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Abstract

Nachos is instructional software that allows students to examine, modify and exe-

cute operating system software. Nachos provides a skeletal operating system that sup-

ports threads, user-level processes, virtual memory and interrupt-driven input output

devices. Nachos is a complex piece of software and it is di�cult for beginning students
(and instructors) to easily gain on overall understanding of the various system pieces

and how they �t together.

This document provides a road map to understanding the Nachos system. It gives

a high-level overview of the source code, focusing on the big picture rather than on the

details. It is not intended as a replacement for reading the source code. Rather, it is

a companion that is intended to help students (and instructors) overcome the initial

learning curve encountered when learning and using the system.
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1 Introduction to Nachos

Nachos is instructional software that allows students to study and modify a real operating
system. The only di�erence between Nachos and a \real" operating system is that Nachos
runs as a single Unix process, whereas real operating systems run on bare machines. However,
Nachos simulates the general low-level facilities of typical machines, including interrupts,
virtual memory and interrupt-driven device I/O.

The rest of this document attempts to provide a road map through Nachos. It is not
intended to replace the need for reading the source code; rather, it this document attempts
to speed up the learning process by describing \the big picture."

Section 2 provides an overview of the underlying machine that Nachos simulates and
runs on top of. Section ?? describes Nachos threads and the mechanics of scheduling,
synchronization and thread switching. Section 4 describes how user-level programs execute
as separate processes within their own private address spaces. Section 5 provides an overview
of the �lesystem implementation. Section 6 reports on experience using Nachos to teach
operating systems courses, and provides speci�c suggestions on individual assignments.

2 Nachos Machine

Nachos simulates a machine that roughly approximates the MIPS architecture. The machine
has registers, memory and a cpu. In addition, an event-driven simulated clock provides a
mechanism to schedule interrupts and execute them at a later time. The simulated MIPS
machine can execute arbitrary programs. One simply loads instructions into the machine's
memory, initializes registers (including the program counter PCReg) and then tells the ma-
chine to start executing instructions. The machine then fetches the instruction PCReg points
at, decodes it, and executes it. The process is repeated inde�nitely, until an illegal operation
is performed or a hardware interrupt is generated. When a trap or interrupt takes place, ex-
ecution of MIPS instructions is suspended, and a Nachos interrupt service routine is invoked
to deal with the condition.

Conceptually, Nachos has two modes of execution, one of which is the MIPS simulator.
Nachos executes user-level processes by loading them into the simulator's memory, initializing
the simulator's registers and then running the simulator. User-programs can only access the
memory associated with the simulated machine. The second mode corresponds to the Nachos
\kernel." The kernel executes when Nachos �rst starts up, or when a user-program executes
an instruction that causes a hardware trap (e.g., illegal instruction, page fault, system call,
etc.). In \kernel mode", Nachos executes the way normal Unix processes execute. That
is, the statements corresponding to the Nachos source code are executed, and the memory
accessed corresponds to the memory assigned to Nachos variables.

Nachos does not have to execute user-level programs in order to perform useful things.
Nachos supports kernel threads, allowing multiple threads to execute concurrently. In this
context, Nachos behaves in a manner analogous to other thread packages. Indeed, user-level
processes are executed by having a kernel thread invoke the simulator. Thus, multipro-
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gramming makes use of multiple threads; each user-level process has a Nachos kernel thread
associated with it to provide a context for executing the MIPS simulator.

2.1 Machine Components

The Nachos/MIPS machine is implemented by the Machine object, an instance of which is
created when Nachos �rst starts up. The Machine object exports a number of operations
and public variables that the Nachos kernel accesses directly. In the following, we describe
some of the important variables of the Machine object; describing their role helps explain
what the simulated hardware does.

The Nachos Machine object provides registers, physical memory, virtual memory support
as well as operations to run the machine or examine its current state. When Nachos �rst
starts up, it creates an instance of the Machine object and makes it available through the
global variable machine. The following public variables are accessible to the Nachos kernel:

registers: An array of 40 registers, which include such special registers as a stack pointer, a
double register for multiplication results, a program counter, a next program counter
(for branch delays), a register target for delayed loads, a value to be loaded on a delayed
load, and the bad virtual address after a translation fault. The registers are number
0{39; see the �le machine.h for symbolic names for the registers having special meaning
(e.g., PCReg).

Although registers can be accessed directly via machine->registers[x] , the Machine
object provides special ReadRegister() and WriteRegister() routines for this purpose
(described in more detail below).

mainMemory: Memory is byte-addressable and organized into 128-byte pages, the same
size as disk sectors. Memory corresponding to physical address x can be accessed
in Nachos at machine->mainMemory[x] . By default, the Nachos MIPS machine has
31 pages of physical memory. The actual number of pages used is controlled by the
NumPhysPages variable in machine.h.

Virtual Memory Nachos supports VM through either a single linear page table or a
software-managed TLB (though not simultaneously). The choice of which is in e�ect
is controlled by initializing the tlb or pageTable variables of the machine class. When
executing instructions, the Machine object uses whichever is de�ned, after verifying
that they are not both set simultaneously.

At this point, we know enough about the Machine object to explain how it executes
arbitrary user programs. First, we load the program's instructions into the machine's physical
memory (e.g, the machine->mainMemory variable). Next, we initialize the machine's page
tables and registers. Finally we invoke machine->Run(), which begins the fetch-execute
cycle for the machine.

The Machine object provides the following operations:
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Machine(bool debug) The Machine constructor takes a single argument debug . When
debug is TRUE, the MIPS simulator executes instructions in single step mode, in-
voking the debugger after each instruction is executed. The debugger allows one to
interactively examine machine state to verify (for instance) that registers or memory
contain expected values.

By default, single-stepping is disabled. It is enabled by specifying the \-s" command
line option when starting Nachos up.

ExceptionType Translate(int virtAddr, int* physAddr, int size, bool writing) converts
virtual address virtAddr into its corresponding physical address physAddr . Translate
examines the machine's translation tables (described in detail in Section 2.4) in or-
der to perform the translation. When successful, Translate returns the corresponding
physical address in physAddr . Otherwise, it returns a code indicating the reason for
the failure (e.g., page fault, protection violation, etc.) Whenever a translation fails, the
MIPS simulator invokes the Nachos routine RaiseException to deal with the problem.
RaiseException is responsible for handling all hardware trap conditions. When Raise-
Exception returns, the Nachos Machine assumes that the condition has been corrected
an resumes its fetch-execute cycle.

Note that from a user-level process's perspective, traps take place in the same way as
if the program were executing on a bare machine; a trap handler is invoked to deal
with the problem. However, from the Nachos perspective, RaiseException is called via
a normal procedure call by the MIPS simulator.

OneInstruction() does the actual work of executing an instruction. It fetches the current
instruction address from the PC register, fetches it from memory, decodes it, and �nally
executes it. Any addresses referenced as part of the fetch/execute cycle (including the
instruction address given by PCReg) are translated into physical addresses via the
Translate() routine before physical memory is actually accessed.

Run() \turns on" the MIPS machine, initiating the fetch-execute cycle. This routine should
only be called after machine registers and memory have been properly initialized. It
simply enters an in�nite fetch-execute loop.

The main loop in Run does three things: 1) it invokes OneInstruction to actually
execute one instruction, 2) it invokes the debugger, if the user has requested single-
step mode on the command line, and 3) it increments a simulated clock after each
instruction. The clock, which is used to simulate interrupts, is discussed in the following
section.

int ReadRegister(int num) fetches the value stored in register num.

void WriteRegister(int num, int value) places value into register num.

bool ReadMem(int addr, int size, int* value) Retrieves 1, 2, or 4 bytes of memory at
virtual address addr . Note that addr is the virtual address of the currently executing
user-level program; ReadMem invokes Translate before it accesses physical memory.
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One point that should be noted is that ReadMem fails (returning FALSE), if the
address translation fails (for whatever reason). Thus, if the page is not present in
physical memory, ReadMem fails. ReadMem does not distinguish temporary failures
(e.g., page not in memory) from hard errors (e.g., invalid virtual address)1.

ReadMem is used (for instance) when dereferencing arguments to system calls.

bool WriteMem(int addr, int size, int value) writes 1, 2, or 4 bytes of value into mem-
ory at virtual address addr. The same warnings given for ReadMem apply here as well.

2.2 Interrupt Management

Nachos simulates interrupts by maintaining an event queue together with a simulated clock.
As the clock ticks, the event queue is examined to �nd events scheduled to take place now.
The clock is maintained entirely in software and ticks under the following conditions:

1. Every time interrupts are restored (and the restored interrupt mask has interrupts
enabled), the clock advances one tick. Nachos code frequently disables and restores in-
terrupts for mutual exclusion purposes by making explicit calls to interrupt::SetLevel().

2. Whenever the MIPS simulator executes one instruction, the clock advances one tick.

3. Whenever the ready list is empty, the clock advances however many ticks are needed
to fast-forward the current time to that of the next scheduled event.

Whenever the clock advances, the event queue is examined and any pending interrupt
events are serviced by invoking the procedure associated with the timer event (e.g., the
interrupt service routine). All interrupt service routines are run with interrupts disabled,
and the interrupt service routine may not re-enable them.

Warning: in interrupt handler may not call any routines that lead to a context switch of
the current thread (e.g., scheduler::Run() or SWITCH() ). Doing so may lead to deadlock.
This restriction is an artifact of the way interrupts are simulated under Nachos, and should
not be taken as an indication of the way things are done on real machines. Speci�cally,
consider the case where multiple events happen to be scheduled at exactly the same time.
If the handler for the �rst event invokes sleep (which calls SWITCH ), the others won't be
serviced at the right time. In fact, the thread that called sleep may actually be waiting for
one of the other events that is supposed to take place now, but is delayed because of the
SWITCH . We now have a deadlock2.

