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Abstract

We present a concurrent face routing CFR algorithm. We formally prove that
the worst case latency of our algorithm is asymptotically optimal. Our simu-
lation results demonstrate that, on average, the path stretch, i.e. the speed of
message delivery, achieved by CFR is significantly better than by other known
geometric routing algorithms In fact, it approaches the shortest possible path.
CFR maintains its advantage over the other algorithms in pure form as well as
in combination with greedy routing. CFR displays this performance superiority
both on planar and non-planar graphs.
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1. Introduction

Geometric routing is an elegant approach to data dissemination in resource-
constrained and large-scale ad hoc networks. Geometric routing is attractive
because it does not require nodes to maintain, or messages to carry, exten-
sive state or routing information. Geometric routing algorithm rely instead on
known global node coordinates. This lack of routing infrastructure makes such
algorithms a popular initialization or fallback option for other routing schemes.
Therefore, geometric routing optimization is of interest to the broad community
of ad hoc wireless network designers.

In geometric routing, each node knows its own and its neighbors’ coordinates.
Using low-cost GPS receivers or location estimation algorithms [6, 13], wireless
nodes can learn their relative location with respect to the other nodes and then
use this information to make routing decisions. The message source node knows
the coordinates of the destination node. These coordinates may be obtained
from a location service [1, 26]. The information that the message can carry
does not depend on the network size. Each forwarding node does not maintain
any extensive routing data or keep any information about forwarded messages
between message transmissions.
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Greedy routing [9] is an elementary approach to geometric routing where the
node selects the neighbor that is the closest to the destination and forwards the
message there. The process repeats until the destination is reached. Greedy
routing fails if the node is a local minimum: it does not have neighbors that are
closer to the destination than itself. Alternatively, in compass routing [20], a
node selects the neighbor whose direction has the smallest angle to the direction
of the destination. However, this kind of compass routing is prone to livelocks.

One way to circumvent these delivery problems in geometric routing is to
flood a region of the network with messages [9, 17, 19, 28, 30]. This is useful
in geocasting [18] where each node in a certain region of the network needs to
receive a message. However, for point-to-point communication flooding may not
be efficient. Another way is to pre-compute some graph information in advance:
such as local minima [3] or local Delaunay triangulation [12]. This, however,
may require extensive computation and communication before the routing in-
formation is available for message transmission. Moreover, the nodes have to
store the pre-computed information locally which may diminish the saving from
the statelessness of geometric routing.

The face routing variants of geometric routing are designed to guarantee mes-
sage delivery without incurring the message overhead associated with flooding.
A source-destination line intersects a finite number of faces of a planar graph.
Hence, if a message carries the coordinates of the source and destination nodes,
the routing nodes may determine this intersection and switch the message from
one face traversal to the next. This way the message reaches the destination
by sequentially traversing these faces. In the algorithms published thus far, the
faces are traversed sequentially. GFG/GPSR [5, 14] combines greedy and face
routing. Greedy routing is used for speed, and face routing helps to recover
from local minima. Datta et al [7] propose a number of optimizations to face
traversal. Kuhn et al [21, 22, 24] propose a worst case asymptotically optimal
geometric routing algorithm GOAFR+. They compare the performance of mul-
tiple geometric routing algorithms and demonstrate that in the average case
GOAFR+ also performs the best. Kim et al [16] discuss challenges of geomet-
ric routing. Frey and Stojmenovic [10] address some of these challenges and
discuss different approaches to geometric routing. Stojmenovic [11] provides a
comprehensive taxonomy of geometric routing algorithms.

One of the shortcomings of traditional geometric routing is the need to pla-
narize the graph. This can be done effectively only for unit-disk graphs. How-
ever, a unit-disk graph is a poor approximation for most radio networks where
radio propagation patterns are not as regular as assumed in unit-disk graphs.
Some researchers [4, 23] explore a more realistic model of quasi unit disk graphs.
Nesterenko and Vora [29] propose a technique of traversing voids in non-planar
graphs similar to face traversal. This traversal may be combined with greedy
routing similar to GFG. Barrière et al [4], Kim et al [15], Leong et al [25], and
Kuhn et al [23] propose alternative ways of performing geometric routing over
non-planar graphs.

