". IEEE Communications
Magazine. 40 (/): 128-134.
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Face Routing

Bose, P; Morin, P.; Stojmenovic, |.; Urrutia, J. (1999). "Routing with guaranteed delivery in ad hoc wireless networks". Proc. of

the 3rd international workshop on discrete algorithms and methods for mobile computing and communications (DIALM '99).
pp. 48-55.
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Concurrent Face Routing

Thomas Clouser, Mark Miyashita, Mikhail Nesterenko: Concurrent face traversal for efficient
geometric routing. J. Parallel Distrib. Comput. 72(5): 627-636 (2012)
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Concurrent Face Routing

Latency: O(t2)



Geometric Multicasting

* Each node is aware of its coordinates (and those of its
neighbors)

* The message contains the coordinates of (a constant
number of) destinations

e Goal: deliver the message to the destinations without
routing tables
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LGS: Euclidean Tree
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Kai Chen, Klara Nahrstedt: Effective location-guided overlay multicast in mobile ad hoc networks. Int. J. Pervasive Computing and
Communications 5(4): 388-410 (2009)



LGS: Euclidean Tree

k

h\ f
a \

e )
€
b

d



LGS: Euclidean Tree

a

b
d



GMP: Virtual Steiner Tree

Shibo Wu, K. Selguk Candan: GMP: Distributed Geographic Multicast Routing in Wireless Sensor Networks. ICDCS 2006: 49
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Our Contribution
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Concurrent Multicasting

Latency: O(d?)



Experimental Results



Abstract vs. Concrete
Simulation

e Abstract

* |nstantaneous message transmission, no
Implementation details

* Theoretical performance
e Concrete
e Radio communication, Network protocol stack

* Practical performance aspects



Abstract vs. Concrete
Simulation

Kuhn, Wattenhofer, Zhang, and Zollinger. Geometric ad-hoc routing: Of
[
AbStraCt theory and practice. In PODC: 22th ACM SIGACT-SIGOPS Symposium
on Principles of Distributed Computing, 2003.

* |nstantaneous message transmission, no
Implementation details

* Theoretical performance

Elyes Ben Hamida, Guillaume Chelius, and Jean-Marie Gorce. On the complexity of an

PS Concrete aocuratg and precise peﬁormange evaluaﬂonlof wire- less Qetworks using smula’uops. In
Proceedings of the 11th international symposium on Modeling, analysis and simulation of
wireless and mobile systems, pages 395-402. ACM, 2008.

e Radio communication, Network protocol stack
IEEE 802.15.4, 866 MHz, BPSK, cst. path loss, Rayleigh fading

* Practical performance aspects



Abstract: Overhead by
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Abstract: Overhead by
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Abstract: Latency By
Density
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Abstract: Latency by
Target Rate
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Abstract: Analysis

* Tradeoff: message cost (x2) vs. latency (x3-5)
e Concurrent approaches have lower latency

* Sequential approaches have lower message cost
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Concrete: Delivery Ratio
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Concrete: Delivery Ratio
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Concrete: Overhead 15dBm
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Concrete: Overhead 7dBm
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Concrete: Overhead 0dBm
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Concrete: Latency 15dBm
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Concrete: Latency 7dBm
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Concrete: Latency 0dBm
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Concrete: Analysis

Concurrent approaches are up to more than twice as
reliable (90%+ delivery vs. 40%).

Sequential approaches exhibit more overhead as
transmitting power increases with low density.

Concurrent approaches show lower latency as
transmitting power decreases.



Conclusion

Concurrent face routing is an interesting building block
for ad hoc multicasting

Good theoretical latency
Increased practical reliability
Higher message cost

Source code and data:

http://www.cs.kent.edu/~mikhail/Research/
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