All routines related to interrupt management are provided by the Interrupt object. The
main routines of interest include:

1See Section 1 for a description of one common problem students encounter due to this.
2To correctly implement preemption, the interrupt handler invoked when a running threads quantum

expires needs to switch to another thread. This is handled by having the interrupt service routine invoke

Thread::YieldOnReturn(), which delays the actual preemption until it is safe to do so.
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void Schedule(VoidFunctionPtr handler, int arg, int when, IntType type) schedules
a future event to take place at time when. When it is time for the scheduled event to
take place, Nachos calls the routine handler with the single argument arg .

IntStatus SetLevel(IntStatus level) Change the interrupt mask to level , returning the
previous value. This routine is used to temporarily disable and re-enable interrupts
for mutual exclusion purposes. Only two interrupt levels are supported: IntOn and
IntO� .

OneTick() advances the clock one tick and services any pending requests (by calling Check-
IfDue). It is called from machine::Run() after each user-level instruction is executed,
as well as by SetLevel when the interrupts are restored.

bool CheckIfDue(bool advanceClock) examines the event queue for events that need
servicing now. If it �nds any, it services them. It is invoked in such places as OneTick .

Idle() \advances" to the clock to the time of the next scheduled event. It is called by the
scheduler (actually Sleep()) when there are no more threads on the ready list and we
want to \fast-forward" the time.

2.3 Real-Time Clock Interrupts

Nachos provides a Timer object that simulates a real time clock, generating interrupts
at regular intervals. It is implemented using the same event driven interrupt mechanism
described above. Timer supports the following operations:

Timer(VoidFunctionPtr timerHandler, int callArg, bool doRandom) The Timer con-
structor creates a real-time clock that interrupts every TimerTicks (100) time units.
When the timer goes o�, the Nachos simulator invokes procedure timerHandler , pass-
ing it callArg as an argument.

To add a bit of non-determinism to the system, argument doRandom speci�es that
the time between interrupts should be taken from a uniform interval between 1 and
2� T imerT icks.

The real-time clock can be used to provide preemption.

Note that starting Nachos with the \-rs" option creates a timer object that interrupts at
random intervals and preempts the currently running thread.

2.4 Address Translation

Nachos supports two types of VM architectures: linear page tables, or a software managed
TLB. While the former is simpler to program, the latter more closely corresponds to what
current machines support. Nachos supports one or the other, but not both (simultaneously).
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2.4.1 Linear Page Tables

With linear tables, the MMU splits a virtual address into page number and page o�set
components. The page number is used to index into an array of page table entries. The
actual physical address is the concatenation of the page frame number in the page table
entry and the page o�set of the virtual address.

To use linear page tables, one simply initializes variable machine->pageTable to point
to the page table used to perform translations. In general, each user process will have its
own private page table. Thus, a process switch requires updating the pageTable variable. In
a real machine, pageTable would correspond to a special register that would be saved and
restored as part of the SWITCH() operation. The machine variable pageTableSize indicates
the actual size of the page table.

Page table entries consist of the physical page frame number for the corresponding virtual
page, a ag indicating whether the entry is currently valid (set by the OS, inspected by
hardware), a ag indicating whether the page may be written (set by OS, inspected by
hardware), a bit indicating whether the page has been referenced (set by the hardware,
inspected and cleared by OS) and a dirty bit (set by hardware, inspected and cleared by
OS).

The Nachos machine has NumPhysPages of physical memory starting at location main-
Memory . Thus, page 0 starts atmachine->mainMemory , while page N starts atmainMemory+
N � PageSize.

2.4.2 Software Managed TLB

[To be �lled in.]

2.5 Console Device

Nachos provides a terminal console device and a single disk device. Nachos devices are
accessed through low-level primitives that simply initiate an I/O operation. The operation
itself is performed later, with an \operation complete" interrupt notifying Nachos when the
operation has completed.

The Console class simulates the behavior of a character-oriented CRT device. Data can
be written to the device one character at a time through the PutChar() routine. When
a character has successfully been transmitted, a \transmit complete" interrupt takes place
and the user-supplied handler is invoked. The interrupt handler presumably checks if more
characters are waiting to be output, invoking PutChar again if appropriate.

Likewise, input characters arrive one-at-a-time. When a new character arrives, the con-
sole device generates an interrupt and the user-supplied input interrupt service routine is
invoked to retrieve the character from the device and (presumably) place it into a bu�er
from which higher-level routines (e.g., GetChar()) can retrieve it later.

The Console object supports the following operations:
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Console(char *readFile, char *writeFile, VoidFunctionPtr readAvail, VoidFunctionPtr write
The constructor creates an instance of a terminal console. Argument readFile contains
the Unix �le name of where the data is to be read from; if NULL, standard input is
assumed. Likewise, argument writeFile indicates where output written to the console
is to go; if NULL, standard output is assumed. When a character becomes available for
reading, readAvail is invoked with an argument of callArg to notify the Nachos that a
character is available. The character itself is retrieved by calling Console::GetChar().
Upon return, it is assumed that the character has been retrieved and when the next
one arrives, readAvail will be called again.

void PutChar(char ch) Writes character ch to the output device. Once output has
started, it is an error to invoke PutChar() again before the corresponding I/O com-
plete interrupt has taken place. Once the console device has written the character to
the device, it invokes the user-supplied procedure writeDone , passing it callArg as an
argument.

char GetChar() Retrieves a character from the console. GetChar returns EOF if no new
data is available. Normally, the user would not invoke GetChar unless the availability
of new data had �rst been signalled via the readAvail() interrupt service routine.

void CheckCharAvail() an internal procedure used to see if new data is available for
reading.

When a console device is created by the constructor, the appropriate Unix �les (or
stdin/stdout) are opened and a timer event is scheduled to take place 100 time units in
the future. When the timer expires, the routine CheckCharAvail is invoked to see if any
data is present. If so, CheckCharAvail reads that character and invokes the user-supplied
input interrupt handler readAvail. It then schedules a new timer event so that the process
repeats every 100 time units. Thus, CheckCharAvail simply polls every 100 clock ticks for
new data, calling the interrupt service routine whenever data is present for processing.

Device output is initiated by calling PutChar , giving it a single character to output.
Once character output has been initiated, the device is made busy until the output complete
interrupt takes place. PutChar simply outputs the one character, sets an internal ag to
indicate that the device is busy, and then schedules a timer interrupt to take place 100
clock ticks later. When the timer expires, the state of the device is changed from busy to
idle, and the user-supplied output interrupt complete routine is invoked. This routine would
presumably invoke PutChar if additional output characters were queued awaiting output.

2.6 Disk Device

The Disk object simulates the behavior of a real disk. The disk has only a single platter,
with multiple tracks containing individual sectors. Each track contains the same number of
sectors, and blocks are uniquely identi�ed by their sector number. As with a real disk, the
OS initiates operations to read or write a speci�c sector, and a later interrupt indicates when
the operation has actually completed. The Nachos disk allows only one pending operation
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at a time; the OS may initiate new operations only when the device is idle. Note that it is
the responsibility of the OS to insure that new requests are not issued while the disk is busy
servicing an earlier request.

In order to simulate typical delays in accessing a disk, the Nachos Disk object dynamically
varies the time between the initiation of an I/O operation and its corresponding I/O complete
interrupt. The actual delay depends on how long it takes to move the disk head from its
previous location to the new track, as well as the rotational delay encountered waiting for
the desired block to rotate under the read/write head.

The simulated disk contains NumTracks (32) tracks, each containing SectorsPerTrack
(32) sectors. Individual sectors are SectorSize (128) bytes in size. In addition, Disk contains
a \track bu�er" cache. Immediately after seeking to a new track, the disk starts reading
sectors, placing them in the track bu�er. That way, a subsequent read request may �nd the
data already in the cache reducing access latency.

The Disk object supports the following operations:

Disk(char *name, VoidFunctionPtr callWhenDone, int callArg): This constructor
assumes that the simulated disk is kept in the Unix �le called name. If the �le does
not already exist, Nachos creates it and writes a \magic number" of 0x456789ab into
the initial four bytes. The presence of a magic number allows Nachos to distinguish a
�le containing a Nachos simulated disk from one containing something else. Finally,
Nachos insures that the rest of the �le contains NULL sectors. All Nachos disks have
the same size, given by the formula NumSectors� SectorsPerTrack.

If the �le already exists, Nachos reads the �rst 4 bytes to verify that they contain the
expected Nachos \magic number," terminating if the check fails. Note that by default
the contents of a Nachos disk is preserved across multiple Nachos sessions, allowing
users to create a Nachos �le in one session, and read it in another. However, if the
disk contains a �le system, and the �le system is left in a corrupted state by a previous
Nachos session, subsequent Nachos invocations are likely run into problems if they
don't �rst verify that the �lesystem data structures are logically consistent.

The last two constructor arguments are used to provide an \I/O complete" interrupt
mechanism. Speci�cally, the Nachos machine signals the completion of a Disk operation
(e.g., read or write) by invoking the procedure callWhenDone, passing it an argument
of callArg . As shown below, the SynchDisk object uses this routine to wake up a thread
that has been suspended while waiting for I/O to complete.

ReadRequest(int sectorNumber, char *data): Is invoked to read the speci�ed sector
number into the bu�er data. In Nachos, all sectors are the same size (SectorSize).