Kuhn et al [21, 24] conduct extensive evaluation of geometric routing algo-
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rithms’ performance. They compare the ratio of the path selected by a routing
algorithm to the optimal path depending on the graph density. Their findings
indicate that at low and high density the performance of most algorithms, espe-
cially if combined with greedy routing, approaches optimal. In sparse graphs,
due to the limited number of available routes, a geometric routing algorithm is
bound to select a route that is close to optimal. In dense graphs, an algorithm
nearly always runs in greedy mode which tends to select a nearly optimal route
as well. Kuhn et al identified a critical density range between 3 and 7 nodes per
unit-disk where the paths selected by geometric routing algorithms may sub-
stantially differ from the shortest paths and where performance optimization
has the greatest impact.

Somewhat related studies [2, 8] demonstrate how randomization or limited
directional flooding can be used to effectively route in dense networks.

Despite their individual differences, the foundation of most geometric routing
algorithms is face traversal. In such traversal, a message is routed around a
face. However, the resultant route may vary greatly depending on the choice
of traversal direction and the point at which the message switches between
adjacent faces. The imbalance is usually exacerbated if the message has to
traverse the external face of the graph. However, if the message traverses the
faces sequentially, exploring the faces to find a shorter route may result in
lengthening the route itself. Hence, traditional geometric routing algorithms
are inherently limited in the amount of route optimization they can achieve.

In this paper, we present an algorithm that accelerates the message propaga-
tion by sending messages to concurrently traverse faces adjacent to the source-
destination line. We call this algorithm concurrent face routing (CFR). CFR
preserves all properties of classic geometric routing algorithms except for one:
when one of the messages encounters a face that is closer to the destination, the
message spawns two messages to traverse the new face and continues traversing
the old face. CFR ensures that all faces are explored and none of the adjacent
edges is traversed more than once. The node memory and message-size require-
ments for CFR are the same as for the other geometric routing algorithms. We
show that the latency of CFR is asymptotically optimal in the worst case. That
is, there is no geometric routing algorithm that can deliver a message faster
than CFR. Moreover, our simulation demonstrates that, on average, CFR sig-
nificantly outperforms other geometric routing algorithms in the critical density
region. This average case advantage is preserved if CFR is combined with greedy
routing or if it runs on non-planar graphs.

Paper organization. The rest of the paper is organized as follows. We in-
troduce our notation in Section 2. We then describe CFR, formally prove its
correctness and determine its worst case message complexity in Section 3. In
Section 4, we discuss how the algorithm can be adapted for greedy routing and
for use in non-planar graphs. We evaluate the performance of our algorithm
and its modifications in Section 5 and conclude the paper in Section 6.
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2. Preliminaries

Graphs. We model the network as a connected geometric graph G = (V,E).
The set of nodes (vertices) V are embedded in a Euclidean plane and are con-
nected by edges E. The graph is planar if its edges intersect only at vertices.
A void is a region on the plane such that any two points in this region can
be connected by a curve that does not intersect any of the edges in the graph.
Every finite graph has one infinite external void. The other voids are internal.
A void of a planar graph is a face.

(a) COMPASS (b) FACE

Figure 1: Example operation of existing planar face traversal algorithms.

Face traversal. Each message is a token, as its payload is irrelevant to its
routing. Right-hand-rule face traversal proceeds as follows. If a token arrives
to node a from its neighbor b, a examines its neighborhood to find the node
c whose edge (a, c) is the next edge after (a, b) in a clockwise manner. Node
a forwards the token to c. This mechanism results in the token traversing an
internal face in the counter-clockwise direction, or traversing the external face in
the clockwise direction. Left-hand-rule traversal is similar, except the next-hop
neighbor is searched in the opposite direction.

A source node s has a message to transmit to a destination node d. Node s is
aware of the Euclidean coordinates of d. Node s attaches its own coordinates as
well as those of d to the messages. Thus, every node receiving the message learns
about the sd-line that connects the source and the destination. Depending on
whether the token is routed using right- or left-hand-rule, it is denoted as R or
L. Each node n knows the coordinates of its neighbors: the nodes adjacent to n
in G. A juncture is a node whose adjacent edge intersects the sd-line. A node
itself lying on the sd-line is also a juncture. Thus, the source and destination
nodes are junctures themselves. Two faces are adjacent if their borders share a
juncture. Note that a single node may be a juncture to multiple faces if more
than one of its adjacent edges intersect the sd-line.

To simplify the algorithm presentation, we use anthropomorphic terms when
referring to the nodes of the network such as “know”, “learn” or “forget”.
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Figure 2: Traversing non-planar voids.

Performance metrics. The message cost of an algorithm is the largest num-
ber of messages sent in a single computation. This number is calculated in terms
of the network graph parameters. A latency is the shortest path the message in
the algorithm takes to reach the destination. Essentially, message cost captures
the expense of communication while the latency captures its speed. Note that
for sequential traversal algorithms, such as traditional geometric routing algo-
rithms, where there is always a single message in transit, the two metrics are the
same. Note also that the latency of a certain algorithm, i.e. the shortest path
that the message takes, is not necessarily the optimum or the shortest possible
path between the source and the destination. A path stretch is the ratio between
the latency of the algorithm and the shortest path in the graph.

Existing face traversal algorithms. One of the first known face routing
algorithms that guarantees delivery is Compass Routing II [20]. In this paper
we refer to it as COMPASS. In COMPASS, the token finds the juncture that is
closest to the destination. For this, the token traverses the entire face and re-
turns to the initial point of entry. The token then goes to the discovered closest
juncture. There, the token changes faces and the process repeats. Refer to Fig-
ure 1(a) for an example route selected by COMPASS. The message complexity
of COMPASS is 3|E| which is in O(|E|).

In FACE [5, 7], the token changes faces as soon as it finds the first juncture
(refer to Figure 1(b)). In degenerate cases, FACE allows the token to traverse
the same edge multiple times. Hence, its worst case message complexity is
in O(|V |2). It is worse than that of COMPASS. However, FACE tends to
perform better in practice. Both algorithms may select a route that is far
from optimum. The selected route may be particularly long if the token has to
traverse the external phase as in the above examples. OAFR [24] mitigates long
route selection by defining an ellipse around the source-destination pair that
the message should not cross. If the message traverses a face and reaches the
boundary of the ellipse, the message changes the traversal direction. OAFR has
the best worst case efficiency for a sequential face traversal algorithm to date.
Its path stretch is in O(ρ2), where ρ is the length of the optimum path.

Algorithms COMPASS, FACE and OAFR operate only on planar graphs.
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Obtaining such a graph from a graph induced by a general radio network may
be problematic. There are several attempts to allow geometric routing on non-
planar graphs [7, 15, 25, 29]. In particular, Nesterenko and Vora [29] propose
to traverse non-planar voids similar to faces. Note that in general the edges that
are adjacent to voids do not intersect at the incident vertices. However, the idea
is to have the message follow the segments of the edges that are adjacent to the
void. Refer to Figure 2 for illustration.

Each pair of nodes u and v adjacent to an edge (u, v) keeps the information
about which edges intersect (u, v) and how to route to the nodes adjacent to
these edges. Suppose node g receives the token that traverses void V1. Node g
forwards the token to c in an edge change message. Recall that in a non-planar
graph, edges do not have to intersect at nodes. Edges (g, a) and (c, f) intersect
at point d. The objective of nodes c and f is to select an edge that intersects
(c, f) as close to d as possible. At first c selects an edge and forwards the token
with its selection to f in an edge change message. Node f consults its own data,
selects edge (b, h) and forwards the token to one of the nodes adjacent to this
edge. Thus, the message can completely traverse the void.

Note that once the void traversal is designed, the various techniques of void-
change and exploration can generate the non-planar equivalents of COMPASS,
FACE and OAFR.

Combining greedy routing and face traversal. GFG/GPSR [5, 14] im-
proves the quality of route selection by combining face routing with greedy
routing. GOAFR+ [21] does the same for OAFR. GOAFR+ achieves remark-
able characteristics. It retains the asymptotic worst case optimality of OAFR
and achieves the best average case path stretch known to date.