Note that this operations returns immediately, before the transfer actually takes place.
ReadRequest schedules an interrupt to take place sometime in the future, after a time
roughly dependent on the seek distance needed to complete the operation. Only after
the interrupt takes place is it correct to start using the data.

WriteRequest(int sectorNumber, char *data): Similar to ReadRequest , except that it
writes a single sector.
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ComputeLatency(int newSector, bool writing): estimates the latency required to ac-
cess the block newSector given the current position of the disk head. The routine is
used in deciding when to schedule an I/O complete interrupt when servicing a read or
write request.

3 Nachos Threads

In Nachos (and many systems) a process consists of:

1. An address space. The address space includes all the memory the process is allowed to
reference. In some systems, two or more processes may share part of an address space,
but in traditional systems the contents of an address space is private to that process.
The address space is further broken down into 1) Executable code (e.g., the program's
instructions), 2) Stack space for local variables and 3) Heap space for global variables
and dynamically allocated memory (e.g., such as obtained by the Unix malloc or C++
new operator). In Unix, heap space is further broken down into BSS (contains variables
initialized to 0) and DATA sections (initialized variables and other constants).

2. A single thread of control, e.g., the CPU executes instructions sequentially within the
process.

3. Other objects, such as open �le descriptors.

That is, a process consists of a program, its data and all the state information (memory,
registers, program counter, open �les, etc.) associated with it.

It is sometimes useful to allow multiple threads of control to execute concurrently within a
single process. These individual threads of control are called threads. By default, processes
have only a single thread associated with them, though it may be useful to have several.
All the threads of a particular process share the same address space. In contrast, one
generally thinks of processes as not sharing any of their address space with other processes.
Speci�cally, threads (like processes) have code, memory and other resources associated with
them. Although threads share many objects with other threads of that process, threads have
their own private local stack3.

One big di�erence between threads and processes is that global variables are shared
among all threads. Because threads execute concurrently with other threads, they must
worry about synchronization and mutual exclusion when accessing shared memory.

Nachos provides threads. Nachos threads execute and share the same code (the Nachos
source code) and share the same global variables.

The Nachos scheduler maintains a data structure called a ready list , which keeps track
of the threads that are ready to execute. Threads on the ready list are ready to execute and

3Actually, threads technically do share their stacks with other threads in the sense that a particular

thread's stack will still be addressable by the other threads. In general, however, it is more useful to think

of the stack as private, since each thread must have its own stack.
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can be selected for executing by the scheduler at any time. Each thread has an associated
state describing what the thread is currently doing. Nachos' threads are in one of four states:

READY: The thread is eligible to use the CPU (e.g, it's on the ready list), but another
thread happens to be running. When the scheduler selects a thread for execution, it
removes it from the ready list and changes its state from READY to RUNNING. Only
threads in the READY state should be found on the ready list.

RUNNING: The thread is currently running. Only one thread can be in the RUNNING
state at a time. In Nachos, the global variable currentThread always points to the
currently running thread.

BLOCKED: The thread is blocked waiting for some external event; it cannot execute until
that event takes place. Speci�cally, the thread has put itself to sleep viaThread::Sleep().
It may be waiting on a condition variable, semaphore, etc. By de�nition, a blocked
thread does not reside on the ready list.

JUST CREATED: The thread exists, but has no stack yet. This state is a temporary
state used during thread creation. The Thread constructor creates a thread, whereas
Thread::Fork() actually turns the thread into one that the CPU can execute (e.g., by
placing it on the ready list).

In non-object oriented systems, operating systems maintain a data structure called a
process table. Process (thread) table entries contain all the information associated with a
process (e.g., saved register contents, current state, etc.). The process table information is
frequently called a context block .

In contrast to other systems, Nachos does not maintain an explicit process table. Instead,
information associated with thread is maintained as (usually) private data of a Thread object
instance. Thus, where a conventional operating system keeps thread information centralized
in a single table, Nachos scatters its \thread table entries" all around memory; to get at a
speci�c thread's information, a pointer to the thread instance is needed.

The Nachos Thread object supports the following operations:

Thread *Thread(char *debugName) The Thread constructor does only minimal ini-
tialization. The thread's status is set to JUST CREATED, its stack is initialized to
NULL, its given the name debugName, etc.

Fork(VoidFunctionPtr func, int arg) does the interesting work of thread creation, turn-
ing a thread into one that the CPU can schedule and execute.

Argument func is the address of a procedure where execution is to begin when the
thread starts executing. Argument arg is a an argument that should be passed to the
new thread. (Of course, procedure func must expect a single argument to be passed
to it if it is to access the supplied argument.)

Fork allocates stack space for the new thread, initializes the registers (by saving the
initial value's in the thread's context block), etc.
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One important detail must be considered. What should happen when procedure func
returns? Since func was not called as a regular procedure call, there is no place for it
to return to. Indeed, rather than returning, the thread running func should terminate.
Fork takes care of this detail by building an initial activation record that makes this
happen (described in detail below).

void StackAllocate(VoidFunctionPtr func, int arg) This routine does the dirty work
of allocating the stack and creating an initial activation record that causes execution
to appear to begin in func. The details are a somewhat complicated. Speci�cally,
StackAllocate does the following:

1. Allocate memory for the stack. The default stack size is StackSize (4096) 4-byte
integers.

2. Place a sentinel value at the top of the allocated stack. Whenever it switches to
a new thread, the scheduler veri�es that the sentinel value of the thread being
switched out has not changed, as might happen if a thread overows its stack
during execution.

3. Initialize the program counter PC to point to the routine ThreadRoot . Instead
of beginning execution at the user-supplied routine, execution actually begins in
routine ThreadRoot . ThreadRoot does the following:

(a) Calls an initialization routine that simply enables interrupts.

(b) Calls the user-supplied function, passing it the supplied argument.

(c) Calls thread::Finish(), to terminate the thread.

Having thread execution begin in ThreadRoot rather than in the user-supplied
routine makes it straightforward to terminate the thread when it �nishes. The
code for ThreadRoot is written in assembly language and is found in switch.s
Note: ThreadRoot isn't run by the thread that calls Fork(). The newly created
thread executes the instructions in ThreadRoot when it is scheduled and starts
execution.

void Yield() Suspend the calling thread and select a new one for execution (by calling
Scheduler::FindNextToRun()). If no other threads are ready to execute, continue run-
ning the current thread.

void Sleep() Suspend the current thread, change its state to BLOCKED, and remove it
from the ready list. If the ready list is empty, invoke interrupt->Idle() to wait for the
next interrupt. Sleep is called when the current thread needs to be blocked until some
future event takes place. It is the responsibility of this \future event" to wake up the
blocked thread and move it back on to the ready list.

void Finish() Terminate the currently running thread. In particular, return such data
structures as the stack to the system, etc. Note that it is not physically possible for a
currently running thread to terminate itself properly. As the current thread executes,
it makes use of its stack. How can we free the stack while the thread is still using
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it? The solution is to have a di�erent thread actually deallocate the data structures
of a terminated thread. Thus, Finish sets the global variable threadToBeDestroyed to
point to the current thread, but does not actually terminate it. Finish then calls Sleep,
which e�ectively terminates the thread (e.g., it will never run again). Later, when the
scheduler starts running another thread, the newly scheduled thread examines the
threadToBeDestroyed variable and �nishes the job.

3.1 Mechanics of Thread Switching

Switching the CPU from one thread to another involves suspending the current thread,
saving its state (e.g., registers), and then restoring the state of the thread being switched to.
The thread switch actually completes at the moment a new program counter is loaded into
PC; at that point, the CPU is no longer executing the thread switching code, it is executing
code associated with the new thread.

The routine Switch(oldThread, nextThread) actually performs a thread switch. Switch
saves all of oldThread 's state (oldThread is the thread that is executing when Switch is
called), so that it can resume executing the thread later, without the thread knowing it was
suspended. Switch does the following:

1. Save all registers in oldThread 's context block .

2. What address should we save for the PC? That is, when we later resume running
the just-suspended thread, where do we want it to continue execution? We want
execution to resume as if the call to Switch() had returned via the normal procedure call
mechanism. Speci�cally, we want to resume execution at the instruction immediately
following the call to Switch(). Thus, instead of saving the current PC, we place the
return address (found on the stack in the thread's activation record) in the thread's
context block. When the thread is resumed later, the resuming address loaded into the
PC will be the instruction immediately following the \call" instruction that invoked
Switch() earlier.

Note: It is crucial that Switch() appear to be a regular procedure call to whoever calls
it. That way, threads may call Switch() whenever they want. The call will appear to
return just like a normal procedure call except that the return does not take place right
away. Only after the scheduler decides to resume execution of the switched thread will
it run again.

3. Once the current thread's state has been saved, load new values into the registers from
the context block of the next thread.

4. At what exact point has a context switch taken place? When the current PC is replaced
by the saved PC found in the process table. Once the saved PC is loaded, Switch() is
no longer executing; we are now executing instructions associated with the new thread,
which should be the instruction immediately following the call to Switch(). As soon
as the new PC is loaded, a context switch has taken place.
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The routine Switch() is written in assembly language because it is a machine-depended
routine. It has to manipulate registers, look into the thread's stack, etc.

Note: After returning from Switch, the previous thread is no longer running. Thread
nextThread is running now. But because it also called Switch() previously, it will return to
the \right place" (the instruction after the call to Switch()). Thus, it looks like Switch() is
a \normal" procedure call, but in fact, a thread switch has taken place.

3.2 Threads & Scheduling

Threads that are ready to run are kept on the ready list . A process is in the READY state
only if it has all the resources it needs, other than the CPU. Processes blocked waiting for
I/O, memory, etc. are generally stored in a queue associated with the resource being waited
on.