In the combination of greedy routing and face traversal the token has two
traversal modes: greedy and face. The token starts in the greedy mode but
switches to face mode if it encounters a local minimum (a node with no neighbors
closer to the destination). The token continues in the face mode until it finds a
node that is closer to the destination than this local minimum. Then the token
switches to greedy mode again until another local minimum is discovered.

Execution model. To present our algorithm, we place several assumptions on
the execution model. We assume that each node can send only one message at
a time. The node does not have control as to when the sent message is actually
transmitted. After the node appends the message to the send queue SQ, the
message may be sent at arbitrary time. Each channel has zero capacity; that
is, the sent message leaves SQ of the sender and instantaneously appears at
the receiver. Message transmission is reliable (i.e. there is no message loss).
The node may examine and modify SQ. We assume that SQ manipulation,
including its modification and message transmission, is done atomically. We
assume that the execution of the algorithm is a sequence of atomic actions.
The system is asynchronous in the sense that the difference between algorithm
execution speed at each node is arbitrary.
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node s
/* let F be a face bordering s

and intersecting the sd-line */
add L(s, d, F ) to SQ
add R(s, d, F ) to SQ

node n
if receive L(s, d, F ) then

if R(s, d, F ) ∈ SQ then
/* found matching token */
delete R(s, d, F ) from SQ

else
if n = d then

deliver L(s, d, F )
if n is a juncture and

F locally intersects the sd-line then
foreach F ′ 6= F that locally

intersects the sd-line do
add L(s, d, F ′) to SQ
add R(s, d, F ′) to SQ

add L(s, d, F ) to SQ
if receive R(s, d, F ) then

/* handle similar to L(s, d, F ) */

Figure 3: Pseudocode of CFR at each node.

3. CFR Description, Correctness Proof Perfomance and
Bound Computation

Description. The pseudocode of CFR is shown in Figure 3. The algorithm
operates as follows. Initially, the source node s sends left and right tokens into
the face that intersects the sd-line by adding them into its send queue SQ. Then
the operation of the algorithm is driven by token receipts. If a node receives a
left message traversing some face F , the node checks if there is a matching token
in SQ. If the matching token is found, the node removes it from SQ effectively
destroying both tokens.

Otherwise, the node checks whether it is the destination node. If it is, the
node delivers the message and continues to process it further. If the node deter-
mines that it is a juncture, i.e, there is at least another face F ′ that intersects
the sd-line, the node injects the left and right tokens into each such face. The
node also forwards the message further along the old face F . The right token
receipt is processed similarly.

Refer to the pictures in Figure 4 for the illustration of the algorithm’s opera-
tion. In the figure, we show three snapshots of a single computation. Thin solid
lines denote particular tokens. The tokens are numbered. To reduce clutter
in the pictures, we only reproduce token numbers. Thus, token t5 is shown as
5. Some tokens are destroyed before they leave their originating node. See for
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Figure 4: Example of CFR operation on a planar graph.

example t5 or t9. We denote such tokens by short arrows. In the picture, the
face names are for illustration only, the global face names are not known to the
incident nodes. The token carries its traversal direction: L or R. Note that
when a node receives a token, it can locally determine which adjacent face the
token traverses on the basis of its sender and its traversal direction. For exam-
ple, when node a receives L token t1 from node s, a knows that t1 traverses the
adjacent face F . Two tokens at a node match if they traverse the same face in
the opposite directions and at least one of them did not originate in this node.
For example, t6 and t9 at g as well as t3 and t5 at f match. However, t11 and
t12 at h do not match because h originated both of these tokens.

Note that a juncture node can locally determine if an adjacent face locally
intersects the sd-line. For example, s knows that F intersects the sd-line while
H does not. If a token arrives at a juncture and the token traverses a face that
locally intersects the sd-line the juncture node injects a pair of tokens into each
other neighboring face that intersects the sd-line. For example, when f receives
t2 traversing F that locally intersects the sd-line, f sends t5 and t6 to traverse
H, and t7 and t8 to traverse G. Similarly when h receives t7, it sends t11 and
t12 to traverse H. Observe that a juncture node injects the new tokens only if
the token it receives is traversing the face that locally intersects the sd-line. For
example, when juncture node c receives t14 from e, it just forwards the token to
b without injecting tokens into G.

If the destination node receives the token, even though the node delivers it,
it processes the token further as an ordinary node. That is, node d forwards the
token and injects tokens in adjacent faces if necessary.
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Example operation. Let us now consider example operation of CFR in the
computation in Figure 4 in detail. Node s initiates the transmission by sending
tokens t1 and t2 to traverse face F . When t2 reaches juncture node i, i injects
t3 and t4 into H and forwards t2 to f . Node f is also a juncture. Thus, besides
forwarding t2 to b, it injects t5 and t6 into H as well as t7 and t8 into G. Token t2
meets a matching token t1 at b and both tokens are destroyed. This completes
the traversal of F . Tokens t7 and t8 traverse G and meet in c, where they
destroy each other. In the process t7 reaches all the remaining juncture nodes:
g, h and c where the tokens are injected in the adjacent faces. Specifically, t7
causes the injection of t9 and t10 at g, t11 and t12 at h and t13 and t14 at c.
All tokens are injected into the external face H. The tokens traversing H find
matching tokens and are quickly eliminated at f , g, h and c. Tokens t4 and t14
complete the traversal of H. They arrive at a which destroys them. On its way
t14 visits d, which delivers it.

Correctness proof.

Lemma 1. For each node n bordering a face F that intersects the sd-line one of
the following happens exactly once: either (1) n receives token T (s, d, F ) where
T is either R or L and forwards it or (2) n has a token, receives a matching
token and destroys them both.

Proof: According to the algorithm, a token visits a node and proceeds to the
next node along the face, or two matching tokens meet at a node and disappear.
Thus, to prove the lemma, we have to show that each node bordering face F is
reached and that it is visited only once. A sequence of adjacent nodes of the
face is a visited segment if each node has been visited at least once. A border of
a visited segment is a visited node whose neighbor is not visited. By the design
of the algorithm, a border node always has a token to send to its neighbor that
is not visited. As we assume reliable message transmission, eventually the non-
visited neighbor joins the visited segment. Thus, every node in a face with a
visited segment is eventually visited.

Observe that the face bordering s has at least one visited segment: the one
that contains s itself. Thus, every node in this face will eventually be visited.
As graph G is connected, there is a sequence of adjacent faces intersecting the
sd-line from the face bordering s to the face bordering d. Adjacent faces share
a juncture node. Due to the algorithm design, when a juncture is visited in one
face that intersects the sd-line, the juncture injects a pair of tokens in every
adjacent face. That is, visiting a juncture node creates a visited segment in all
adjacent faces. By induction, all nodes in the sequence of adjacent faces are
visited, including the destination node.

Let us discuss whether a token may penetrate a visited segment and arrive
at an interior (non-border) node. Observe that the computation of CFR starts
with a single segment consisting of the source node. Thus, initially, there are
no tokens inside any of the segments. Assume there are no internal tokens
in this computation up to some step x. Let us consider the next step. The
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token may penetrate the segment only through a border node or through an
interior junction node. A token may arrive at a border node b only from the
border node of another segment of the same face. Because b is a border node,
it already holds the token of the opposite traversal direction. These two tokens
are matching. Thus, b destroys both tokens and the received token does not
propagate to the interior nodes. Let us consider a juncture node j. Because j is
interior to the segment, it was visited earlier. When a juncture node receives a
token, it creates a pair of tokens in all adjacent faces. That is, once a juncture
is visited, it becomes visited in all adjacent faces at once. Since we assumed
that there are no internal tokens up to step x, j cannot receive a token. By
induction, a token may not penetrate a segment. That is, each node bordering
a face is visited at most once. This completes the proof of the lemma. �

The below theorem follows from Lemma 1.

Theorem 1. Algorithm CFR guarantees the delivery of a message from s to d.

According to Lemma 1, the total number of messages sent in a computation
is equal to the sum of the incident edges of the faces intersecting the sd-line.
Note that an edge can be incident to at most two faces. That is, the total
number of messages sent throughout the computation is at most 2|E|. Hence,
the following corollary.

Corollary 1. The worst case message complexity of CFR is O(|E|).

Theorem 2. The latency of CFR is asymptotically optimal and is within O(ρ2)
where ρ is the number of hops in the shortest path in between the source and
destination in the planar subgraph of G.