The scheduler decides which thread to run next. The scheduler is invoked whenever the
current thread wishes to give up the CPU. For example, the current thread may have initiated
an I/O operation and must wait for it to complete before executing further. Alternatively,
Nachos may preempt the current thread in order to prevent one thread from monopolizing
the CPU.

The Nachos scheduling policy is simple: threads reside on a single, unprioritized ready
list, and threads are selected in a round-robin fashion. That is, threads are always appended
to the end of the ready list, and the scheduler always selects the thread at the front of the
list.

Scheduling is handled by routines in the Scheduler object:

void ReadyToRun(Thread *thread): Make thread ready to run and place it on the
ready list. Note that ReadyToRun doesn't actually start running the thread; it simply
changes its state to READY and places it on the ready list. The thread won't start
executing until later, when the scheduler chooses it.

ReadyToRun is invoked, for example, by Thread::Fork() after a new thread has been
created.

Thread *FindNextToRun(): Select a ready thread and return it). FindNextToRun sim-
ply returns the thread at the front of the ready list.

void Run(Thread *nextThread): Do the dirty work of suspending the current thread
and switching to the new one. Note that it is the currently running thread that calls
Run(). A thread calls this routine when it no longer wishes to execute.

Run() does the following:

1. Before actually switching to the new thread, check to see if the current thread over-
owed its stack. This is done by placing a sentinel value at the top of the stack when
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the thread is initially created. If the running thread ever overows its stack, the sen-
tinel value will be overwritten, changing its value. By checking for the sentinel value
every time we switch threads, we can catch threads overowing their stacks.

2. Change the state of newly selected thread to RUNNING. Nachos assumes that the
calling routine (e.g. the current thread) has already changed its state to something
else, (READY, BLOCKED, etc.) before calling Run().

3. Actually switch to the next thread by invoking Switch(). After Switch returns, we
are now executing as the new thread. Note, however, that because the thread being
switched to previously called Switch from Run(), execution continues in Run() at the
statement immediately following the call to Switch.

4. If the previous thread is terminating itself (as indicated by the threadToBeDestroyed
variable), kill it now (after Switch()). As described in Section 3, threads cannot termi-
nate themselves directly; another thread must do so. It is important to understand that
it is actually another thread that physically terminates the one that called Finish().

3.3 Synchronization and Mutual Exclusion

Low-level Nachos routines (including the ones discussed above) frequently disable and re-
enable interrupts to achieve mutual exclusion (e.g., by calling Interrupt::SetLevel()).

Synchronization facilities are provided through semaphores. The Semaphore object pro-
vides the following operations:

Semaphore(char* debugName, int initialValue) The constructor creates a new count-
ing semaphore having an initial value of initialValue. The string debugName is also
associated with the semaphore to simplify debugging.

void P() Decrement the semaphore's count, blocking the caller if the count is zero.

void V() Increment the semaphore's count, releasing one thread if any are blocked waiting
on the count.

3.4 Special Notes

When Nachos �rst begins executing, it is executing as a single Unix process. Nachos turns
this single user process into a single Nachos thread. Thus, by default, Nachos executes a
single thread. When the Nachos entry point routine main returns, that thread exits as well.
However, if other threads have been created and continue to exist, the Unix process continues
executing Nachos. Only after all threads have terminated does the Unix Nachos process exit.
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4 User-Level Processes

Nachos runs user programs in their own private address space. Nachos can run any MIPS
binary, assuming that it restricts itself to only making system calls that Nachos understands.
In Unix, \a.out" �les are stored in \co�" format. Nachos requires that executables be in
the simpler \No�" format. To convert binaries of one format to the other, use the co�2no�
program. Consult the Make�le in the test directory for details.

No�-format �les consist of four parts. The �rst part, the No� header, describes the
contents of the rest of the �le, giving information about the program's instructions, initialized
variables and uninitialized variables.

The No� header resides at the very start of the �le and contains pointers to the remaining
sections. Speci�cally, the No� header contains:

no�Magic A reserved \magic" number that indicates that the �le is in No� format. The
magic number is stored in the �rst four bytes of the �le. Before attempting to execute
a user-program, Nachos checks the magic number to be sure that the �le about to be
executed is actually a Nachos executable.

For each of the remaining sections, Nachos maintains the following information:

virtualAddr What virtual address that segment begins at (normally zero).

inFileAddr Pointer within the No� �le where that section actually begins (so that
Nachos can read it into memory before execution begins).

size The size (in bytes) of that segment.

When executing a program, Nachos creates an address space and copies the contents
of the instruction and initialized variable segments into the address space. Note that the
uninitialized variable section does not need to be read from the �le. Since it is de�ned to
contain all zeros, Nachos simply allocates memory for it within the address space of the
Nachos process and zeros it out.

4.1 Process Creation

Nachos processes are formed by creating an address space, allocating physical memory for
the address space, loading the contents of the executable into physical memory, initializing
registers and address translation tables, and then invoking machine::Run() to start execu-
tion. Run() simply \turns on" the simulated MIPS machine, having it enter an in�nite loop
that executes instructions one at a time).

Stock Nachos assumes that only a single user program exists at a given time. Thus, when
an address space is created, Nachos assumes that no one else is using physical memory and
simply zeros out all of physical memory (e.g., the mainMemory character array). Nachos
then reads the binary into physical memory starting at location mainMemory and initializes
the translation tables to do a one-to-one mapping between virtual and physical addresses
(e.g., so that any virtual address N maps directly into the physical address N). Initialization
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of registers consists of zeroing them all out, setting PCReg and NextPCReg to 0 and 4
respectively, and setting the stackpointer to the largest virtual address of the process (the
stack grows downward towards the heap and text). Nachos assumes that execution of user-
programs begins at the �rst instruction in the text segment (e.g., virtual address 0).

When support for multiple user processes has been added, two other Nachos routines
are necessary for process switching. Whenever the current processes is suspended (e.g.,
preempted or put to sleep), the scheduler invokes the routine AddrSpace::SaveUserState(),
in order to properly save address-space related state that the low-level thread switching
routines do not know about. This becomes necessary when using virtual memory; when
switching from one process to another, a new set of address translation tables needs to
be loaded. The Nachos scheduler calls SaveUserState() whenever it is about to preempt
one thread and switch to another. Likewise, before switching to a new thread, the Nachos
scheduler invokes AddrSpace::RestoreUserState. RestoreUserState() insures that the proper
address translation tables are loaded before execution resumes.

4.2 Creating a No� Binary

Nachos is capable of executing a program containing arbitrary MIPS instructions. For ex-
ample, C programs in the test directory are compiled using gcc on a MIPS machine to create
\.o" �les. To create an a.out binary �le, the loader prepends the instructions in test/start.s
before the code of the user program. File start.s contains initialization code that needs to
be executed before the user's main program. Speci�cally, the very �rst instruction in start.s
calls the user-supplied main routine, whereas the second instruction invokes the Nachos Exit
system call, insuring that user processes terminate properly when their main program re-
turns. In addition, start.s contains stub modules for invoking system calls (described below).

4.3 System Calls and Exception Handling

User programs invoke system calls by executing the MIPS \syscall" instruction, which gen-
erates a hardware trap into the Nachos kernel. The Nachos/MIPS simulator implements
traps by invoking the Routine RaiseException(), passing it a arguments indicating the exact
cause of the trap. RaiseException, in turn, calls ExceptionHandler to take care of the speci�c
problem. ExceptionHandler is passed a single argument indicating the precise cause of the
trap.

The \syscall" instruction indicates a system call is requested, but doesn't indicate which
system call to perform. By convention, user programs place the code indicating the particular
system call desired in register r2 before executing the \syscall" instruction. Additional
arguments to the system call (when appropriate) can be found in registers r4-r7 , following
the standard C procedure call linkage conventions. Function (and system call) return values
are expected to be in register r2 on return.

Warning: When accessing user memory from within the exception handler (or within
Nachos in general), user-level addresses cannot be referenced directly. Recall that user-level
processes execute in their own private address spaces, which the kernel cannot reference
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#include "syscall.h"

int

main()

{

Halt();

/* not reached */

}

Figure 1: Source for the program halt.c

directly. Attempts to dereference pointers passed as arguments to system calls will likely lead
to problems (e.g., segmentation faults) if referenced directly. Use ReadMem and WriteMem
to dereference pointers passed as arguments to system calls. Consult Section 2.4 for more
details.

4.4 Execution Trace of User-Level Process

Consider the simplest Nachos program, halt.c, which invokes the \halt" system call and does
nothing else. Its source code is shown in Figure 1

When compiled, gcc -S generates the assembly language code shown in �gure 2 (line
numbers and additional comments have been added for clarity). The only instruction that
directly relates to invoking the \halt" system call is given in line 27. The jal instruction
executes a jump that transfers control to the label \Halt". Note that there is no label called
\Halt" in this program. The code for \Halt" can be found in the �le start.s. Lines 1-21 are
assembler directives that don't actually generate any instructions. Lines 22-25 perform the
standard procedure call linkage operations that are performed as part of starting execution
in a new subroutine (e.g., saving the return address and allocating space on the stack for
local variables). Line 26 is a call to a gcc-supplied library routine that Unix needs to execute
before your program normally begins execution (it is not needed in Nachos, so a dummy
routine is provided that does nothing). Lines 29-33 provide the standard code for returning
from a procedure call, e�ectively undoing the e�ects of lines 22-25 (e.g., fetch the saved
return address and then jump back to it).