Proof: The proof of the theorem parallels the optimality proof of GOAFR [21].
Let us consider the upper bound on the latency first. Kuhn et al argue (see [21,
Lemma 5.4]) that to derive a bound it is sufficient to consider a bounded degree
traversal graph. If the degree of the graph is unbounded, a bounded degree
connected dominating set subgraph can always be locally constructed. Since it
takes just one hop to reach this subgraph from any point in the graph, the path
length over general graph is only 2 hops more than the length of the path over
this subgraph. Let k be the maximum node degree in the traversal graph.

Since the graph to be traversed is a unit-disk graph, if ρ is the number of
hops in the shortest path between s and d, then the Euclidean distance between
the two points is no more than ρ. Let us consider a disk D(d, ρ) with radius
ρ centered in d. Since the shortest path between s and d is no longer than ρ,
this path lies completely inside the disk . Note that the shortest path intersects
sd-line at least twice: at the source and destination node. Let us consider two
consequent points of intersection. Refer to Figure 5 for illustration. Since the
graph is planar, the segment of the path between these points, includes the
borders of all faces that intersect the sd-line and lie on the same side of the
line as the shortest path segment (see figure). Since CFR traverses these faces,
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Figure 5: Illustration for the proof of optimality of CFR.

there is a path selected by CFR whose segment is completely enclosed by sd-line
on one side and this shortest path segment on the other. Examining all such
segments of the shortest path, we observe that there is a path of CFR that is
completely enclosed in the disk D(d, ρ).

Let us estimate the length of this path. Kuhn et al argue (see [21, Figure
2]), that the whole plane can be covered by disks of a diameter of one unit by
placing them on a square grid with sides 1/

√
2. Let us determine how many

such squares cover D(d, ρ). Each square that intersects D(d, ρ) lies completely
within D(d, ρ + 1). Thus, the number of such squares is no more than

π(ρ + 1)2

(1/
√

2)2
= 2π(ρ + 1)2

Recall that the graph is unit-disk and all nodes within the unit distance are
connected. The graph is of degree k. Thus, the maximum number of nodes in a
single disk of diameter one, is k. Therefore, the number of nodes inside D(d, ρ)
is no more than 2kπ(ρ + 1)2.

Note that there is a path, selected by CFR that lies completely inside D(d, ρ).
Observe that according to Lemma 1 a message of CFR can visit the same node at
most k times. Thus, the length of this path of CFR is no more than 2k2π(ρ+1)2

which is in O(ρ2).
The asymptotic optimality of CFR follows from the lower bound established

by Kuhn et al [22, Theorem 5.1]. �

4. CFR Application and Extensions

Combining with greedy routing, using various traversal types. For
efficiency, a single direction face traversal may be combined with greedy routing
as in GFG or GOAFR+. Algorithm CFR can be used in a similar combination.
We call the combined algorithm GCFR. The message starts in greedy mode and
switches to CFR once it reaches a local minimum. Because multiple messages
traverse the graph simultaneously, unlike GFG, once the message switches to
face traversal in GCFR, it continues in this mode until the destination is reached.
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(a) traversing V1 (b) traversing V2

Figure 6: Example of CVR operation on a non-planar graph.

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 0  5  10  15  20
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

sh
or

te
st

 p
at

h 
sp

an

fr
eq

ue
nc

y

network density

sp span

connected

greedy

Figure 7: Graph parameters depending on its density. Shortest path span (ratio between
Euclidean and path distance), ratio of connected graphs, and rate of success of pure greedy
routing. Last two plotted against the right y axis.

Using non-planar graphs. CFR can be adapted to concurrent void traversal
[29]. The resultant algorithm is CVR. CVR can also be combined with greedy
routing to form GCVR. Before we describe the necessary changes let us recall
how void traversal operates. Note that void traversal is performed over segments
of edges adjacent to the void, rather than over complete edges. After getting
the message, two nodes c and f (see Figure 2 again), adjacent to the edge (c, f)
that contains the segment (d, e), jointly determine the edge whose intersection
point produces the shortest segment in the traversal direction. Then, the token
is forwarded to one of the nodes adjacent to the new edge (b, h). In the example
node f forwards the token to h. Observe that in a non-planar graph f and h
may be more than one hop apart.