The actual instructions for making system calls are found in start.s. Figure 3 shows the
subset of that �le that is used by the halt program. Again, lines 1-7 are assembler directives
rather than instructions. Line 8 is the �rst actual instruction, and simply calls the procedure
main, e.g., the main program in halt.c. Lines 9-10 are executed whenever the call to main
returns, in which case we want to tell Nachos we are done via the \exit" system call.

System calls are invoked at runtime by placing a code for the system call in register 2
and then executing the \syscall" machine instruction. The \syscall" instruction is a trap
instruction, meaning that the next instruction to be executed will be the �rst instruction
of the trap handler. In Nachos, this e�ectively means that execution continues now in
the procedure ExceptionHandler . Consider lines 15-18, the steps involved in making an
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1 .file 1 "halt.c"

2

3 # GNU C 2.4.5 [AL 1.1, MM 40] DECstation running ultrix compiled by GNU C

4

5 # Cc1 defaults:

6

7 # Cc1 arguments (-G value = 0, Cpu = default, ISA = 1):

8 # -G -quiet -dumpbase -o

9

10 gcc2_compiled.:

11 __gnu_compiled_c:

12 .text

13 .align 2

14 .globl main

15

16 .loc 1 16

17 .ent main

18 main:

19 .frame $fp,24,$31 # vars= 0, regs= 2/0, args = 16, extra= 0

20 .mask 0xc0000000,-4

21 .fmask 0x00000000,0

22 subu $sp,$sp,24 # SP <- SP-24 (allocate space on stack)

23 sw $31,20($sp) # Save return address on stack

24 sw $fp,16($sp) # Update FP

25 move $fp,$sp # FP <- SP

26 jal __main

27 jal Halt

28 $L1:

29 move $sp,$fp # sp not trusted here

30 lw $31,20($sp)

31 lw $fp,16($sp)

32 addu $sp,$sp,24

33 j $31

34 .end main

Figure 2: Source for the program halt.c
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\exit" system call. Line 16 places a code for \exit" in register r2, and line 17 performs the
actual system call. Line 18, the �rst instruction that will be executed after the system call
simply returns to the caller. Note that the Exit system call normally won't return (if coded
correctly!), but a return is provided anyway.

The actual steps in converting the halt.c source code into an executable program are
shown in Figure 4. Line 1-3 generate object code from the halt.c and start.s source �les.
Line 5 creates an executable binary. Note that listing start.o before halt.o insures that
the code in start.s resides before that of the main program. Finally, line 6 translates the
executable into No� format, making it ready to execute under Nachos.

The utility disassemble can be used to show the actual instructions in the halt binary. The
result of running disassemble on halt.co� (NOT halt) is given in Figure 5. The instructions
are the same as described above, but the code is somewhat harder to understand because
the labels have been replaced with addresses.

5 Nachos Filesystem

There are two versions of the Nachos �lesystem. A \stub" version is simply a front-end to
the Unix �lesystem, so that users can access �les within Nachos without having to write
their own �le system. The second version allows students to implement a �lesystem on
top of a raw disk, which is in fact a regular Unix �le that can only be accessed through
a simulated disk. The simulated disk accesses the underlying Unix �le exclusively through
operations that read and write individual sectors. Both �le systems provide the same service
and interface.

Files are accessed through several layers of objects. At the lowest level, a Disk ob-
ject provides a crude interface for initiating I/O operations for individual sectors. Above
Disk , the SynchDisk object provides synchronized access to a Disk , blocking callers until a
requested operation actually completes. In addition, SynchDisk allows multiple threads to
safely invoke disk operations concurrently. The FileSystem object handles creating, deleting,
opening and closing individual �les. Sitting alongside the FileSystem, the OpenFile object
handles the accessing of an individual �le's contents, allowing seeks, reads, and writes. The
FileSystem::Open routine returns a �le descriptor (actually an \OpenFile * "), that is used
to access the �le's data. The raw Disk object was described in Section 2.6. The remaining
objects are discussed in detail below.

5.1 SynchDisk

The SynchDisk object resides above the raw disk, providing a cleaner interface to its services.
Speci�cally, it provides operations that block the calling thread until after the corresponding
I/O complete interrupt takes place. In contrast, the Disk object provides the mechanism
for initiating an I/O operation, but does not provide a convenient way of blocking the
caller until the request completes. In addition, SynchDisk provides mutual exclusion, so
that multiple threads can safely call the SynchDisk routines concurrently (recall that Disk
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1 #include "syscall.h"

2 .text

3 .align 2

4

5 .globl __start

6 .ent __start

7 __start:

8 jal main # Call the procedure ``main''

9 move $4,$0 # R4 <- 0

10 jal Exit /* if we return from main, exit(0) */

11 .end __start

12

13 .globl Halt

14 .ent Halt

15 Halt:

16 addiu $2,$0,SC_Halt

17 syscall

18 j $31

19 .end Halt

20

21 .globl Exit

22 .ent Exit

23 Exit:

24 addiu $2,$0,SC_Exit

25 syscall

26 j $31

27 .end Exit

28 /* dummy function to keep gcc happy */

29 .globl __main

30 .ent __main

31 __main:

32 j $31

33 .end __main

Figure 3: Instructions in start.s used by the program in halt.c
.
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1 gcc -G 0 -c -I../userprog -I../threads -c halt.c

2 /lib/cpp -P -I../userprog -I../threads start.s > strt.s

3 as -o start.o strt.s

4 rm strt.s

5 ld -N -T 0 start.o halt.o -o halt.coff

6 ../bin/coff2noff halt.coff halt

7 numsections 2

8 Loading 2 sections:

9 ".text", filepos 0xa0, mempos 0x0, size 0x100

10 ".comment", filepos 0x200, mempos 0x0, size 0x24

Figure 4: The output from make when compiling halt.c.

cannot service more than one request at a time). Rather than using the Disk object directly,
most applications will �nd it appropriate to use SynchDisk instead. SynchDisk provides the
following operations:

SynchDisk(char *name): Constructor takes the name of Unix �le that holds the disk's
contents.

This routine is called once at system \boot time" (e.g., as part of Nachos initialization
process in system.cc), and it uses the Unix �le \DISK" as its backing store. The
SynchDisk object can be accessed through the global variable synchDisk .

RequestDone(): Interrupt service routine the underlying Disk object calls when an I/O
operation completes. Simply issues the semaphore V operation.

ReadSector(int sectorNumber, char *data): Acquire a mutual exclusion lock, invoke
the underlying Disk::ReadSector operation and then wait on the semaphore that Re-
questDone signals when the I/O operation completes.

WriteSector(int sectorNumber, char *data): Acquire a mutual exclusion lock, invoke
the underlying Disk::WriteSector operation and then wait on the semaphore that Re-
questDone signals when the I/O operation completes.

5.2 FileSystem Object

Nachos supports two di�erent �lesystems, a \stub" that simply maps Nachos �le operations
into ones the access Unix �les in the current directory, and a Nachos �le system that users
can modify. Use of the stub �lesystem makes it possible to implement paging and swapping
before implementing a Nachos �le system. The -DFILESYS STUB compilation ag controls
which version gets used.

The FileSystem object supports the following operations:
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Address Contents Instruction Target

(hex) (hex)

00000000: 0c000034 jal 000000d0

00000004: 00000000 nop

00000008: 0c000008 jal 00000020

0000000c: 00002021 addu r4,0,0

00000010: 24020000 addiu r2,0,0x0

00000014: 0000000c syscall

00000018: 03e00008 jr r31

0000001c: 00000000 nop

00000020: 24020001 addiu r2,0,0x1

00000024: 0000000c syscall

00000028: 03e00008 jr r31

0000002c: 00000000 nop

[ misc instructions deleted ]

000000c0: 03e00008 jr r31

000000c4: 00000000 nop

000000c8: 00000000 nop

000000cc: 00000000 nop

000000d0: 27bdffe8 addiu sp,sp,0xffffffe8

000000d4: afbf0014 sw r31,0x14(sp)

000000d8: afbe0010 sw r30,0x10(sp)

000000dc: 0c000030 jal 000000c0

000000e0: 03a0f021 addu r30,sp,0

000000e4: 0c000004 jal 00000010

000000e8: 00000000 nop

000000ec: 03c0e821 addu sp,r30,0

000000f0: 8fbf0014 lw r31,0x14(sp)

000000f4: 8fbe0010 lw r30,0x10(sp)

000000f8: 03e00008 jr r31

000000fc: 27bd0018 addiu sp,sp,0x18

Figure 5: The disassembled output of the executable for the halt.c program.
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FileSystem(bool format) For the stub system, this constructor (and destructor) does
nothing; the Unix �le system is used instead. For the Nachos �le system, format
indicates whether FileSystem should be re-initialized or whether the previous contents
of the �le system (from an earlier Nachos session) should be retained.

The FileSystem constructor is called once at \boot time." It assumes that a synchDisk
instance has already been created and uses it to store the �le system.

bool Create(char *name, int initialSize) creates a zero-length �le called name. If the
�le already exists, Create truncates its contents. Note that Create returns a boolean
value, either success or failure, but does not actual open a �le; it simply makes sure
that it exists and has zero-length. To actually write to a �le that has been created, a
subsequent call to Open must be made.

Argument initialSize speci�es the actual size of the �le. (Note: initialSize is ignored
in the stub �lesystem; Unix doesn't require that a �le's maximum size be speci�ed at
the time it is created.) For the regular �lesystem, specifying the �le's size at creation
time simpli�es implementation. Su�cient disk sectors can be allocated in advance to
hold the entire (potential) �le contents, and appending data to the �le requires nothing
more than accessing the appropriate blocks. Of course, one possible variation for the
assignment is to implement extensible �les whose actual size grows dynamically.

OpenFile *Open(char *name) opens �le name for subsequent read or write access. In
the stub �le system, Open simply opens the Unix �le for read/write access. Note
that all �les opened under Nachos are opened with both read and write access. Thus,
the user opening the �le must have write permission for a �le even when the �le
will only be read. One consequence of this can cause confusion while implementing
multiprogramming. Nachos is unable to Exec binary �les that are not writable because
it cannot open them.

Another thing to note is that Open does not truncate a �le's contents (it can't since you
might be reading the �le). However, when writing a �le, it is sometimes the case that
the �le's existing contents should be deleted before new data is written. In Nachos,
invoking Create before Open insures that a �le is zero-length.

bool Remove(char *name) deletes �le name and frees the disk blocks associated with
that �le.

Note that in Unix, the disk sectors associated with a deleted �le are not actually
returned to the free list as long as there are any processes that still have the �le open.
Only after all open �le descriptors for a �le are closed does Unix deallocate the disk
blocks associated with the �le and return them to the free list. The Unix semantics
prevent certain types of undesirable situations. For example, deleting a binary �le
cannot cause processes paging o� of that �le's text segment to terminate unexpectedly
when the paging system attempts to load an instruction page from non-existent �le.

One suggested Nachos assignment is to provide Unix-style �le deletion.

23



5.3 OpenFile Object

The OpenFile object manages the details of accessing the contents of a speci�c �le. Opening
a �le for access returns a pointer to an OpenFile object that can be used in subsequent read
and write operations. Each OpenFile object has an associated read/write mark that keeps
track of where the previous read or write operation ended. Supported operations include:

OpenFile(int sector) opens the �le sector . Argument sector is the sector number contain-
ing the FileHeader for the �le. A FileHeader (discussed in detail below) is similar to
a Unix inode in that the low-level �le system routines know nothing about �le names;
�les are uniquely identi�ed by there FileHeader number. OpenFile returns a pointer
to an OpenFile object that is subsequently used to invoke any of remaining operations.

int ReadAt(char *into, int numBytes, int position) copies numBytes of data into the
bu�er into. Argument position speci�es at what o�set within the �le reading is to start.
ReadAt returns the number of bytes successfully read.

int Read(char *into, int numBytes) simply invokes ReadAt , passing it the current read/write
mark. Read is used to read the �le sequentially from start to �nish, letting keeping
track of which part of the �le has already been read, and at what o�set the next read
operation is to continue. Read returns the number of bytes successfully read.

int WriteAt(char *from, int numBytes, int position) copies numBytes of data from
the bu�er from to the open �le, starting position bytes from the start of the �le.
WriteAt returns the number of bytes actually written.

int Write(char *from, int numBytes) is used to write a �le sequentially. The �rstWrite
begins at the start of the �le, with subsequent writes beginning where the previous
operation ended. Write returns the number of bytes actually written.

int Length() returns the actual size of the �le.

5.4 File System Physical Representation

Nachos places a �le system on top of an existing SynchDisk object. Before going into the
details, it is helpful to consider how �les themselves are stored.

5.4.1 File Header

Each Nachos �le has an associated FileHeader structure. The FileHeader is similar to a Unix
inode in that it contains all the essential information about a �le, such as the �le's current
size and pointers to its physical disk blocks. Speci�cally, a Nachos' FileHeader contains the
current size of the �le in bytes, the number of sectors that have been allocated to the �le
and an array of sector numbers identifying the speci�c disk sector numbers where the �le's
data blocks are located. Recall that when a �le is initially created, the caller speci�es the
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size of the �le. At �le creation time, Nachos allocates enough sectors to match the requested
size. Thus, as data is appended to the �le, no sectors need be allocated. The current size
�eld indicates how much of the �le currently contains meaningful data.

Note that a FileHeader contains only \direct" pointers to the �le's data blocks, limiting
the maximum size of a Nachos �le to just under 4K bytes.

The following FileHeader operations are supported:

bool Allocate(BitMap *bitMap, int �leSize): Find and allocate enough free sectors
for �leSize bytes of data. Nachos uses a bit vector to keep track of which sectors are
allocated and which are free. Argument bitMap is the bit map from which data blocks
are to be allocated (e.g., the freelist).

void Deallocate(BitMap *bitMap): Return to the free list (e.g., bitMap) the blocks
allocated to this �le (header). Only the �le's data blocks are deallocated; the sector
containing the FileHeader itself must be freed separately. This operation is invoked
when a �le is deleted from the system.

void FetchFrom(int sectorNumber): Read the FileHeader stored in sector sectorNum-
ber from the underlying disk.

void WriteBack(int sectorNumber) Write the FileHeader to sector number sectorNum-
ber .

int FileLength(): Return the current size of the �le.

int ByteToSector(int o�set) Map the o�set within a �le into the actual sector number
that contains that data byte.

Because a FileHeader �ts into a single sector, the sector number containing a FileHeader
uniquely identi�es that �le. We will use fnode (for FileheaderNODE) to refer to a sector
that contains a FileHeader .

5.4.2 Directories

Nachos supports a single top-level directory, managed by the Directory object. When a �le
is created, it is added to the directory; likewise, deleting a �le results in its removal from
the directory. Directory entries themselves consist of (�lename, fnode, free ag) triplets,
with the free ag indicating whether that directory slot is currently allocated. The following
directory operations are supported:

Directory(int size): This constructor creates an (in-memory) directory object capable of
holding size entries.

void FetchFrom(OpenFile *�le): Fetch the directory contents stored in �le �le.

void WriteBack(OpenFile *�le): Flush the contents of the directory to the �le �le.
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int Find(char *name): Search the directory for a �le called name, returning its fnode
number if the �le exists.

bool Add(char *name, int newSector): Add the �le name with fnode newSector to the
directory. Note that this routine only updates the in-memory copy of the directory.
To make the directory changes permanent, WriteBack must subsequently be invoked.

bool Remove(char *name): Remove �le name from the directory. Note that the Remove
operator simply updates the directory; the FileHeader and data sectors associated with
name are deallocated separately. In addition, a subsequent call toWriteBack is needed
to make the changes permanent.

List() Print out the directory contents (debugging).

Print() Print out contents of all �les in the directory (debugging).

5.4.3 Putting It All Together

On disk, both the list of free sectors and the top-level directory are stored within regular
Nachos �les. The free list is stored as a bit map, one bit per sector (e.g., allocated or free),
with the �le itself stored in fnode 0. Thus, �nding a free sector in the �lesystem requires
reading the �le associated with fnode 0, using the bitmap functions to locate free sector(s),
and then ushing the �le changes back to disk (via the appropriate WriteBack routines) to
make the changes permanent.

Likewise, the top-level directory is stored in a �le associated with fnode 1. Updating the
directory when creating a new �le requires reading the �le associated with fnode 1, �nding
an unused directory entry, initializing it, and then writing the directory back out to disk.

When a �le system is created, the system initializes the freelist and top-level directory and
then opens the �les containing the two main data structures. Thus, the current contents of
the free list and directory (as stored on disk) can be accessed via the \OpenFile *" variables
freeMapFile and directoryFile.

When creating and modifying Nachos �les, one must be careful to keep track of what
data structures are on disk, and which ones are in memory. For example, when creating a
�le, a new FileHeader must be allocated, together with sectors to hold the data (free list
�le). The top-level directory must also be updated. However, these changes don't become
permanent until the updated free list and directory �les are ushed to disk.

If one traces through the code for FileSystem::Create, one sees that all the allocations and
updates are �rst made in memory local to the calling thread, and only after all allocations
have succeeded without error are the changes made permanent by committing them to disk.
This approach greatly simpli�es error recovery when (say) there are enough free blocks to
create the �le, but the directory has no room to hold the new �le. By not ushing to disk
the allocations that succeeded, they do not actually take e�ect, and cancelling the entire
transaction is straightforward.
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Note also that the supplied FileSystem code assumes that only a single thread accesses
the �lesystem at any one time. Speci�cally, consider what would happen if two threads
attempted to create a �le simultaneously. One scenario would have both threads fetching
the current freemap, both updating their local copies, and then both writing them later. At
best, only one set of changes will appear on disk. At worst, the disk becomes corrupted.

No attempt has been made to reduce disk latencies by clustering related blocks in adjacent
sectors.

6 Experience With Nachos Assignments

The following subsections discuss in more detail issues related to the speci�c programming
assignments. They are based on my experiences after having used Nachos in two courses. In
my experience, students are easily overwhelmed by the projects. They frequently don't know
where to start and spend a large amount of time unproductively. The result is frustrated
students who don't complete projects. With a bit more guidance, these same students can
complete the projects. Although it is valuable for students to tackle a large project given
only a general problem description, this only bene�ts those who actually succeed. At the
undergraduate level especially, students may lack adequate preparation.

6.1 General Tips

1. Use a debugger. Nachos programs simply cannot be debugged by looking at source
code or inserting print statements. Unfortunately, that is what many students do (with
obvious consequences). I found it necessary to force students to learn to use a debugger
(e.g., no help in o�ce hours otherwise).

2. Use of code browsing tools (e.g., the emacs \tags" facility) greatly simpli�es the reading
and understanding of source code.

3. Students don't always test programs well. If it works on one test case, they assume it
works for all of them. For those studying operating systems for the �rst time, designing
test cases is particularly di�cult. When grading programs, it was not uncommon for
student-supplied test programs to work, with all of my test cases failing. I found that
I got much improved submissions by supplying concrete test programs that students
had a chance to experiment with themselves.