Similar operations happen during the concurrent traversal in CVR. However,
care must be taken to ensure that mates find each other. In particular a mate
traversing the same face might be traveling along the path connecting f and
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(a) CFR, 102 hops

(b) OAFR, 1051 hops

Figure 8: Latency paths selected by CFR and OAFR (shown in solid lines). The source and
destination nodes are marked by a circle and a square respectively. Graph density is 5 nodes
per unit disk.
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h. Thus, h and f have to agree on the forwarding path and the tokens have
to carry enough information to recognize their mates. Another complication
to be resolved is the treatment of junctures. For CVR, a juncture is the node
incident to the edge whose segment intersects the sd-line. Note that, unlike
planar graphs, the segments can intersect at points other than nodes. Thus, the
segment intersection point itself may potentially lie on the sd-line. This case
generates multiple junctures. However, the mates generated by these junctures
meet and destroy each other.

Refer to Figure 6 for an illustration of CVR operation. To simplify the
presentation we show the traversal of the two adjacent voids V1 and V2 separately
in Figures 6(a) and 6(b) respectively. As before, to avoid cluttering the picture,
we only show the token numbers. We explain the traversal of V1 in detail. The
traversal starts when s sends two tokens t1 and t2 in the opposite directions
around V1. When t1 arrives at e, the nodes incident to edge (e, b) have to
determine the edge that intersects (e, b) closest to the beginning of the segment.
In this case the beginning of the segment is node e itself. Node e sends t1 to b
and the two nodes determine that the appropriate edge is (a, f). Therefore, b
forwards t1 to a which is one of the nodes incident to (a, f). Node a forwards
t1 to f . Note that f is a juncture. Hence, f injects a pair of tokens: t5 and t6
into V2. After that, f forwards t2 to k. Note that k is also a juncture. Hence,
k injects another pair of tokens: t3 and t4 into V2. Meanwhile, t1 reaches h.
To determine the segment of (h, j) that is adjacent to V1, h forwards t1 to j.
The intersecting edge correctly determined, j forwards the message to k where
it meets its mate — t2. This concludes the traversal of V1. The traversal of V2

is completed similarly.

5. Performance Evaluation

Simulation environment. To evaluate the performance of CFR we recreated
the simulation environment used by Kuhn et al [21, 24]. This model is the
most comprehensive way of evaluating the performance of geometric routing
algorithms that we are aware of. The practical behavior of the algorithms
primarily depends on the network density. This model examines the operation
of the algorithms across all network densities of interest.

For the simulation, we used the graphs formed by uniformly placing the
nodes at random on a 20× 20 unit square field. The number of nodes depended
on the selected density. The edges of the graph were selected according to the
unit-disk model: two nodes are connected if and only if they are within the
unit-distance of each other. For each graph, a single source and destination
pair was randomly selected. We used 21 different density levels. To validate
our environment we measured the same preliminary graph parameters as in
Kuhn et al [21, Figure 3],[24, Figure 3]. For each density level we carried out
2, 000 measurements. Our results are plotted in Figure 7. They concur with the
previous studies.

Evaluation description. We implemented CFR and compared its perfor-
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Figure 9: Mean path stretch (ratio of the path selected by the algorithm to the shortest unit-
disk graph path) of geometric routing algorithms on planar graphs depending on the density
(nodes per unit disk) of the unit disk graph.

mance against the major known geometric routing algorithms. We took 2, 000
measurements at each graph density level. Refer to Figure 8 for an illustration
of the resultant graphs and algorithm path selections.

Let us first compare the speed of communication demonstrated by the rout-
ing algorithms. In Figure 9 we plot the path stretch achieved by the algorithms
in pure form and in combination with greedy routing. Figure 9(a) indicates
that pure CFR outperforms all the other algorithms. In the critical range, the
path stretch that the pure CFR provides is up to five times better than the next
best algorithm’s — OAFR. Let us consider the combination of greedy and face
routing. Recall that, unlike the other algorithms, after switching from greedy to
face traversal mode, GCFR does not switch back to greedy again. Thus, GCFR
may miss on an efficient path selected by greedy routing. However, as the graph
density increases, the greedily routed message may not encounter a local min-
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Figure 10: Mean message cost normalized to shortest path of geometric routing algorithms
on unit-disk graphs depending on density (nodes per unit disk) of the unit disk graph.

imum altogether. Therefore, the number of such mode switches decreases and
this potential disadvantage of GCFR is offset. As Figure 9(b) indicates, the
path stretch produced by GCFR in the critical region is still over 2.5 times
better than the next best algorithm.