4. The Nachos assignments included in the distribution are very general and leave out
many details. I got much better results by providing more detail about what needs
to be done and how to do it. Although students get a bene�t greatly from �guring
out things on there own, I found too many students were getting lost and frustrated.
Students with weak backgrounds are especially vulnerable. Later subsections (and
indeed, this entire document) provide examples of such additional details.
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5. Students have a tendency to try to solve the entire problem at once, rather than
one step at a time. This is particularly problematical with Nachos, because students
often don't understand the big picture. I found it useful to break up an assignment into
smaller standalone pieces, each building on the previous pieces, with a rough indication
of the weight for each part. There are two bene�ts. First, solving one component of an
assignment frequently leads to a better understanding of the issues necessary to solve
subsequent components. Second, students know how much credit they will receive for
the work done so far, and can better decide whether they should keep working on a
project or use their time in other ways.

6.2 Synchronization

Testing the correctness of the synchronization facilities is di�cult if only Nachos threads are
used because Nachos preempts threads only at well de�ned points (e.g., when disabling or
re-enabling interrupts). Thus, many incorrect solutions tend to work on the simple test cases
students use. Fear not, later assignments test the synchronization facilities extensively and
will uncover problems. Here are some suggestions for simplifying later debugging:

1. For the locking routines, have Acquire verify that the caller does not already hold the
lock via an ASSERT statement. One common problem occurring in later assignments
involves nested locking, where a thread already holding a lock attempts to acquire it
again. Nachos can't always detect this deadlock condition itself (e.g, if the Console
device is in use) and students with deadlocked programs spend a long time not knowing
where to look before they realize they've deadlocked.

Another most common mistake students made while implementing locks is failing to
understand their semantics (even having covered them in class). Speci�cally, students tended
to have a ag or counter associated with condition variables. The following explanation will
hopefully clarify this point and explain why a condition variable cannot have a value.

Semaphores have a count associated with them. This count is a \memory" that allows a
semaphore to \remember" how many times the semaphore has been signalled (via P) relative
to the number of times it has been signalled (via V ). Semaphores are useful as gatekeepers
that must limit the number of persons (threads) allowed to be in a room simultaneously.
Threads enter the room enter through one door (the P operation) and leave through a second
door (the V operation). The semaphore's value keeps track of the number of threads in the
room at any given time. If the semaphore's initial value is 1, only one thread may be in the
room at a time, whereas an initial value of 100 allows the room to hold 100 threads.

In contrast, a condition variable has no value associated with it. If a thread invokes
Wait , it blocks no matter what! Speci�cally, it blocks regardless of how many previous
Signal operations were performed. In contrast, the semaphore P operation blocks only when
the count is non-positive, with the current value dependent on the initial counter and the
number of V operations that have been performed. One uses a semaphore (and its counter)
only when the number of P 's and V 's must balance each other. Note also that the condition
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Signal operations wakes up one blocked thread (if one is waiting on the condition), but has
no e�ect otherwise. If there are no threads waiting on a condition, executing Wait one time
has the same e�ect as executing it 1,000 times (e.g., no e�ect). Compare this behavior with
the semaphore V operation. Even when no threads are waiting on the semaphore, the V
operation increments the semaphore's value, which inuences P 's behavior later.

There are times when a thread may wish to wait for some future event, but the conditions
necessary that de�ne the event can't be described with a simple count. For example, a thread
may wish to wait for two resources to become available simultaneously, but does not wish
to hold one while it is blocked waiting for the other. In this case, a thread might wait on a
condition variable, with another thread issuing a Signal when the necessary condition (both
resources available simultaneously) becomes true. Note that only the code that calls Signal
and Wait know what the exact conditions are. Thus, the condition variable itself cannot
hold a meaningful value.

Finally, note that Nachos intends condition variables to have \Mesa-style" semantics.
In brief, when a Signal operation releases a thread, that thread can not assume that the
condition that it waited for is now true. It must �rst reassert that the necessary condition
still holds (e.g., it must test the condition in a while loop, calling Wait again whenever the
condition is false). This is necessary because another thread may be scheduled and execute
between the time of Signal and the running of the waiting thread. That intermediate thread
may change the state of the system so that the waited-on condition no longer holds.

6.3 Multiprogramming

1. The Nachos Fork and Exec routines have completely di�erent semantic from the Unix
system calls. In particular, the Nachos system calls do the following:

Exec Creates a new address space, reads a binary program into it, and then creates
a new thread (via Thread::Fork) to run it. Note that in Unix separate fork and
exec system calls are needed to achieve the same result.4

Fork Creates a new thread of control executing in an existing address space. This is
a non-trivial system call to implement (for reasons discussed later).

2. When a Nachos program issues an Exec system call, the parent process is executing the
code associated with the Exec call. At some point during the Exec call, the parent will
need to invoke Thread::Fork to create the new thread that executes the child process.
Careful thought is required in deciding at what point the Fork operation should be
done. Speci�cally, after Fork , the (new) child thread can no longer access variables
associated with the parent process. For example, if the parent copies the name of the
new �le to be executed into a variable, then issues a Fork , expecting the child to open
that �le, a race condition exists. If the child runs after the parent, the parent may
already have deleted (or changed) the variable holding that �le name.

4Warning: when opening �les, Nachos opens all �les for both reading and writing. Thus, the binary being

loaded o� of disk must be writable.
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The above race condition appears in a number of similar contexts where two processes
exchange data. The problem is that the parent and child threads need to synchronize
with each other, so that the parent doesn't reclaim or reuse memory before the child
is �nished accessing it.

3. When the MIPS simulator \traps" to Nachos via the RaiseException routine, the
program counter (PCReg) points point to the instruction that caused the trap. That
is, the PCReg will not have been updated to point to the next instruction. This is
the correct behavior. When the fault is due to (say) a page missing, for example,
the faulting instruction will need be re-executed after the missing page is brought into
memory. If PCReg had already been updated, there would be no way of knowing which
instruction to re-execute.

On the other hand, when a user program invokes a system call via the \syscall" in-
struction, re-executing that instruction after returning from the system call leads to
an in�nite system call loop. Thus, as part of executing a system call, the exception
handler code in Nachos needs to update PCReg to point to the instruction following
the \syscall" instruction. Updating PCReg is not as trivial as �rst seems, however, due
to the possibility of delayed branches. The following code properly updates the pro-
gram counter. In particular, not properly updating NextPCReg can lead to improper
execution.

pc = machine->ReadRegister(PCReg);

machine->WriteRegister(PrevPCReg, pc);

pc = machine->ReadRegister(NextPCReg);

machine->WriteRegister(PCReg, pc);

pc += 4;

machine->WriteRegister(NextPCReg, pc);

Use of the following test programs greatly helped convince me that my implementation
was (�nally) correct:

ConsoleA Simple program that simply loops, writing the character 'A' to the console.
Likewise, ConsoleB loops, printing the character 'B'.

shell The provided shell starts a process and then issues a \Join" to wait for it to ter-
minate. This test multiprogramming in a very rudimentary fashion only, because
the shell and the invoked program rarely execute concurrently in practice.

Modify the shell so that it can run jobs in background. For example, if the �rst
character of the �le is an \&", start the process as normal, but don't invoke a
\Join." Instead, prompt the user for the next command.

With the modi�ed shell, run the ConsoleA and ConsoleB programs concurrently.

6.4 Virtual Memory

1. It is easiest to test the VM algorithms by running only a single process and have it
page against itself. It's a lot easier to see what is happening this way. Add debug print
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statements using the DEBUG() routine; I used "p" for paging to turn it on. I found
it immensely useful to add debugging statements at the following points:

� when a page is reclaimed (e.g., taken away from a process and made available to
another one), indicate which process (address space) was forced to give up a page,
which virtual page number it gave up, and the corresponding page frame number
in physical memory.

In order to print the name of the address space that was forced to give up a page,
add a "char *name" �eld to the AddrSpace object and initialize it to the name of
the Nachos binary when the space is initially created.

� Whenever a process has a page fault, print the address space that caused the
fault, which virtual page number the fault was for, and the physical page frame
that was used to satisfy the fault.

2. Reduce the amount of available physical memory to insure lots of page faults. I got
good results with 25 pages of real memory. Also, the matmult program in the test
subdirectory uses quite a lot of memory. It is a good program to run with the "-x
../test/matmult" option to nachos.

Another good test is to use a modi�ed shell (the one that allows you to run a process
in background by putting a '&' character before the �le name). Run the matmult
program in background, and then also run the console1 and console2 programs at the
same time. You should be seeing alternating A's and B's as before (if using the "-rs"
Nachos option).

3. You will need to maintain a data structure called a core map. The core map is a table
containing an entry for every physical page frame in the system. For each page frame,
a core map entry keeps track of:

� Is the page frame allocated or free?

� Which address space is using this page?

� which virtual page number within space?

� Plus possibly other ags, such as whether the page is currently locked in memory
for I/O purposes

When the system needs to �nd a free page, but none are available, the memory manager
inspects the core map to �nd good candidate replacement pages. Of course, the memory
manager looks at the page table entry for that frame (via the \space" pointer) to
determine if a page has been used recently, is modi�ed, etc.

Start with a simple page replacement policy. I simply reclaimed frames in sequential
order starting with frame 0. That is, �rst reclaim 0, than 1, etc., wrapping around
when you get to the end of the list. This is obviously NOT an ideal policy, but it works
for the purposes of testing your implementation (in fact, by being a \bad" policy, it
tests your code surprisingly well). Once the rest of your code is debugged, then worry
about implementing a better policy.
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4. You need to think very carefully about mutual exclusion. For example, the page
replacement process may select frame 13, but �nd that it needs to write it to backing
store before it can be reclaimed. This will take a long time (I/O is slow), and in the
meantime the process that was using that frame may be selected by the scheduler and
start running again. What happens when it tries to reference that frame? It will surely
notice that the page is gone, and try to reload it from backing store. Will it get the
proper copy? Will it read the page only after the page replacement object has written
it? There are all sorts of race conditions like that can potentially mess things up. So
be sure to use appropriate mutual exclusion in the paging routines.