Let us now consider the message cost of communication of the algorithms. In
Figure 10 we show the message cost normalized to the shortest path while in Fig-
ure 11 the cost is normalized to flooding (i.e. every node sends exactly one mes-
sage). The first presentation indicates the cost compared to the distance from
source to destination, the second — compared to the whole system participation
in the route discovery. The latter metric gives the perspective of cost of geomet-
ric routing compared to flooding-based routing algorithms [9, 17, 19, 28, 30].
Figure 10 shows that CFR and GCFR use more messages than other geometric
routing algorithms. However, Figure 11 shows that message cost of CFR and
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Figure 11: Mean message cost normalized to flooding of geometric routing algorithms on
planar graphs depending on density (nodes per unit disk) of the unit disk graph.

GCFR are comparable to the other algorithms.
To study the effect of graph scale on the performance of geometric algo-

rithms, we constructed the simulation scenario similar to that of Kuhn et al [24,
Figure 10]. We fixed the density of the graph near the critical value — at 4.5;
and varied the field size. Specifically, we selected 10 different lengths of the side
of the square field from 4 to 40 units. The number of nodes in the field was
selected to match the required density of 4.5. We took 3, 000 measurements for
each side length. The results of the simulation are shown in Figure 12. Our
simulation indicates that the path stretch achieved by CFR and GCFR is lower
than that of the other routing algorithms at any scale. This is true for pure
geometric routing and its combination with greedy routing. Moreover, as graph
scale increases, compared to the other routing algorithms, CFR and GCFR
exhibit significantly slower rate of path stretch increase.
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Figure 12: Mean path stretch of routing algorithms on planar subgraphs of unit-disk graphs
depending on graph scale with average graph density of 4.5. The graphs are constructed on
square fields with side lengths from 4 to 40 units.

To demonstrate the viability of CFR on non-planar graphs, we implemented
CVR and GCVR and compared their performance against conventional VOID
and GVG. For these experiments we also used a 20 × 20 units square field
randomly filled by the nodes with randomly selected source and destination
pairs. However, the network was modeled as a quasi unit-disk graph [4, 23].
Specifically, two vertices of u and v: i) were definitely adjacent if |u, v| ≤ d =
0.75; ii) were adjacent with probability p = 0.5 if d < |u, v| ≤ 1; iii) definitely
not adjacent if |u, v| > 1. We selected 21 density levels and carried out 2, 000
trials for each density level. Due to the limitations of double precision floating
point calculations, some of the trials did not succeed: due to computation errors,
the adjacent nodes may not agree on the edge intersection location. To ensure
successful runs, for each graph we globally pre-computed all intersection points.
The results are shown in Figure 13. Our results indicate that CFR retains its
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latency advantages over the other algorithms in non-planar graphs.

6. Conclusion

The CFR algorithm presented in this paper improves both the bounds and
the practical performance of geometric routing algorithms. Moreover, CFR
addresses one of the major drawbacks of geometric routing: its inconsistency
due to selection of disadvantageous routes. The proposed technique is simple
to implement. The authors are hopeful that it will quickly find its way into
practical implementations of geometric routing algorithms.

Note that classic geometric routing algorithms only consider two-dimensional
communication graph embeddings. Recently, there appeared studies extending
these techniques to three dimensions (see for example Liu and Wu [27]). It would
be interesting to investigate how our algorithm can be extended to accommodate
three dimensional routing.

Another important research direction is message optimization. Our algo-
rithm accelerates message delivery at the expense of greater number transmit-
ted messages. The next challenge is to preserve the fast message delivery while
trying to improve the message overhead.
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Figure 13: Performance evaluation of geometric routing algorithms on non-planar quasi unit-
disk graphs. The distance of definite connectivity is 0.75 unit; possible connectivity between
0.75 and 1 unit; no connectivity above 1 unit.
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