5. You will need to maintain a "shadow" page table for each address space. The existing
page table de�ned by Nachos has a speci�c format dictated by the address translation
hardware. You will need to keep additional information about each page, thus the
shadow table. The shadow table keeps track of such things as the current state of the
page (e.g., loaded in memory, needs to be loaded from the text or swap �le, etc.)

Moreover, when you do away with the hardware page table and use the TLB, the
shadow table contains everything the standard table contains (e.g., reference bit, dirty
bit, etc.). That is, when a program traps due to a TLB miss, the page fault handler
will look in the shadow table to �nd the appropriate mapping (loading it from backing
store �rst, if necessary), update the TLB and then restart the faulting instruction.

In order to simplify the migration to the TLB part of this assignment, you may want
to have your paging algorithms access only the shadow page tables (rather than the
hardware page tables) when deciding which pages to reclaim, etc. That way, when the
hardware table goes away, none of the routines need to be changed. One consequence
of this approach, however, is that some information (e.g., dirty and reference bits)
will be duplicated in both tables at the same time. Since the hardware automatically
updates its page table, but not the shadow table, you will need to synchronize the
two tables at key points before inspecting the shadow table. For example, before
checking the dirty bit for an entry in the shadow page table, make sure that the
shadow table has the must recent value for that bit. You may �nd it useful to have a
routine SyncPageTableEntry() that synchronizes a shadow entry with its corresponding
hardware value. Note: you will probably need such a routine anyway later when doing
the TLB part of the assignment, since the Nachos hardware only updates its TLB
entries.

6. You will need to allocate backing store (swap space) for each address space. One
approach is to create a �le (e.g., swap.PID) when the address space is created, open
it, and then use it while the process is running. The �le should be closed and removed
when the process terminates.

When a page fault takes place, there are three scenarios:

(a) The page belongs to the stack or heap section, and should be initialized to 0. This
is the easiest case to handle, because you only have to �nd a free page and zero
it out. There is no need for disk I/O.
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(b) The page should be loaded from the swap �le. This simply involves reading the
page in the swap �le at the o�set corresponding to the page being accessed. For
example, page number 7 would correspond to an o�set of 7*PageSize = 7*128 =
896.

(c) The page contains instructions or initialized data and should be loaded from the
original binary �le.

This is the most di�cult case. You will need to �gure out what o�set within the
text �le the desired page begins at. To simplify matters, assume that the text and
initialized data segments are laid out contiguously in the Nachos binary �le (they
are). That way, you only need to keep track of where the text segment begins (it
doesn't start at o�set 0, the NOFF header resides there) and the combined length
of the text and data segments are.

To handle the three above cases, you will need to keep two OpenFile objects with the
AddrSpace object. One for the text �le, the other for the swap �le. In addition, for each
page in an address space's shadow page table, maintain a state variable that indicates
what state the page is in. For example, LOADFROMTEXT, LOADFROMSWAP and
ZEROFILL. The state of a page is initialized when a process is created, and changes
only if the memory manager reclaims the page, �nds it modi�ed, and writes it to
backing store.

7. You will need routines that lock a range of addresses into memory (and unlock them
later). For example, when a program does a system call to read data from a �le,
it provides a pointer to the bu�er where it wants the �le contents placed. The Read
system call �rst reads the desired data into its own bu�er, and then copies the data into
the user bu�er using the machine::WriteMem() operations. In order for this operation
to succeed, the pages holding the bu�er must be in memory. Thus, you will want
to lock the pages associated with the bu�er into memory before attempting to place
data in the bu�er. Once the data has been copied to the bu�er, the pages can be
unlocked again. For example, the routine LockMemory() might take a virtual address
and length, insure that all pages corresponding to the speci�ed addresses indicated
are loaded and present in physical memory and lock them into place. While locked in
memory, the memory manager would not reclaim them.

What you must do for full credit. Please note that I will grade these in order. If part
1 doesn't work, I won't even look at 2 or 3. Don't waste your time working on any
parts before completing the previous parts.

1. (40% of total grade) Get demand loading to work. That is, rather than load the
program into memory during "exec", load individual pages as they are �rst referenced.
If a page is never referenced, it is never loaded into memory. Assume that there is
enough physical memory so that no pages ever need to be reclaimed.

2. (70% of total grade) In addition to 1), get full blown paging with backing store im-
plemented. That is, when the system runs out of physical memory, grab any page,
write it to backing store if necessary, and then reuse the page frame. Use a simple
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policy (like the one described above). The focus is on getting the mechanics of page
replacement/backing store to work.

3. (85% of total grade) In addition to the previous steps, implement a better page re-
placement policy, such as LRU.

4. (100% of total grade) In addition to the previous steps, use the TLB rather than
hardware page tables. (E.g., compile with the -DUSE TLB option).

6.5 File System

Locking is a major pain because WriteAt calls ReadAt (on occasion). One probably wants to
lock for both reads and writes, but if one already has the lock (while writing) and then calls
read, potential deadlock scenarios appear immediately. Here are some particularly tricky
cases:

1. It is tempting to have a single lock per �le, which one acquires as the �rst step in
beginning a read or write. However, there are cases where WriteAt also calls ReadAt .
Speci�cally, if WriteAt needs to write a partial sector, it must �rst read the sector
and then update the subset of that sector the WriteAt refers to. However, if ReadAt
attempts to acquire the same lock that WriteAt already holds, deadlock results.

2. Consider updating an directory (as part of create). To properly update the directory,
it is read from disk, then modi�ed in memory, then written back out to disk. For
correctness, access to the directory must be locked for the duration of all operations
(not just while reading or writing). Otherwise, two threads could attempt to update
the directory simultaneously. If both threads read the directory, modi�ed separate
in-memory copies and then wrote out the changes, only one set of changes would make
it out to disk. Note that it is insu�cient to lock the directory only during the reads
and writes; a lock must be held across both operations. Thus, acquiring locks within
ReadAt or WriteAt is insu�cient.

3. A similar scenario occurs when updating the freelist as part of removing a �le. One
must �rst read the bitmap, update it, and then ush the changes back out to disk. The
bitmap routines FetchFrom and WriteBack call ReadAt and WriteAt respectively.

6.6 Common Errors

This section discusses common problems that students ran into over and over again (even
after having been warned about them).

1. The VM assignment works mostly correctly, but running matmult in background pre-
vents the shell from executing any more commands, even though it prompts the user
and seems to read the command OK.
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What is happening: The pages (in user space) holding the arguments to the system calls
are being paged out before the system call routines copy the contents of those pages into
local variables. For example, Exec needs the name of the binary �le to run. Routine
machine::ReadMem does indeed invoke Translate to perform the translation, and if the
target page is not present in physical memory, generates a page fault (e.g., by invoking
RaiseException). However , ReadMem does not retry the fetch operation; instead,
it returns FALSE indicating that the operation failed. Thus, the �rst byte the user
attempts to fetch will not be retrieved. If Nachos immediately restarts the operation,
the page will now be present in memory (the probability is very high anyway). If
ReadMem is called from a loop that fetches one character at a time, skipping the
�rst character will likely cause the wrong thing to happen (it is frequently NULL in
practice, terminating the string). The same problem occurs with WriteMem. and can
occur with any system calls that take pointers as arguments.

One shortcut that students want to make is to simply retry the ReadMem operation
when it fails. That is, they assume that the only reason ReadMem fails is because
the target page was paged out. If the pointer is invalid (e.g., outside of the process's
address space), however, retrying the operation results in the same failure. Indeed,
Nachos goes into an in�nite loop at this point.

2. Problem: value of variables (strings in particular) changes randomly.

What is happening: Dangling references. Although this is a standard C programming
problem, students repeatedly forgot to allocate space for strings. For example, as part
of the Exec system call, it is useful for debugging purposes to store the name of the �le
with the address space. This requires allocating space to hold the string and copying
that �le name into that newly allocated space. In contrast, students often simply
set a pointer to the �le name argument passed to the routine that implements Exec.
However, when that routine returns, the Exec system call completes, and the space
that held the �le name gets deallocated. Chance are good that the next system call to
be executed will reuse the same space, placing di�erent data in its contents.

7 MIPS Architecture

One thing you need to be aware of is that the MIPS architecture (like many RISC archi-
tectures) has a number of instructions that do not take e�ect right away. Instructions that
fetch values from memory, for example, take so long to execute that another instruction
(that doesn't access memory) can be executed before the memory access completes. Such
instructions are called delayed loads; the loaded value doesn't become available right away.
The MIPS architecture executes one instruction during such load delay slots.

In many cases, the compiler can rearrange the order of instructions in order to �ll the
delay slot with useful instruction. For example, a value could be loaded a few instructions
earlier than it is actually needed, as long as the target register was not being used. When
tracing programs in Nachos, you should be aware that instructions used in calling subroutines
have a one-instruction delay. That is, the PC can be changed quickly, but the processor must
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go to memory to fetch the instruction at the new address before it can actually execute it.
Thus, the code for calling the procedure Exit with an argument of 0 would be done as follows:

jal Exit # Jump to procedure ``Exit''

addu r4,0,0 # r4 <= r0 + 0 (r0 always has a value of 0)

That is, the instruction that zeroes out register r4 appears after the \jal" instruction,
rather than before as expected.

Table ?? describes some common instructions you may encounter.
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